Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
1.
R Soc Open Sci ; 10(11): 230284, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37920566

ABSTRACT

The type six secretion system (T6SS) is a transmembrane protein complex that mediates bacterial cell killing. The T6SS comprises three main components (transmembrane, baseplate and sheath/tube complexes) that are sequentially assembled in order to enable an attacking cell to transport payloads into neighbouring cells. A T6SS attack disrupts the function of essential cellular components of target cells, typically resulting in their death. While the assembled T6SS adopts a fixed position in the cell membrane of the attacking cell, the location of the firing site varies between firing events. In Serratia marcescens, a post-translational regulatory network regulates the assembly and firing kinetics of the T6SS in a manner that affects the attacking cell's ability to kill target cells. Moreover, when the ability of membrane complexes to reorient is reduced, an attacking cell's competitiveness is also reduced. In this study, we will develop a mathematical model that describes both the spatial motion and assembly/disassembly of a firing T6SS. The model represents the motion of a T6SS on the cell membrane as a state-dependent random walk. Using the model, we will explore how both spatial and temporal effects can combine to give rise to different firing phenotypes. Using parameters inferred from the available literature, we show that variation in estimated diffusion coefficients is sufficient to give rise to either spatially local or global firers.

2.
Front Microbiol ; 14: 1264801, 2023.
Article in English | MEDLINE | ID: mdl-37908545

ABSTRACT

Bacterial communication is a fundamental process used to synchronize gene expression and collective behavior among the bacterial population. The most studied bacterial communication system is quorum sensing, a cell density system, in which the concentration of inductors increases to a threshold level allowing detection by specific receptors. As a result, bacteria can change their behavior in a coordinated way. While in Pseudomonas quorum sensing based on the synthesis of N-acyl homoserine lactone molecules is well studied, volatile organic compounds, although considered to be communication signals in the rhizosphere, are understudied. The Pseudomonas fluorescens MFE01 strain has a very active type six secretion system that can kill some competitive bacteria. Furthermore, MFE01 emits numerous volatile organic compounds, including 1-undecene, which contributes to the aerial inhibition of Legionella pneumophila growth. Finally, MFE01 appears to be deprived of N-acyl homoserine lactone synthase. The main objective of this study was to explore the role of 1-undecene in the communication of MFE01. We constructed a mutant affected in undA gene encoding the enzyme responsible for 1-undecene synthesis to provide further insight into the role of 1-undecene in MFE01. First, we studied the impacts of this mutation both on volatile organic compounds emission, using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry and on L. pneumophila long-range inhibition. Then, we analyzed influence of 1-undecene on MFE01 coordinated phenotypes, including type six secretion system activity and biofilm formation. Next, to test the ability of MFE01 to synthesize N-acyl homoserine lactones in our conditions, we investigated in silico the presence of corresponding genes across the MFE01 genome and we exposed its biofilms to an N-acyl homoserine lactone-degrading enzyme. Finally, we examined the effects of 1-undecene emission on MFE01 biofilm maturation and aerial communication using an original experimental set-up. This study demonstrated that the ΔundA mutant is impaired in biofilm maturation. An exposure of the ΔundA mutant to the volatile compounds emitted by MFE01 during the biofilm development restored the biofilm maturation process. These findings indicate that P. fluorescens MFE01 uses 1-undecene emission for aerial communication, reporting for the first time this volatile organic compound as bacterial intraspecific communication signal.

3.
Microb Pathog ; 183: 106268, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536636

ABSTRACT

Despite the relevance of E. cloacae as an opportunistic pathogen, very little is known about its pathogenicity mechanism and the factors influencing its virulence. The mechanism of E. cloacae pathogenicity appears to be complex and multifactorial, with the presence of different putative virulence factors whose role is still not clear in the development of the disease. In this study, we systematically investigated the role of T6SS (type six secretion system) of E. cloacae SBP-8, an environmental isolate, in eukaryotic and bacterial cell interaction. Analysis of the genome sequence of E. cloacae SBP-8 revealed the presence of sets of genes coding for the expression of one complete T6SS cluster, which is similar to T6SS-1 cluster of E. cloacae ATCC 13047 (clinical isolates). In addition, an Hcp effector protein was detected in the secretome, and this secretion depended on ClpV, an Atpase of T6SS, confirming that strain SBP-8 produces functional T6SS. Deletion of T6SS-associated gene clpV did not induce any significant change in the life span and rate of colonization in C. elegans. No major significant change was observed in the expression profiling of antimicrobial genes (clec-60, clec-85, clec-87 and lys-1) and toll-like receptor (toll-1) gene, involved in stimulating an immune response against the pathogen. No difference in the ability to invade and proliferate in intestinal cells and phagocytosis by macrophages was observed. In addition, we demonstrated that the ability of E. cloacae SBP-8 to out-compete Escherichia coli was reliant upon its T6SS in contact-dependent manner. Our results show that T6SS of the environmental isolates is required for interbacterial competition but not for invasion and proliferation inside host cells.


Subject(s)
Type VI Secretion Systems , Animals , Type VI Secretion Systems/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence Factors/metabolism , Virulence/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Enterobacter
4.
mBio ; 13(4): e0188522, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35880882

ABSTRACT

The human pathogen Vibrio cholerae grows as biofilms, communities of cells encased in an extracellular matrix. When growing in biofilms, cells compete for resources and space. One common competitive mechanism among Gram-negative bacteria is the type six secretion system (T6SS), which can deliver toxic effector proteins into a diverse group of target cells, including other bacteria, phagocytic amoebas, and human macrophages. The response regulator VxrB positively regulates both biofilm matrix and T6SS gene expression. Here, we directly observe T6SS activity within biofilms, which results in improved competition with strains lacking the T6SS. VxrB significantly contributes to both attack and defense via T6SS, while also influencing competition via regulation of biofilm matrix production. We further determined that both Vibrio polysaccharide (VPS) and the biofilm matrix protein RbmA can protect cells from T6SS attack within mature biofilms. By varying the spatial mixing of predator and prey cells in biofilms, we show that a high degree of mixing favors T6SS predator strains and that the presence of extracellular DNA in V. cholerae biofilms is a signature of T6SS killing. VxrB therefore regulates both T6SS attack and matrix-based T6SS defense, to control antagonistic interactions and competition outcomes during mixed-strain biofilm formation. IMPORTANCE This work demonstrates that the Vibrio cholerae type six secretion system (T6SS) can actively kill prey strains within the interior of biofilm populations with substantial impact on population dynamics. We additionally show that the response regulator VxrB contributes to both T6SS killing and protection from T6SS killing within biofilms. Components of the biofilm matrix and the degree of spatial mixing among strains also strongly influence T6SS competition dynamics. T6SS killing within biofilms results in increased localized release of extracellular DNA, which serves as an additional matrix component. These findings collectively demonstrate that T6SS killing can contribute to competition within biofilms and that this competition depends on key regulators, matrix components, and the extent of spatial population mixture during biofilm growth.


Subject(s)
Type VI Secretion Systems , Vibrio cholerae , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Extracellular Matrix/metabolism , Humans , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Vibrio cholerae/metabolism
5.
mBio ; 12(4): e0111521, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34281388

ABSTRACT

Genetic editing has revolutionized biotechnology, but delivery of endonuclease genes as DNA can lead to aberrant integration or overexpression, leading to off-target effects. Here, we develop a mechanism to deliver Cre recombinase as a protein by engineering the bacterial type six secretion system (T6SS). Using multiple T6SS fusion proteins, Aeromonas dhakensis or attenuated Vibrio cholerae donor strains, and a gain-of-function cassette for detecting Cre recombination, we demonstrate successful delivery of active Cre directly into recipient cells. The most efficient transfer was achieved using a truncated version of PAAR2 from V. cholerae, resulting in a relatively small (118-amino-acid) delivery tag. We further demonstrate the versatility of this system by delivering an exogenous effector, TseC, enabling V. cholerae to kill Pseudomonas aeruginosa. This implies that P. aeruginosa is naturally resistant to all native effectors of V. cholerae and that the TseC chaperone protein is not required for its activity. Moreover, it demonstrates that the engineered system can improve T6SS efficacy against specific pathogens, proposing future application in microbiome manipulation or as a next-generation antimicrobial. Inexpensive and easy to produce, this protein delivery system has many potential applications, ranging from studying T6SS effectors to genetic editing. IMPORTANCE Delivery of protein-based drugs, antigens, and gene-editing agents has broad applications. The type VI protein secretion system (T6SS) can target both bacteria and eukaryotic cells and deliver proteins of diverse size and function. Here, we harness the T6SS to successfully deliver Cre recombinase to genetically edit bacteria without requiring the introduction of exogenous DNA into the recipient cells. This demonstrates a promising advantage over current genetic editing tools that require transformation or conjugation of DNA. The engineered secretion tag can also deliver a heterologous antimicrobial toxin that kills an otherwise unsusceptible pathogen, Pseudomonas aeruginosa. These results demonstrate the potential of T6SS-mediated delivery in areas including genome editing, killing drug-resistant pathogens, and studying toxin functions.


Subject(s)
Gene Editing/methods , Integrases/genetics , Integrases/metabolism , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Aeromonas/genetics , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Gene Transfer Techniques , Protein Transport , Pseudomonas aeruginosa/metabolism , Vibrio cholerae/genetics
6.
mBio ; 12(3): e0105921, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34154417

ABSTRACT

Burkholderia infections can result in serious diseases with high mortality, such as melioidosis, and they are difficult to treat with antibiotics. Innate immunity is critical for cell-autonomous clearance of intracellular pathogens like Burkholderia by regulating programmed cell death. Inflammasome-dependent inflammatory cytokine release and cell death contribute to host protection against Burkholderia pseudomallei and Burkholderia thailandensis; however, the contribution of apoptosis and necroptosis to protection is not known. Here, we found that bone marrow-derived macrophages (BMDMs) lacking key components of pyroptosis died via apoptosis during infection. BMDMs lacking molecules required for pyroptosis, apoptosis, and necroptosis (PANoptosis), however, were significantly resistant to B. thailandensis-induced cell death until later stages of infection. Consequently, PANoptosis-deficient BMDMs failed to limit B. thailandensis-induced cell-cell fusion, which permits increased intercellular spread and replication compared to wild-type or pyroptosis-deficient BMDMs. Respiratory B. thailandensis infection resulted in higher mortality in PANoptosis-deficient mice than in pyroptosis-deficient mice, indicating that, in the absence of pyroptosis, apoptosis is essential for efficient control of infection in vivo. Together, these findings suggest both pyroptosis and apoptosis are necessary for host-mediated control of Burkholderia infection. IMPORTANCEBurkholderia infections result in a high degree of mortality when left untreated; therefore, understanding the host immune response required to control infection is critical. In this study, we found a hierarchical cell death program utilized by infected cells to disrupt the intracellular niche of Burkholderia thailandensis, which limits bacterial intercellular spread, host cell-cell fusion, and bacterial replication. In macrophages, combined loss of key PANoptosis components results in extensive B. thailandensis infection-induced cell-cell fusion, bacterial replication, and increased cell death at later stages of infection compared with both wild-type (WT) and pyroptosis-deficient cells. During respiratory infection, mortality was increased in PANoptosis-deficient mice compared to pyroptosis-deficient mice, identifying an essential role for multiple cell death pathways in controlling B. thailandensis infection. These findings advance our understanding of the physiological role of programmed cell death in controlling Burkholderia infection.


Subject(s)
Apoptosis/immunology , Burkholderia Infections/immunology , Burkholderia/pathogenicity , Immunity, Innate , Macrophages/microbiology , Macrophages/pathology , Animals , Burkholderia/immunology , Caspases/classification , Caspases/genetics , Caspases/immunology , Female , Male , Mice , Necroptosis/immunology , Pyroptosis/immunology
7.
Front Cell Infect Microbiol ; 10: 587948, 2020.
Article in English | MEDLINE | ID: mdl-33194832

ABSTRACT

The health of mammals depends on a complex interplay with their microbial ecosystems. Compartments exposed to external environments such as the mucosal surfaces of the gastrointestinal tract accommodate the gut microbiota, composed by a wide range of bacteria. The gut microbiome confers benefits to the host, including expansion of metabolic potential and the development of an immune system that can robustly protect from external and internal insults. The cooperation between gut microbiome and host is enabled in part by the formation of partitioned niches that harbor diverse bacterial phyla. Bacterial secretion systems are commonly employed to manipulate the composition of these local environments. Here, we explore the roles of the bacterial type VI secretion system (T6SS), present in ~25% of gram-negative bacteria, including many symbionts, in the establishment and perturbation of bacterial commensalism, and symbiosis in host mucosal sites. This versatile apparatus drives bacterial competition, although in some cases can also interfere directly with host cells and facilitate nutrient acquisition. In addition, some bacterial pathogens cause disease when their T6SS leads to dysbiosis and subverts host immune responses in defined animal models. This review explores our knowledge of the T6SS in the context of the "host-microbiota-pathogen" triumvirate and examines contexts in which the importance of this secretion system may be underappreciated.


Subject(s)
Microbiota , Type VI Secretion Systems , Animals , Antibiosis , Bacterial Proteins , Negotiating , Symbiosis
8.
Comp Immunol Microbiol Infect Dis ; 66: 101345, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31476607

ABSTRACT

Campylobacter jejuni is a major cause of infectious diarrhea in humans. The bacterium can be transmitted through contaminated poultry meat and waste water. We report the presence of C. jejuni from potential transmission sources including egg shells, poultry waste, waste water and migratory bird droppings with a prevalence rate of 78%, 66%, 86% and 70% respectively. Antibiotic resistance profile showed high number of isolates resistant to multiple antibiotics including 4th generation cephalosporins. C. jejuni isolates were further screened for presence of T6SS, an important virulence factor. None of the C. jejuni isolates from migratory birds carried a T6SS, whereas highest prevalence of T6SS isolates was observed in waste water samples, followed by poultry waste and egg shells. To determine virulence potential of the isolates, hemolytic activity of isolates was compared. Although variation in hemolytic potential between isolates from different sources was noted, higher hemolytic activity was observed for isolates possessing hcp, a T6SS gene. Furthermore, presence of T6SS affords the bacterium some survival advantage when compared to T6SS competent Helicobacter pullorum which occupies the same niche. Taken together our findings indicate that C. jejuni with T6SS have a fitness advantage increasing their isolation frequency from waste water and poultry waste.


Subject(s)
Anti-Bacterial Agents/pharmacology , Campylobacter Infections/veterinary , Campylobacter jejuni/drug effects , Campylobacter jejuni/pathogenicity , Type VI Secretion Systems/genetics , Animal Migration , Animals , Birds/microbiology , Campylobacter Infections/transmission , Campylobacter jejuni/genetics , DNA, Bacterial/genetics , Egg Shell/microbiology , Poultry/microbiology , Virulence , Wastewater/microbiology
9.
Avian Pathol ; 48(6): 557-563, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31294635

ABSTRACT

Helicobacter pullorum is an emerging zoonotic pathogen that causes gastroenteritis in chickens and inflammatory bowel disease in humans ingesting contaminated meat. However, the mechanism by which the bacterium causes disease is unclear. Type six secretion system (T6SS) plays a major role in bacterial pathogenesis and adaptation. Haemolysin coregulated protein (Hcp) plays a central role in the structure of the T6SS pilus and acts as effector protein in certain bacteria. In this study, H. pullorum isolated from 156 caecal samples of broiler chickens was screened for the presence of T6SS Hcp gene via PCR amplification. 30.7% of caecal and 18.3% of liver samples tested positive for presence of H. pullorum. From these positive samples, 29.7% possessed the T6SS gene. In bacterial co-culture experiments, significant loss of viability (81.6-39.1%) was observed for H. pullorum-infected hepatocytes and presence of Hcp did not contribute to the loss of cell viability. Nevertheless, infection of erythrocytes with Hcp-positive isolates was associated with greater haemolytic activity compared to infection with Hcp-negative isolates. Therefore, presence of T6SS could be indicative of virulent strains meriting further studies to characterize this virulence factor in H. pullorum infection.


Subject(s)
Chickens/microbiology , Helicobacter Infections/veterinary , Helicobacter/pathogenicity , Inflammatory Bowel Diseases/microbiology , Poultry Diseases/microbiology , Type VI Secretion Systems/genetics , Animals , Bacterial Proteins/genetics , Cecum/microbiology , Helicobacter/genetics , Helicobacter Infections/microbiology , Humans , Virulence , Virulence Factors/genetics , Zoonoses
10.
BMC Microbiol ; 19(1): 21, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30665355

ABSTRACT

BACKGROUND: Francisella noatunensis subsp. orientalis (Fno) is an emergent fish pathogen and the etiologic agent of piscine francisellosis. Besides persisting in the environment in both biofilm and planktonic forms, Fno is known to infect and replicate inside tilapia macrophages and endothelial-derived cells. However, the mechanism used by this emergent bacterium for intracellular survival is unknown. Additionally, the basis of virulence for Fno is still poorly understood. Several potential virulence determinants have been identified in Fno, including homologues of the recently described F. tularensis Type VI Secretion System (T6SS). In order to gain a better understanding of the role the putative Fno T6SS might play in the pathogenesis of piscine francisellosis, we performed transcriptional analysis of Fno T6SS gene-homologues under temperature, acidic, and oxidative stress conditions. RESULTS: Few transcriptional differences were observed at different temperatures, growth stages and pHs; however, a trend towards higher expression of Fno T6SS-homologue genes at 25 °C and under oxidative stress was detected when compared to those quantified at 30 °C and under no H2O2 (p < 0.05). CONCLUSIONS: Results from this study suggest that several of the F. tularensis T6SS-homologues may play an important role in the virulence of Fno, particularly when the bacterium is exposed to low temperatures and oxidative stress.


Subject(s)
Francisella/genetics , Francisella/pathogenicity , Gene Expression Regulation, Bacterial , Type VI Secretion Systems/genetics , Virulence Factors/genetics , Animals , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/microbiology , Hydrogen-Ion Concentration , Oxidative Stress/genetics , Temperature , Tilapia/microbiology
11.
Front Microbiol ; 8: 1454, 2017.
Article in English | MEDLINE | ID: mdl-28804481

ABSTRACT

Numerous studies in Gram-negative bacteria have focused on the Type VI Secretion Systems (T6SSs), Quorum Sensing (QS), and social behavior, such as in biofilms. These interconnected mechanisms are important for bacterial survival; T6SSs allow bacteria to battle other cells, QS is devoted to the perception of bacterial cell density, and biofilm formation is essentially controlled by QS. Here, we review data concerning T6SS dynamics and T6SS-QS cross-talk that suggest the existence of inter-bacterial communication via T6SSs.

12.
Article in English | MEDLINE | ID: mdl-27376031

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen responsible for many diseases such as chronic lung colonization in cystic fibrosis patients and acute infections in hospitals. The capacity of P. aeruginosa to be pathogenic toward several hosts is notably due to different secretion systems. Amongst them, P. aeruginosa encodes three Type Six Secretion Systems (T6SS), named H1- to H3-T6SS, that act against either prokaryotes and/or eukaryotic cells. They are independent from each other and inject diverse toxins that interact with different components in the host cell. Here we summarize the roles of these T6SSs in the PAO1 strain, as well as the toxins injected and their targets. While H1-T6SS is only involved in antiprokaryotic activity through at least seven different toxins, H2-T6SS and H3-T6SS are also able to target prokaryotic as well as eukaryotic cells. Moreover, recent studies proposed that H2- and H3-T6SS have a role in epithelial cells invasion by injecting at least three different toxins. The diversity of T6SS effectors is astounding and other effectors still remain to be discovered. In this review, we present a table with other putative P. aeruginosa strain PAO1 T6SS-dependent effectors. Altogether, the T6SSs of P. aeruginosa are important systems that help fight other bacteria for their ecological niche, and are important in the pathogenicity process.


Subject(s)
Bacterial Toxins/metabolism , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Type VI Secretion Systems/metabolism , Virulence Factors/metabolism , Antibiosis , Protein Transport , Virulence
13.
Virulence ; 7(8): 882-894, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27028889

ABSTRACT

FipB, an essential virulence factor in the highly virulent Schu S4 strain of F. tularensis subsp. tularensis, shares sequence similarity with Disulfide Bond formation (Dsb) proteins, which can have oxidoreductase, isomerase, or chaperone activity. To further explore FipB's role in virulence potential substrates were identified by co-purification and 2D gel electrophoresis, followed by protein sequencing using mass spectrometry. A total of 119 potential substrates were identified. Proteins with predicted enzymatic activity were prevalent, and there were 19 proteins that had been previously identified as impacting virulence. Among the potential substrates were IglC, IglB, and PdpB, three components of the Francisella Type Six Secretion System (T6SS), which is also essential for virulence. T6SS are widespread in Gram-negative pathogens, but have not been reported to be dependent on Dsb-like proteins for assembly or function. The presented results suggest that FipB affects IglB and IglC substrates differently. In a fipB mutant there were differences in free sulfhydryl accessibility of IglC, but not IglB, when compared to wild-type bacteria. However, for both proteins FipB appears to act as a chaperone that facilitates proper folding and conformation. Understanding the role FipB plays the assembly and structure in this T6SS may reveal critical aspects of assembly that are common and novel among this widely distributed class of secretion systems.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Francisella tularensis/pathogenicity , Type VI Secretion Systems/metabolism , Virulence Factors/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Cell Line , Francisella tularensis/chemistry , Francisella tularensis/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Protein Binding , Protein Conformation , Protein Folding , Sequence Analysis, Protein , Type VI Secretion Systems/chemistry , Type VI Secretion Systems/genetics , Virulence/genetics , Virulence Factors/chemistry
14.
J Appl Microbiol ; 118(5): 1191-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25580664

ABSTRACT

AIM: To determine the presence of the T6SS in Campylobacter jejuni from diverse sources. METHODS AND RESULTS: The recently identified type VI secretion system (T6SS) is a bacterial injection machinery that plays a role in virulence, symbiosis, bacterial interactions and environmental stress responses. This system has been recently discovered in the major enteric pathogen Camp. jejuni. In this study, we used multiplex PCR (mPCR), based on conserved genetic markers of the T6SS, to screen 366 Pakistani Camp. jejuni isolates from humans, poultry, cattle, wildlife or waste-water sources. We identified the T6SS in isolates from all of these sources except humans. The overall prevalence of the T6SS among the isolates was 17/366 (4·6%) and the T6SS positive isolates clustered into four different groups. Transcription of the T6SS genes, determined using RT-PCR, was observed in bacteria cultured at 37 or 42°C but not in 37°C cultures adjusted to pH3. CONCLUSIONS: Campylobacter jejuni isolates harbouring T6SS markers genes were identified in livestock and non-livestock sources but in this study we did not identify human diarrhoeal isolates which possessed the T6SS. We demonstrated down-regulation of T6SS in an acidic environment. SIGNIFICANCE AND IMPACT OF THE STUDY: This study questions the role of the T6SS in human diarrhoeal disease. Moreover this study did not identify a clear association of Camp. jejuni isolates harbouring T6SS with any of the niches tested. Our study highlights the need to establish the role of the T6SS in environmental survival or virulence.


Subject(s)
Bacterial Proteins/genetics , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Campylobacter jejuni/genetics , Type VI Secretion Systems/genetics , Animals , Animals, Wild/microbiology , Bacterial Proteins/metabolism , Campylobacter jejuni/classification , Campylobacter jejuni/isolation & purification , Campylobacter jejuni/pathogenicity , Cattle , Down-Regulation , Genetic Markers , Humans , Livestock/microbiology , Poultry/microbiology , Type VI Secretion Systems/metabolism , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL