Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
1.
Environ Sci Technol ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145972

ABSTRACT

This study delves into the unexplored distribution and accumulation of chlorinated paraffins (CPs), pervasive industrial contaminants used as flame retardants and plasticizers, within the hadal trenches, some of Earth's most isolated marine ecosystems. Analysis of sediments from the Mussau (MS) and Mariana trench (MT) reveals notably high total CP concentrations (∑SCCPs + ∑MCCPs) of 10,963 and 14,554 ng g-1 dw, respectively, surpassing those in a reference site in the western Pacific abyssal plain (8533 ng g-1 dw). In contrast, the New Britain Trench (NBT) exhibits the lowest concentrations (2213-5880 ng g-1 dw), where CP distribution correlates with clay content, δ13C and δ15N values, but little with total organic carbon and depth. Additionally, amphipods from these trenches display varying CP levels, with MS amphipods reaching concerning concentrations (8681-16,138 ng g-1 lw), while amphipods in the MT-1 site show the lowest (4414-5010 ng g-1 lw). These bioaccumulation trends appear to be primarily influenced by feeding behaviors (δ13C) and trophic levels (δ15N). Utilizing biota-sediment accumulation factor values and principal component analysis, we discern that CPs in sediment may come from surface-derived particulate organic matters, while those in amphipods may come from the above carrion. Our findings elucidate the profound impacts of the emerging pollutants on the Earth's least explored marine ecosystems.

2.
Parasit Vectors ; 17(1): 328, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095833

ABSTRACT

BACKGROUND: Bartonella quintana is a body louse-borne bacterium causing bacteremia and infective endocarditis. We aimed to describe B. quintana detection among arthropods and their hosts. METHODS: We searched databases in PubMed Central/MEDLINE, Scopus, Embase, and Web of Science from January 1, 1915 (the year of B. quintana discovery) to January 1, 2024, to identify publications containing specific search terms relating to B. quintana detection among arthropods. Descriptive statistics and meta-analysis of pooled prevalence using random-effects models were performed for all arthropods and body and head lice. RESULTS: Of 1265 records, 62 articles were included, describing 8839 body lice, 4962 head lice, and 1692 other arthropods, such as different species of fleas, bedbugs, mites, and ticks. Arthropods were collected from 37 countries, of which 28 had arthropods with B. quintana DNA. Among articles that reported B. quintana detection among individual arthropods, 1445 of 14,088 (0.1026, 95% CI [0.0976; 0.1077]) arthropods tested positive for B. quintana DNA, generating a random-effects model global prevalence of 0.0666 (95% CI [0.0426; 0.1026]). Fifty-six studies tested 8839 body lice, of which 1679 had B. quintana DNA (0.1899, 95% CI [0.1818; 0.1983]), generating a random-effects model pooled prevalence of 0.2312 (95% CI [0.1784; 0.2843]). Forty-two studies tested 4962 head lice, of which 390 head lice from 20 studies originating from 11 different countries had B. quintana DNA (0.0786, 95% CI [0.0713; 0.0864]). Eight studies detected B. quintana DNA exclusively on head lice. Five studies reported greater B. quintana detection on head lice than body lice; all originated from low-resource environments. CONCLUSIONS: Bartonella quintana is a vector-borne bacterium with a global distribution, disproportionately affecting marginalized populations. Bartonella quintana DNA has been detected in many different arthropod species, though not all of these arthropods meet criteria to be considered vectors for B. quintana transmission. Body lice have long been known to transmit B. quintana. A limited number of studies suggest that head lice may also act as possible vectors for B. quintana in specific low-resource contexts.


Subject(s)
Arthropods , Bartonella quintana , Pediculus , Animals , Bartonella quintana/isolation & purification , Bartonella quintana/genetics , Arthropods/microbiology , Pediculus/microbiology , Pediculus/genetics , Trench Fever/epidemiology , Trench Fever/microbiology , Trench Fever/transmission , Trench Fever/diagnosis , Ticks/microbiology , Humans , Mites/microbiology , Siphonaptera/microbiology , Bedbugs/microbiology , DNA, Bacterial/genetics , Phthiraptera/microbiology , Lice Infestations/epidemiology , Lice Infestations/parasitology
3.
Sci Rep ; 14(1): 18395, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117858

ABSTRACT

For the first time, a new configuration of label-free junctionless semiconductor device is proposed to boost sensitivity in the identification of biomolecule specifies. Instead of creating the nanocavity inside the gate oxide, the nanocavity is created in the channel region which is very useful for the SOI junctionless technology based biodevice having a high current in all operating modes. For better control of the conduction mechanism, a hole trench is created under the channel region just inside the buried oxide. This will help to modulate the energy bands terminating in enhancing the sensing performance. Unlike the conventional biosensors needing a large-scale gate oxide thickness for trapping the biomolecules, the proposed biosensor can work for very low gate oxide thickness. The different biomolecules such as Biotin, Protein A, Bacteriophage T7, and Apomyoglobin have been utilized as targeted biomolecules for evaluating the sensitivity. Comparing the proposed biosensor with the conventional and other biosensors showed an enhanced sensing performance. Practical related issues during the process of sensing in terms of fill factor percentage, steric hindrance of biomolecules, and the charges of biomolecules have been focused in the recommended biodevice. All the results exhibited high superiority of performance of the suggested biodevice as compared to the conventional biosensor.


Subject(s)
Biosensing Techniques , Semiconductors , Biosensing Techniques/methods , Equipment Design
4.
Nanotechnology ; 35(45)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39121872

ABSTRACT

In order to predict the single particle irradiation of tunnel field effect transistor (TFET) devices, a deep learning algorithm network model was built to predict the key characterization parameters of the single particle transient. Computer aided design (TCAD) technique is used to study the influence of single particle effect on the novel stacked source trench gate TFET device. The results show that with the increase of drain voltage, incident width of heavy ions (less than 0.04µm), and linear energy transfer, the drain transient current and collected charge also increase. The prediction results of deep learning algorithm show that the relative error percentage of drain current pulse peak (IDMAX) and collected charge (Qc) is less than 10%, and the relative error percentage of most predicted values is less than 1%. Comparison experiments with five traditional machine learning methods (support vector machine, decision tree, K-nearest algorithm, ridge regression, linear regression) show that the deep learning algorithm has the best performance and has the smallest average error percentage. This data-driven deep learning algorithm model not only enables researchers who are not familiar with semiconductor devices to quickly obtain the transient data of a single particle under any conditions; at the same time, it can be applied to digital circuit design as a data-driven device model reflecting the reliability of single particle transient. The application of deep learning in the field of device irradiation prediction has a highly promising prospect in the future.

5.
Glob Chang Biol ; 30(7): e17412, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39044634

ABSTRACT

The hadopelagic environment remains highly understudied due to the inherent difficulties in sampling at these depths. The use of sediment environmental DNA (eDNA) can overcome some of these restrictions as settled and preserved DNA represent an archive of the biological communities. We use sediment eDNA to assess changes in the community within one of the world's most productive open-ocean ecosystems: the Atacama Trench. The ecosystems around the Atacama Trench have been intensively fished and are affected by climate oscillations, but the understanding of potential impacts on the marine community is limited. We sampled five sites using sediment cores at water depths from 2400 to ~8000 m. The chronologies of the sedimentary record were determined using 210Pbex. Environmental DNA was extracted from core slices and metabarcoding was used to identify the eukaryote community using two separate primer pairs for different sections of the 18S rRNA gene (V9 and V7) effectively targeting pelagic taxa. The reconstructed communities were similar among markers and mainly composed of chordates and members of the Chromista kingdom. Alpha diversity was estimated for all sites in intervals of 15 years (from 1842 to 2018), showing a severe drop in biodiversity from 1970 to 1985 that aligns with one of the strongest known El Niño events and extensive fishing efforts during the time. We find a direct impact of sea surface temperature on the community composition over time. Fish and cnidarian read abundance was examined separately to determine whether fishing had a direct impact, but no direct relation was found. These results demonstrate that sediment eDNA can be a valuable emerging tool providing insight in historical perspectives on ecosystem developments. This study constitutes an important step toward an improved understanding of the importance of environmental and anthropogenic drivers in affecting open and deep ocean communities.


Subject(s)
Biodiversity , DNA, Environmental , Ecosystem , Geologic Sediments , RNA, Ribosomal, 18S , Geologic Sediments/analysis , DNA, Environmental/analysis , RNA, Ribosomal, 18S/genetics , Chile , Animals , DNA Barcoding, Taxonomic , Eukaryota/genetics , Aquatic Organisms/genetics
6.
Nano Lett ; 24(30): 9337-9344, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39038175

ABSTRACT

Localized surface plasmon resonances (LSPRs) can enhance the electromagnetic fields on metallic nanostructures upon light illumination, providing an approach for manipulating light-matter interactions at the sub-wavelength scale. However, currently, there is no thorough investigation of the physical mechanism in the dynamic formation of the strongly coupled LSPRs on sub-5 nm plasmonic cavities at the sub-picosecond scale. In this work, through femtosecond broadband transient absorption spectroscopy, we reveal the dynamic ultrastrong coupling processes in a nanoparticle-in-trench (NPiT) structure containing 2 nm gap cavities, and demonstrate a coherent motional coupling between vibrating AuNPs and the nanogaps. We achieve a maximum Rabi splitting energy of ∼660 meV in the sub-picosecond hot-electron relaxation time scale under the resonant excitation of the nanogap cavity's LSPR, reaching the ultrastrong coupling regime. This leads to a change of global vibration modes for the 2 nm gap cavity, potentially related to the dynamical Casimir effect with nanogap resonators.

7.
Philos Trans A Math Phys Eng Sci ; 382(2278): 20230372, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39069766

ABSTRACT

Periodic wave barriers have been widely used to manipulate elastic waves propagating in saturated and single-phase soil due to their attenuation zone properties. However, it is difficult to promote application of periodic barriers in unsaturated soils due to their complex constitutive relationship. In this study, manipulation of surface waves by periodic in-filled trench barriers in unsaturated soil has been studied based on the periodic theory. The dispersion relations of a periodic structure for surface waves in unsaturated soil are determined. The attenuation mechanism of evanescent surface waves is revealed. Next, the effects of several key parameters of unsaturated soil on the attenuation zones of the periodic in-filled trench barriers are comprehensively discussed. It is found that in a particular range for material parameter, the surface waves are attenuated over the entire frequency range due to the viscosity of fluid. Finally, a periodic in-filled trench barrier is designed according to a field test of ground vibration induced by a train, and its performances in mitigating surface waves propagating in unsaturated and saturated soils are conducted and compared by conducting analysis in time domain. This investigation provides a new insight for manipulating surface waves by periodic barriers. This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 1)'.

8.
Mar Genomics ; 76: 101112, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009493

ABSTRACT

Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur molecule in marine environments with important roles in stress tolerance, global carbon and sulfur cycling, and chemotaxis. It is the main precursor of the climate active gas dimethyl sulfide (DMS), which is the greatest natural source of bio­sulfur transferred from ocean to atmosphere. Alteromonas sp. M12, a Gram-negative and aerobic bacterium, was isolated from the seawater samples collected from the Mariana Trench at the depth of 2500 m. Here, we report the complete genome sequence of strain M12 and its genomic characteristics to import and utilize DMSP. The genome of strain M12 contains one circular chromosome (5,012,782 bp) with the GC content of 40.88%. Alteromonas sp. M12 can grow with DMSP as a sole carbon source, and produced DMS with DMSP as a precursor. Genomic analysis showed that strain M12 contained a set of genes involved in the downstream steps of DMSP cleavage, but no known genes encoding DMSP transporters or DMSP lyases. The results indicated that this strain contained novel DMSP transport and cleavage genes in its genome which warrants further investigation. The import of DMSP into cells may be a strategy of strain M12 to adapt the hydrostatic pressure environment in the Mariana Trench, as DMSP can be used as a hydrostatic pressure protectant. This study sheds light on the catabolism of DMSP by deep-sea bacteria.


Subject(s)
Alteromonas , Genome, Bacterial , Sulfonium Compounds , Sulfonium Compounds/metabolism , Alteromonas/genetics , Seawater/microbiology , Sulfides
9.
Mar Life Sci Technol ; 6(2): 331-348, 2024 May.
Article in English | MEDLINE | ID: mdl-38827128

ABSTRACT

Phenolic compounds, as well as other aromatic compounds, have been reported to be abundant in hadal trenches. Although high-throughput sequencing studies have hinted at the potential of hadal microbes to degrade these compounds, direct microbiological, genetic and biochemical evidence under in situ pressures remain absent. Here, a microbial consortium and a pure culture of Pseudomonas, newly isolated from Mariana Trench sediments, efficiently degraded phenol under pressures up to 70 and 60 MPa, respectively, with concomitant increase in biomass. By analyzing a high-pressure (70 MPa) culture metatranscriptome, not only was the entire range of metabolic processes under high pressure generated, but also genes encoding complete phenol degradation via ortho- and meta-cleavage pathways were revealed. The isolate of Pseudomonas also contained genes encoding the complete degradation pathway. Six transcribed genes (dmpKLMNOPsed) were functionally identified to encode a multicomponent hydroxylase catalyzing the hydroxylation of phenol and its methylated derivatives by heterogeneous expression. In addition, key catabolic genes identified in the metatranscriptome of the high-pressure cultures and genomes of bacterial isolates were found to be all widely distributed in 22 published hadal microbial metagenomes. At microbiological, genetic, bioinformatics, and biochemical levels, this study found that microorganisms widely found in hadal trenches were able to effectively drive phenolic compound degradation under high hydrostatic pressures. This information will bridge a knowledge gap concerning the microbial aromatics degradation within hadal trenches. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00224-2.

10.
Micromachines (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38930654

ABSTRACT

In this paper, a novel 4H-SiC deep-trench super-junction MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) with a split-gate is proposed and theoretically verified by Sentaurus TCAD simulations. A deep trench filled with P-poly-Si combined with the P-SiC region leads to a charge balance effect. Instead of a full-SiC P region in conventional super-junction MOSFET, this new structure reduces the P region in a super-junction MOSFET, thus helping to lower the specific on-resistance. As a result, the figure of merit (FoM, BV2/Ron,sp) of the proposed new structure is 642% and 39.65% higher than the C-MOS and the SJ-MOS, respectively.

11.
Micromachines (Basel) ; 15(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38930694

ABSTRACT

In this article, a silicon carbide (SiC) asymmetric MOSFET with a step trench (AST-MOS) is proposed and investigated. The AST-MOS features a step trench with an extra electron current path on one side, thereby increasing the channel density of the device. A thick oxide layer is also employed at the bottom of the step trench, which is used as a new voltage-withstanding region. Furthermore, the ratio of the gate-to-drain capacitance (Cgd) to the gate-to-source capacitance (Cgs) is significantly reduced in the AST-MOS. As a result, the AST-MOS compared with the double-trench MOSFET (DT-MOS) and deep double-trench MOSFET (DDT-MOS), is demonstrated to have an increase of 200 V and 50 V in the breakdown voltage (BV), decreases of 21.8% and 10% in the specific on-resistance (Ron,sp), a reduction of about 1 V in the induced crosstalk voltage, and lower switching loss. Additionally, the trade-off between the resistance of the JFET region (RJFET) and the electric field in the gate oxide (Eox) is studied for a step trench and a deep trench. The improved performances suggest that a step trench is a competitive option in advanced device design.

12.
Micromachines (Basel) ; 15(6)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38930742

ABSTRACT

This paper presents a comprehensive study on single- and repetitive-frequency UIS characteristics of 1200 V asymmetric (AT) and double trench silicon carbide (DT-SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) and their electrical degradation under electrical-thermal working conditions, investigated through experiment and simulation verification. Because their structure is different, the failure mechanisms are different. Comparatively, the gate oxide of a DT-MOSFET is more easily damaged than an AT-MOSFET because the hot carriers are injected into the oxide. The parameters' degradation under repetitive UIS stress also requires analysis. The variations in the measured parameters are recorded to evaluate typical electrical features of device failure. Furthermore, TCAD simulation is used to reveal the electrothermal stress inside the device during avalanche. Additionally, failed devices are decapsulated to verify the location of the failure point. Finally, a new type of stepped-oxide vertical power DT MOSFET with P-type shielding and current spread layers, along with its feasible process flow, is proposed for the improvement of gate dielectric reliability.

13.
Nanomaterials (Basel) ; 14(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38921882

ABSTRACT

The electro-thermal performance of silicon nanosheet field-effect transistors (NSFETs) with various parasitic bottom transistor (trpbt)-controlling schemes is evaluated. Conventional punch-through stopper, trench inner-spacer (TIS), and bottom oxide (BOX) schemes were investigated from single-device to circuit-level evaluations to avoid overestimating heat's impact on performance. For single-device evaluations, the TIS scheme maintains the device temperature 59.6 and 50.4 K lower than the BOX scheme for n/pFETs, respectively, due to the low thermal conductivity of BOX. However, when the over-etched S/D recess depth (TSD) exceeds 2 nm in the TIS scheme, the RC delay becomes larger than that of the BOX scheme due to increased gate capacitance (Cgg) as the TSD increases. A higher TIS height prevents the Cgg increase and exhibits the best electro-thermal performance at single-device operation. Circuit-level evaluations are conducted with ring oscillators using 3D mixed-mode simulation. Although TIS and BOX schemes have similar oscillation frequencies, the TIS scheme has a slightly lower device temperature. This thermal superiority of the TIS scheme becomes more pronounced as the load capacitance (CL) increases. As CL increases from 1 to 10 fF, the temperature difference between TIS and BOX schemes widens from 1.5 to 4.8 K. Therefore, the TIS scheme is most suitable for controlling trpbt and improving electro-thermal performance in sub-3 nm node NSFETs.

14.
mSystems ; 9(7): e0024324, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38940525

ABSTRACT

The Mariana Trench (MT) is the deepest part of the ocean on Earth. Previous studies have described the microbial community structures and functional potential in the seawater and surface sediment of MT. Still, the metabolic features and adaptation strategies of the microorganisms involved in nitrogen cycling processes are poorly understood. In this study, comparative metagenomic approaches were used to study microbial nitrogen cycling in three MT habitats, including hadal seawater [9,600-10,500 m below sea level (mbsl)], surface sediments [0-46 cm below seafloor (cmbsf) at a water depth between 7,143 and 8,638 mbsl], and deep sediments (200-306 cmbsf at a water depth of 8,300 mbsl). We identified five new nitrite-oxidizing bacteria (NOB) lineages that had adapted to the oligotrophic MT slope sediment, via their CO2 fixation capability through the reductive tricarboxylic acid (rTCA) or Calvin-Benson-Bassham (CBB) cycle; an anammox bacterium might perform aerobic respiration and utilize sedimentary carbohydrates for energy generation because it contains genes encoding type A cytochrome c oxidase and complete glycolysis pathway. In seawater, abundant alkane-oxidizing Ketobacter species can fix inert N2 released from other denitrifying and/or anammox bacteria. This study further expands our understanding of microbial life in the largely unexplored deepest part of the ocean. IMPORTANCE: The metabolic features and adaptation strategies of the nitrogen cycling microorganisms in the deepest part of the ocean are largely unknown. This study revealed that anammox bacteria might perform aerobic respiration in response to nutrient limitation or O2 fluctuations in the Mariana Trench sediments. Meanwhile, an abundant alkane-oxidizing Ketobacter species could fix N2 in hadal seawater. This study provides new insights into the roles of hadal microorganisms in global nitrogen biogeochemical cycles. It substantially expands our understanding of the microbial life in the largely unexplored deepest part of the ocean.


Subject(s)
Bacteria , Geologic Sediments , Nitrogen Cycle , Oceans and Seas , Seawater , Seawater/microbiology , Seawater/chemistry , Geologic Sediments/microbiology , Bacteria/metabolism , Bacteria/genetics , Nitrogen/metabolism , Microbiota/physiology , Phylogeny
15.
Emerg Infect Dis ; 30(7): 1450-1453, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916637

ABSTRACT

We analyzed body lice collected from persons experiencing homelessness in Winnipeg, Manitoba, Canada, during 2020-2021 to confirm vector species and ecotype and to identify louseborne pathogens. Of 556 lice analyzed from 7 persons, 17 louse pools (218 lice) from 1 person were positive for the louseborne bacterium Bartonella quintana.


Subject(s)
Ill-Housed Persons , Lice Infestations , Pediculus , Humans , Animals , Pediculus/microbiology , Lice Infestations/epidemiology , Lice Infestations/parasitology , Bartonella quintana/genetics , Canada/epidemiology , Manitoba/epidemiology , Male , Female
16.
Article in English | MEDLINE | ID: mdl-38913036

ABSTRACT

A novel chemoheterotrophic iron-reducing micro-organism, designated as strain LSZ-M11000T, was isolated from sediment of the Marianas Trench. Phylogenetic analysis based on the 16S rRNA gene revealed that strain LSZ-M11000T belonged to genus Tepidibacillus, with 97 % identity to that of Tepidibacillus fermentans STGHT, a mesophilic bacterium isolated from the Severo-Stavropolskoye underground gas storage facility in Russia. The polar lipid profile of strain LSZ-M11000T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, as well as other unidentified phospholipids and lipids. The major fatty acids were C16 : 0 (28.4 %), C18 : 0 (15.8 %), iso-C15 : 0 (12.9 %), and anteiso-C15 : 0 (12.0 %). Strain LSZ-M11000T had no menaquinone. Genome sequencing revealed that the genome size of strain LSZ-M11000T was 2.97 Mb and the DNA G+C content was 37.9 mol%. The average nucleotide identity values between strain LSZ-M11000T and its close phylogenetic relatives, Tepidibacillus fermentans STGHT and Tepidibacillus decaturensis Z9T, were 76.4 and 72.6 %, respectively. The corresponding DNA-DNA hybridization estimates were 20.9 and 23.4 %, respectively. Cells of strain LSZ-M11000T were rod-shaped (1.0-1.5×0.3-0.5 µm). Using pyruvate as an electron donor, it was capable of reducing KMnO4, MnO2, As(V), NaNO3, NaNO2, Na2SO4, Na2S2O3, and K2Cr2O7. Based on phenotypic, genotypic, and phylogenetic evidence, strain LSZ-M11000T is proposed to be a novel strain of the genus Tepidibacillus, for which the name Tepdibacillus marianensis is proposed. The type strain is LSZ-M11000T (=CCAM 1008T=JCM 39431T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Iron , Phospholipids , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Geologic Sediments/microbiology , DNA, Bacterial/genetics , Russia , Iron/metabolism , Heterotrophic Processes , Nucleic Acid Hybridization , Bacillaceae/classification , Bacillaceae/genetics , Bacillaceae/isolation & purification , Whole Genome Sequencing , Oxidation-Reduction
17.
Mar Drugs ; 22(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786603

ABSTRACT

Naturally occurring echinocandin B and FR901379 are potent antifungal lipopeptides featuring a cyclic hexapeptide nucleus and a fatty acid side chain. They are the parent compounds of echinocandin drugs for the treatment of severe fungal infections caused by the Candida and Aspergilla species. To minimize hemolytic toxicity, the native fatty acid side chains in these drug molecules are replaced with designer acyl side chains. The deacylation of the N-acyl side chain is, therefore, a crucial step for the development and manufacturing of echinocandin-type antibiotics. Echinocandin E (ECE) is a novel echinocandin congener with enhanced stability generated via the engineering of the biosynthetic machinery of echinocandin B (ECB). In the present study, we report the discovery of the first echinocandin E acylase (ECEA) using the enzyme similarity tool (EST) for enzymatic function mining across protein families. ECEA is derived from Streptomyces sp. SY1965 isolated from a sediment collected from the Mariana Trench. It was cloned and heterologously expressed in S. lividans TK24. The resultant TKecea66 strain showed efficient cleavage activity of the acyl side chain of ECE, showing promising applications in the development of novel echinocandin-type therapeutics. Our results also provide a showcase for harnessing the essentially untapped biodiversity from the hadal ecosystems for the discovery of functional molecules.


Subject(s)
Antifungal Agents , Echinocandins , Streptomyces , Streptomyces/enzymology , Streptomyces/genetics , Echinocandins/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Amidohydrolases/metabolism , Fungal Proteins
18.
Microorganisms ; 12(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38674652

ABSTRACT

Prokaryotes play a key role in particulate organic matter's decomposition and remineralization processes in the vertical scale of seawater, and prokaryotes contribute to more than 70% of the estimated remineralization. However, little is known about the microbial community and metabolic activity of the vertical distribution in the trenches. The composition and distribution of prokaryotes in the water columns and benthic boundary layers of the Kermadec Trench and the Diamantina Trench were investigated using high-throughput sequencing and quantitative PCR, together with the Biolog EcoplateTM microplates culture to analyze the microbial metabolic activity. Microbial communities in both trenches were dominated by Nitrososphaera and Halobacteria in archaea, and by Alphaproteobacteria and Gammaproteobacteria in bacteria, and the microbial community structure was significantly different between the water column and the benthic boundary layer. At the surface water, amino acids and polymers were used preferentially; at the benthic boundary layers, amino acids and amines were used preferentially. Cooperative relationships among different microbial groups and their carbon utilization capabilities could help to make better use of various carbon sources along the water depths, reflected by the predominantly positive relationships based on the co-occurrence network analysis. In addition, the distinct microbial metabolic activity detected at 800 m, which was the lower boundary of the twilight zone, had the lowest salinity and might have had higher proportions of refractory carbon sources than the shallower water depths and benthic boundary layers. This study reflected the initial preference of the carbon source by the natural microbes in the vertical scale of different trenches and should be complemented with stable isotopic tracing experiments in future studies to enhance the understanding of the complex carbon utilization pathways along the vertical scale by prokaryotes among different trenches.

19.
Micromachines (Basel) ; 15(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38675272

ABSTRACT

In this paper, a novel asymmetric trench SiC MOSFET with a Poly-Si/SiC heterojunction diode (HJD-ATMOS) is designed to improve its reverse conduction characteristics and switching performance. This structure features an integrated heterojunction diode, which improves body diode characteristics without affecting device static characteristics. The heterojunction diode acts as a freewheeling diode during reverse conduction, reducing the cut-in voltage (Vcut-in) to a lower level than conventional asymmetric trench SiC MOSFET (C-ATMOS), while maintaining a similar breakdown voltage. Meanwhile, the split gate structure reduces gate-to-drain charge (Qgd). Through TCAD simulation, the HJD-ATMOS decreases Vcut-in by 53.04% compared to the C-ATMOS. Both Qgd and switching loss are reduced, with a decrease of 31.91% in Qgd and 40.29% in switching loss.

20.
Microbiome ; 12(1): 77, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664737

ABSTRACT

BACKGROUND: The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes. RESULTS: In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench. CONCLUSIONS: Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.


Subject(s)
Bacteria , Metagenomics , Nutrients , Peptidoglycan , Phytoplankton , Polysaccharides , Seawater , Polysaccharides/metabolism , Seawater/microbiology , Phytoplankton/metabolism , Phytoplankton/genetics , Nutrients/metabolism , Peptidoglycan/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Microbiota
SELECTION OF CITATIONS
SEARCH DETAIL