Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Gut Microbes ; 16(1): 2400575, 2024.
Article in English | MEDLINE | ID: mdl-39312647

ABSTRACT

Enteropathogenic E. coli (EPEC) is a Gram-negative bacterial pathogen that causes persistent diarrhea. Upon attachment to the apical plasma membrane of the intestinal epithelium, the pathogen translocates virulence proteins called effectors into the infected cells. These effectors hijack numerous host processes for the pathogen's benefit. Therefore, studying the mechanisms underlying their action is crucial for a better understanding of the disease. We show that translocated EspH interacts with multiple host Rab GTPases. AlphaFold predictions and site-directed mutagenesis identified glutamic acid and lysine at positions 37 and 41 as Rab interacting residues in EspH. Mutating these sites abolished the ability of EspH to inhibit Akt and mTORC1 signaling, lysosomal exocytosis, and bacterial invasion. Knocking out the endogenous Rab8a gene expression highlighted the involvement of Rab8a in Akt/mTORC1 signaling and lysosomal exocytosis. A phosphoinositide binding domain with a critical tyrosine was identified in EspH. Mutating the tyrosine abolished the localization of EspH at infection sites and its capacity to interact with the Rabs. Our data suggest novel EspH-dependent mechanisms that elicit immune signaling and membrane trafficking during EPEC infection.


Subject(s)
Cell Membrane , Enteropathogenic Escherichia coli , rab GTP-Binding Proteins , Humans , Cell Membrane/metabolism , Enteropathogenic Escherichia coli/metabolism , Enteropathogenic Escherichia coli/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Exocytosis , Host-Pathogen Interactions , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Phosphatidylinositols/metabolism , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Signal Transduction
2.
Phytopathology ; 114(1): 241-250, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37432099

ABSTRACT

Xanthomonas perforans-the dominant causal agent of bacterial leaf spot of tomato-is an emerging pathogen of pepper, indicative of a potential host expansion across the southeastern United States. However, studies of the genetic diversity and evolution of X. perforans from pepper remain limited. In this study, the whole-genome sequences of 35 X. perforans strains isolated from pepper from four fields and two transplant facilities across southwest Florida between 2019 and 2021 were used to compare genomic divergence, evolution, and variation in type III secreted effectors. Phylogenetic analysis based on core genes revealed that all 35 X. perforans strains formed one genetic cluster with pepper and tomato strains from Alabama and Turkey and were closely related to strains isolated from tomato in Indiana, Mexico, and Louisiana. The in planta population growth of tomato strains isolated from Indiana, Mexico, Louisiana, and Turkey in pepper leaf mesophyll was on par with pepper X. perforans and X. euvesicatoria strains. Molecular clock analysis of the 35 Florida strains dated their emergence to approximately 2017. While strains varied in copper tolerance, all sequenced strains harbored the avrHah1 transcription activation-like effector located on a conjugative plasmid, not previously reported in Florida. Our findings suggest that there is a geographically distributed lineage of X. perforans strains on tomato that has the genetic background to cause disease on pepper. Moreover, this study clarifies potential adaptive variants of X. perforans on pepper that could help forecast the emergence of such strains and enable immediate or preemptive intervention.


Subject(s)
Metagenomics , Xanthomonas , Phylogeny , Plant Diseases/microbiology , Genomics , Xanthomonas/genetics
3.
mBio ; : e0197923, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38038448

ABSTRACT

IMPORTANCE: Enteropathogenic Escherichia coli (EPEC) infection is a significant cause of gastroenteritis, mainly in children. Therefore, studying the mechanisms of EPEC infection is an important research theme. EPEC modulates its host cell life by injecting via a type III secretion machinery cell death modulating effector proteins. For instance, while EspF and Map promote mitochondrial cell death, EspZ antagonizes cell death. We show that these effectors also control lysosomal exocytosis, i.e., the trafficking of lysosomes to the host cell plasma membrane. Interestingly, the capacity of these effectors to induce or protect against cell death correlates completely with their ability to induce LE, suggesting that the two processes are interconnected. Modulating host cell death is critical for establishing bacterial attachment to the host and subsequent dissemination. Therefore, exploring the modes of LE involvement in host cell death is crucial for elucidating the mechanisms underlying EPEC infection and disease.

4.
Front Microbiol ; 14: 1305899, 2023.
Article in English | MEDLINE | ID: mdl-38075927

ABSTRACT

The plant pathogenic bacterium Pseudomonas syringae pv tomato DC3000 (Pst DC3000) causes disease in tomato, in the model plant Arabidopsis thaliana, and conditionally in Nicotiana benthamiana. The pathogenicity of Pst DC3000 is mostly due to bacterial virulence proteins, known as effectors, that are translocated into the plant cytoplasm through the type III secretion system (T3SS). Bacterial type III secreted effectors (T3SEs) target plants physiological processes and suppress defense responses to enable and support bacterial proliferation. The Pst DC3000 T3SE HopD1 interferes with plant defense responses by targeting the transcription factor NTL9. This work shows that HopD1 also targets the immune protein AtNHR2B (Arabidopsis thaliana nonhost resistance 2B), a protein that localizes to dynamic vesicles of the plant endomembrane system. Live-cell imaging of Nicotiana benthamiana plants transiently co-expressing HopD1 fused to the epitope haemagglutinin (HopD1-HA) with AtNHR2B fused to the red fluorescent protein (AtNHR2B-RFP), revealed that HopD1-HA interferes with the abundance and cellular dynamics of AtNHR2B-RFP-containing vesicles. The results from this study shed light into an additional function of HopD1 while contributing to understanding how T3SEs also target vesicle trafficking-mediated processes in plants.

5.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569283

ABSTRACT

Diverse extracellular and intracellular cues activate mammalian mitogen-activated protein kinases (MAPKs). Canonically, the activation starts at cell surface receptors and continues via intracellular MAPK components, acting in the host cell nucleus as activators of transcriptional programs to regulate various cellular activities, including proinflammatory responses against bacterial pathogens. For instance, binding host pattern recognition receptors (PRRs) on the surface of intestinal epithelial cells to bacterial pathogen external components trigger the MAPK/NF-κB signaling cascade, eliciting cytokine production. This results in an innate immune response that can eliminate the bacterial pathogen. However, enteric bacterial pathogens evolved sophisticated mechanisms that interfere with such a response by delivering virulent proteins, termed effectors, and toxins into the host cells. These proteins act in numerous ways to inactivate or activate critical components of the MAPK signaling cascades and innate immunity. The consequence of such activities could lead to successful bacterial colonization, dissemination, and pathogenicity. This article will review enteric bacterial pathogens' strategies to modulate MAPKs and host responses. It will also discuss findings attempting to develop anti-microbial treatments by targeting MAPKs.


Subject(s)
Mitogen-Activated Protein Kinases , Signal Transduction , Animals , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Immunity, Innate , NF-kappa B/metabolism , Bacteria/metabolism , Enterobacteriaceae , Mammals/metabolism
6.
mBio ; 14(4): e0075223, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37341483

ABSTRACT

EspZ and Tir are essential virulence effectors of enteropathogenic Escherichia coli (EPEC). EspZ, the second translocated effector, has been suggested to antagonize host cell death induced by the first translocated effector, Tir (translocated intimin receptor). Another characteristic of EspZ is its localization to host mitochondria. However, studies that explored the mitochondrial localization of EspZ have examined the ectopically expressed effector and not the more physiologically relevant translocated effector. Here, we confirmed the membrane topology of translocated EspZ at infection sites and the involvement of Tir in confining its localization to these sites. Unlike the ectopically expressed EspZ, the translocated EspZ did not colocalize with mitochondrial markers. Moreover, no correlation has been found between the capacity of ectopically expressed EspZ to target mitochondria and the ability of translocated EspZ to protect against cell death. Translocated EspZ may have to some extent diminished F-actin pedestal formation induced by Tir but has a marked effect on protecting against host cell death and on promoting host colonization by the bacteria. Taken together, our results suggest that EspZ plays an essential role in facilitating bacterial colonization, likely by antagonizing cell death mediated by Tir at the onset of bacterial infection. This activity of EspZ, which occurs by targeting host membrane components at infection sites, and not mitochondria, may contribute to successful bacterial colonization of the infected intestine. IMPORTANCE EPEC is an important human pathogen that causes acute infantile diarrhea. EspZ is an essential virulence effector protein translocated from the bacterium into the host cells. Detailed knowledge of its mechanisms of action is, therefore, critical for better understanding the EPEC disease. We show that Tir, the first translocated effector, confines the localization of EspZ, the second translocated effector, to infection sites. This activity is important for antagonizing the pro-cell death activity conferred by Tir. Moreover, we show that translocated EspZ leads to effective bacterial colonization of the host. Hence, our data suggest that translocated EspZ is essential because it confers host cell survival to allow bacterial colonization at an early stage of bacterial infection. It performs these activities by targeting host membrane components at infection sites. Identifying these targets is critical for elucidating the molecular mechanism underlying the EspZ activity and the EPEC disease.


Subject(s)
Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Cell Adhesion , Cell Death , Humans , Cell Line, Tumor
7.
Mol Plant Pathol ; 24(10): 1312-1318, 2023 10.
Article in English | MEDLINE | ID: mdl-37310613

ABSTRACT

The bacterial wilt disease caused by soilborne bacteria of the Ralstonia solanacearum species complex (RSSC) threatens important crops worldwide. Only a few immune receptors conferring resistance to this devastating disease are known so far. Individual RSSC strains deliver around 70 different type III secretion system effectors into host cells to manipulate the plant physiology. RipE1 is an effector conserved across the RSSC and triggers immune responses in the model solanaceous plant Nicotiana benthamiana. Here, we used multiplexed virus-induced gene silencing of the nucleotide-binding and leucine-rich repeat receptor family to identify the genetic basis of RipE1 recognition. Specific silencing of the N. benthamiana homologue of Solanum lycopersicoides Ptr1 (confers resistance to Pseudomonas syringae pv. tomato race 1) gene (NbPtr1) completely abolished RipE1-induced hypersensitive response and immunity to Ralstonia pseudosolanacearum. The expression of the native NbPtr1 coding sequence was sufficient to restore RipE1 recognition in Nb-ptr1 knockout plants. Interestingly, RipE1 association with the host cell plasma membrane was necessary for NbPtr1-dependent recognition. Furthermore, NbPtr1-dependent recognition of RipE1 natural variants is polymorphic, providing additional evidence for the indirect mode of activation of NbPtr1. Altogether, this work supports NbPtr1 relevance for resistance to bacterial wilt disease in Solanaceae.


Subject(s)
Ralstonia solanacearum , Solanum lycopersicum , Solanum lycopersicum/genetics , Nicotiana/microbiology , Ralstonia solanacearum/genetics , Pseudomonas syringae/genetics , Cell Membrane/metabolism , Plant Diseases/microbiology , Bacterial Proteins/metabolism
8.
Mol Plant Microbe Interact ; 36(4): 208-217, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36645655

ABSTRACT

The endomembrane system, extending from the nuclear envelope to the plasma membrane, is critical to the plant response to pathogen infection. Synthesis and transport of immunity-related proteins and antimicrobial compounds to and from the plasma membrane are supported by conventional and unconventional processes of secretion and internalization of vesicles, guided by the cytoskeleton networks. Although plant bacterial pathogens reside mostly in the apoplast, major structural and functional modifications of the endomembrane system in the host cell occur during bacterial infection. Here, we review the dynamics of these cellular compartments, briefly, for their essential contributions to the plant defense responses and, in parallel, for their emerging roles in bacterial pathogenicity. We further focus on Pseudomonas syringae, Xanthomonas spp., and Ralstonia solanacearum type III secreted effectors that one or both localize to and associate with components of the host endomembrane system or the cytoskeleton network to highlight the diversity of virulence strategies deployed by bacterial pathogens beyond the inhibition of the secretory pathway. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Bacteria , Bacterial Proteins , Bacterial Proteins/metabolism , Bacteria/metabolism , Plants/microbiology , Virulence , Pseudomonas syringae , Plant Diseases/microbiology
9.
Gut Microbes ; 14(1): 2130657, 2022.
Article in English | MEDLINE | ID: mdl-36219160

ABSTRACT

Enteropathogenic Escherichia coli are bacterial pathogens that colonize the gut and cause severe diarrhea in humans. Upon intimate attachment to the intestinal epithelium, these pathogens translocate via a type III secretion system virulent proteins, termed effectors, into the host cells. These effectors manipulate diverse host cell organelles and functions for the pathogen's benefit. However, the precise mechanisms underlying their activities are not fully understood despite intensive research. EspH, a critical effector protein, has been previously reported to disrupt the host cell actin cytoskeleton by suppressing RhoGTPase guanine exchange factors. However, native host proteins targeted by EspH to mediate these activities remained unknown. Here, we identified the active Bcr related (ABR), a protein previously characterized to possess dual Rho guanine nucleotide exchange factor and GTPase activating protein (GAP) domains, as a native EspH interacting partner. These interactions are mediated by the effector protein's C-terminal 38 amino acid segment. The effector primarily targets the GAP domain of ABR to suppress Rac1 and Cdc42, host cell cytotoxicity, bacterial invasion, and filopodium formation at infection sites. Knockdown of ABR expression abolished the ability of EspH to suppress Rac1, Cdc42. Our studies unravel a novel mechanism by which host RhoGTPases are hijacked by bacterial effectors.


Subject(s)
Escherichia coli Proteins , Gastrointestinal Microbiome , Amino Acids , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , GTPase-Activating Proteins/genetics , Guanine , Humans , Type III Secretion Systems
10.
Microb Genom ; 7(7)2021 07.
Article in English | MEDLINE | ID: mdl-34227931

ABSTRACT

Pseudomonas is a highly diverse genus that includes species that cause disease in both plants and animals. Recently, pathogenic pseudomonads from the Pseudomonas syringae and Pseudomonas fluorescens species complexes have caused significant outbreaks in several agronomically important crops in Turkey, including tomato, citrus, artichoke and melon. We characterized 169 pathogenic Pseudomonas strains associated with recent outbreaks in Turkey via multilocus sequence analysis and whole-genome sequencing, then used comparative and evolutionary genomics to characterize putative virulence mechanisms. Most of the isolates are closely related to other plant pathogens distributed among the primary phylogroups of P. syringae, although there are significant numbers of P. fluorescens isolates, which is a species better known as a rhizosphere-inhabiting plant-growth promoter. We found that all 39 citrus blast pathogens cluster in P. syringae phylogroup 2, although strains isolated from the same host do not cluster monophyletically, with lemon, mandarin orange and sweet orange isolates all being intermixed throughout the phylogroup. In contrast, 20 tomato pith pathogens are found in two independent lineages: one in the P. syringae secondary phylogroups, and the other from the P. fluorescens species complex. These divergent pith necrosis strains lack characteristic virulence factors like the canonical tripartite type III secretion system, large effector repertoires and the ability to synthesize multiple bacterial phytotoxins, suggesting they have alternative molecular mechanisms to cause disease. These findings highlight the complex nature of host specificity among plant pathogenic pseudomonads.


Subject(s)
Crops, Agricultural/microbiology , Genome, Bacterial/genetics , Plant Diseases/microbiology , Pseudomonas fluorescens/genetics , Pseudomonas syringae/genetics , Multilocus Sequence Typing , Plants/microbiology , Pseudomonas fluorescens/isolation & purification , Pseudomonas fluorescens/pathogenicity , Pseudomonas syringae/isolation & purification , Pseudomonas syringae/pathogenicity , Turkey , Type III Secretion Systems/genetics , Virulence Factors/genetics , Whole Genome Sequencing
11.
Brief Bioinform ; 22(2): 1918-1928, 2021 03 22.
Article in English | MEDLINE | ID: mdl-32043137

ABSTRACT

Type III secretion systems (T3SS) can be found in many pathogenic bacteria, such as Dysentery bacillus, Salmonella typhimurium, Vibrio cholera and pathogenic Escherichia coli. The routes of infection of these bacteria include the T3SS transferring a large number of type III secreted effectors (T3SE) into host cells, thereby blocking or adjusting the communication channels of the host cells. Therefore, the accurate identification of T3SEs is the precondition for the further study of pathogenic bacteria. In this article, a new T3SEs ensemble predictor was developed, which can accurately distinguish T3SEs from any unknown protein. In the course of the experiment, methods and models are strictly trained and tested. Compared with other methods, EP3 demonstrates better performance, including the absence of overfitting, strong robustness and powerful predictive ability. EP3 (an ensemble predictor that accurately identifies T3SEs) is designed to simplify the user's (especially nonprofessional users) access to T3SEs for further investigation, which will have a significant impact on understanding the progression of pathogenic bacterial infections. Based on the integrated model that we proposed, a web server had been established to distinguish T3SEs from non-T3SEs, where have EP3_1 and EP3_2. The users can choose the model according to the species of the samples to be tested. Our related tools and data can be accessed through the link http://lab.malab.cn/∼lijing/EP3.html.


Subject(s)
Computational Biology/methods , Gram-Negative Bacteria/metabolism , Type III Secretion Systems/metabolism , Algorithms , Models, Theoretical , Reproducibility of Results , Support Vector Machine
12.
J Gen Plant Pathol ; 86(4): 257-265, 2020.
Article in English | MEDLINE | ID: mdl-32412555

ABSTRACT

Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a serious threat to kiwifruit production. Highly virulent strains of Psa biovar3 (Psa3) have spread rapidly to kiwifruit production areas worldwide. Therefore, there is an urgent need to develop critical management strategies for bacterial canker based on dissecting the interactions between Psa and kiwifruit. Here, we developed a rapid and reliable flood-inoculation method using kiwifruit seedlings grown on Murashige and Skoog medium. This method has several advantages over inoculation of conventional soil-grown plants. We demonstrated the utility of a kiwifruit seedling assay to study the virulence of Psa biovars and Psa3 virulence factors, including the type III secretion system (T3SS). Kiwifruit seedlings inoculated with Psa3 developed severe necrosis within 1 week, whereas those inoculated with a T3SS-deficient hrcN mutant of Psa3 did not. This method was also useful for analyzing expression profiles of genes involved in Psa3 virulence during infection, and revealed that the expression of genes encoding the T3SS and type III secreted effectors were strongly induced in planta. Our results indicate that the T3SS has an important role in Psa3 virulence, and the flood-inoculation assay using kiwifruit seedling is suitable for analyzing Psa and kiwifruit interactions.

13.
New Phytol ; 227(2): 326-333, 2020 07.
Article in English | MEDLINE | ID: mdl-32239533

ABSTRACT

Over the past decade, tremendous progress has been made in plant pathology, broadening our understanding of how pathogens colonize their hosts. To manipulate host cell physiology and subvert plant immune responses, pathogens secrete an array of effector proteins. A co-evolutionary arms-race drives the pathogen to constantly reinvent its effector repertoire to undermine plant immunity. In turn, hosts develop novel immune receptors to maintain effector recognition and mount defences. Understanding how effectors promote disease and how they are perceived by the plant's defence network persist as major subjects in the study of plant-pathogen interactions. Here, we focus on recent advances (over roughly the last two years) in understanding structure/function relationships in effectors from bacteria and filamentous plant pathogens. Structure/function studies of bacterial effectors frequently uncover diverse catalytic activities, while structure-informed similarity searches have enabled cataloguing of filamentous pathogen effectors. We also suggest how such advances have informed the study of plant-pathogen interactions.


Subject(s)
Host-Pathogen Interactions , Plant Diseases , Bacteria , Plant Immunity , Plants
14.
Front Plant Sci ; 10: 418, 2019.
Article in English | MEDLINE | ID: mdl-31024592

ABSTRACT

Diverse Gram-negative pathogens like Pseudomonas syringae employ type III secreted effector (T3SE) proteins as primary virulence factors that combat host immunity and promote disease. T3SEs can also be recognized by plant hosts and activate an effector triggered immune (ETI) response that shifts the interaction back toward plant immunity. Consequently, T3SEs are pivotal in determining the virulence potential of individual P. syringae strains, and ultimately help to restrict P. syringae pathogens to a subset of potential hosts that are unable to recognize their repertoires of T3SEs. While a number of effector families are known to be present in the P. syringae species complex, one of the most persistent challenges has been documenting the complex variation in T3SE contents across a diverse collection of strains. Using the entire pan-genome of 494 P. syringae strains isolated from more than 100 hosts, we conducted a global analysis of all known and putative T3SEs. We identified a total of 14,613 putative T3SEs, 4,636 of which were unique at the amino acid level, and show that T3SE repertoires of different P. syringae strains vary dramatically, even among strains isolated from the same hosts. We also find substantial diversification within many T3SE families, and in many cases find strong signatures of positive selection. Furthermore, we identify multiple gene gain and loss events for several families, demonstrating an important role of horizontal gene transfer (HGT) in the evolution of P. syringae T3SEs. These analyses provide insight into the evolutionary history of P. syringae T3SEs as they co-evolve with the host immune system, and dramatically expand the database of P. syringae T3SEs alleles.

15.
Mol Plant Pathol ; 18(3): 457-468, 2017 04.
Article in English | MEDLINE | ID: mdl-27061875

ABSTRACT

Pseudomonas syringae is a bacterial phytopathogen that utilizes the type III secretion system to inject effector proteins into plant host cells. Pseudomonas syringae can infect a wide range of plant hosts, including agronomically important crops such as tomatoes and beans. The ability of P. syringae to infect such numerous hosts is caused, in part, by the diversity of effectors employed by this phytopathogen. Over 60 different effector families exist in P. syringae; one such family is HopF, which contains over 100 distinct alleles. Despite this diversity, research has focused on only two members of this family: HopF1 from P. syringae pathovar phaseolicola 1449B and HopF2 from P. syringae pathovar tomato DC3000. In this study, we review the research on HopF family members, including their host targets and molecular mechanisms of immunity suppression, and their enzymatic function. We also provide a phylogenetic analysis of this expanding effector family which provides a basis for a proposed nomenclature to guide future research. The extensive genetic diversity that exists within the HopF family presents a great opportunity to study how functional diversification on an effector family contributes to host specialization.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems , Pseudomonas syringae/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Secretion Systems/chemistry , Bacterial Secretion Systems/metabolism , Phylogeny
16.
Microb Genom ; 2(10): e000089, 2016 10.
Article in English | MEDLINE | ID: mdl-28348830

ABSTRACT

Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1, to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae.


Subject(s)
Crops, Agricultural/microbiology , Genome, Bacterial/genetics , Metagenomics , Pseudomonas syringae/physiology , Bacterial Proteins/genetics , Genome-Wide Association Study , Phylogeny , Plant Diseases/microbiology , Virulence/genetics
17.
New Phytol ; 210(1): 51-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26306858

ABSTRACT

Most bacterial plant pathogens employ a type-III secretion system to inject type-III effector (T3E) proteins directly inside plant cells. These T3Es manipulate host cellular processes in order to create a permissive niche for bacterial proliferation, allowing development of the disease. An important role of T3Es in plant pathogenic bacteria is the suppression of plant immune responses. However, in recent years, research has uncovered T3E functions different from direct immune suppression, including the modulation of plant hormone signaling, metabolism or organelle function. This insight article discusses T3E functions other than suppression of immunity, which may contribute to the modulation of plant cells in order to promote bacterial survival, nutrient release, and bacterial replication and dissemination.


Subject(s)
Bacterial Secretion Systems , Plant Cells/metabolism , Plant Immunity , Plants/metabolism , Plants/microbiology , Plant Growth Regulators/metabolism , Trans-Activators/metabolism
18.
Plant Signal Behav ; 10(10): e1064573, 2015.
Article in English | MEDLINE | ID: mdl-26237448

ABSTRACT

Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in signaling of plant immunity and mediate elicitation of cell death. Xanthomonas spp. manipulate plant signaling by using a type III secretion system to deliver effector proteins into host cells. We examined the ability of 33 Xanthomonas effectors to inhibit cell death induced by overexpression of components of MAPK cascades in Nicotiana benthamiana plants. Five effectors inhibited cell death induced by overexpression of MAPKKKα and MEK2, but not of MAP3Kε. In addition, expression of AvrBs1 in yeast suppressed activation of the high osmolarity glycerol MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms. These results indicate that Xanthomonas employs several type III effectors to suppress immunity-associated cell death mediated by MAPK cascades.


Subject(s)
Bacterial Proteins/metabolism , Cell Death , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Nicotiana/microbiology , Plant Immunity , Xanthomonas/pathogenicity , Immune Evasion , Plant Diseases/microbiology , Plant Proteins/metabolism , Signal Transduction , Nicotiana/metabolism , Xanthomonas/metabolism
19.
Plant J ; 77(2): 297-309, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24279912

ABSTRACT

Effector-triggered immunity (ETI) to host-adapted pathogens is associated with rapid cell death at the infection site. The plant-pathogenic bacterium Xanthomonas euvesicatoria (Xcv) interferes with plant cellular processes by injecting effector proteins into host cells through the type III secretion system. Here, we show that the Xcv effector XopQ suppresses cell death induced by components of the ETI-associated MAP kinase cascade MAPKKKα MEK2/SIPK and by several R/avr gene pairs. Inactivation of xopQ by insertional mutagenesis revealed that this effector inhibits ETI-associated cell death induced by avirulent Xcv in resistant pepper (Capsicum annuum), and enhances bacterial growth in resistant pepper and tomato (Solanum lycopersicum). Using protein-protein interaction studies in yeast (Saccharomyces cerevisiae) and in planta, we identified the tomato 14-3-3 isoform SlTFT4 and homologs from other plant species as XopQ interactors. A mutation in the putative 14-3-3 binding site of XopQ impaired interaction of the effector with CaTFT4 in yeast and its virulence function in planta. Consistent with a role in ETI, TFT4 mRNA abundance increased during the incompatible interaction of tomato and pepper with Xcv. Silencing of NbTFT4 in Nicotiana benthamiana significantly reduced cell death induced by MAPKKKα. In addition, silencing of CaTFT4 in pepper delayed the appearance of ETI-associated cell death and enhanced growth of virulent and avirulent Xcv, demonstrating the requirement of TFT4 for plant immunity to Xcv. Our results suggest that the XopQ virulence function is to suppress ETI and immunity-associated cell death by interacting with TFT4, which is an important component of ETI and a bona fide target of XopQ.


Subject(s)
14-3-3 Proteins/metabolism , Plant Proteins/metabolism , Protein Isoforms/metabolism , Solanum lycopersicum/metabolism , Xanthomonas/physiology , Solanum lycopersicum/immunology , Solanum lycopersicum/microbiology , Xanthomonas/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL