Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 529
Filter
1.
J Virol ; : e0065724, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007615

ABSTRACT

RNA viruses adapt rapidly to new host environments by generating highly diverse genome sets, so-called "quasispecies." Minor genetic variants promote their rapid adaptation, allowing for the emergence of drug-resistance or immune-escape mutants. Understanding these adaptation processes is highly relevant to assessing the risk of cross-species transmission and the safety and efficacy of vaccines and antivirals. We hypothesized that genetic memory within a viral genome population facilitates rapid adaptation. To test this, we investigated the adaptation of the Morbillivirus canine distemper virus to ferrets and compared an attenuated, Vero cell-adapted virus isolate with its recombinant derivative over consecutive ferret passages. Although both viruses adapted to the new host, the reduced initial genetic diversity of the recombinant virus resulted in delayed disease onset. The non-recombinant virus gradually increased the frequencies of beneficial mutations already present at very low frequencies in the input virus. In contrast, the recombinant virus first evolved de novo mutations to compensate for the initial fitness impairments. Importantly, while both viruses evolved different sets of mutations, most mutations found in the adapted non-recombinant virus were identical to those found in a previous ferret adaptation experiment with the same isolate, indicating that mutations present at low frequency in the original virus stock serve as genetic memory. An arginine residue at position 519 in the carboxy terminus of the nucleoprotein shared by all adapted viruses was found to contribute to pathogenesis in ferrets. Our work illustrates the importance of genetic diversity for adaptation to new environments and identifies regions with functional relevance.IMPORTANCEWhen viruses encounter a new host, they can rapidly adapt to this host and cause disease. How these adaptation processes occur remains understudied. Morbilliviruses have high clinical and veterinary relevance and are attractive model systems to study these adaptation processes. The canine distemper virus is of particular interest, as it exhibits a broader host range than other morbilliviruses and frequently crosses species barriers. Here, we compared the adaptation of an attenuated virus and its recombinant derivative to that of ferrets. Pre-existing mutations present at low frequency allowed faster adaptation of the non-recombinant virus compared to the recombinant virus. We identified a common point mutation in the nucleoprotein that affected the pathogenesis of both viruses. Our study shows that genetic memory facilitates environmental adaptation and that erasing this genetic memory by genetic engineering results in delayed and different adaptation to new environments, providing an important safety aspect for the generation of live-attenuated vaccines.

2.
Infect Med (Beijing) ; 3(2): 100115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974347

ABSTRACT

Hand, foot, and mouth disease (HFMD) is one of the most common class C infectious diseases, posing a serious threat to public health worldwide. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) have been regarded as the major pathogenic agents of HFMD; however, since an outbreak caused by coxsackievirus A6 (CV-A6) in France in 2008, CV-A6 has gradually become the predominant pathogen in many regions. CV-A6 infects not only children but also adults, and causes atypical clinical symptoms such as a more generalized rash, eczema herpeticum, high fever, and onychomadesis, which are different from the symptoms associated with EV-A71 and CV-A16. Importantly, the rate of genetic recombination of CV-A6 is high, which can lead to changes in virulence and the rapid evolution of other characteristics, thus posing a serious threat to public health. To date, no specific vaccines or therapeutics have been approved for CV-A6 prevention or treatment, hence it is essential to fully understand the relationship between recombination and evolution of this virus. Here, we systematically review the genetic recombination events of CV-A6 that have occurred worldwide and explore how these events have promoted virus evolution, thus providing important information regarding future HFMD surveillance and prevention.

3.
Cell ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39013471

ABSTRACT

Foamy viruses (FVs) are an ancient lineage of retroviruses, with an evolutionary history spanning over 450 million years. Vector systems based on Prototype Foamy Virus (PFV) are promising candidates for gene and oncolytic therapies. Structural studies of PFV contribute to the understanding of the mechanisms of FV replication, cell entry and infection, and retroviral evolution. Here we combine cryoEM and cryoET to determine high-resolution in situ structures of the PFV icosahedral capsid (CA) and envelope glycoprotein (Env), including its type III transmembrane anchor and membrane-proximal external region (MPER), and show how they are organized in an integrated structure of assembled PFV particles. The atomic models reveal an ancient retroviral capsid architecture and an unexpected relationship between Env and other class 1 fusion proteins of the Mononegavirales. Our results represent the de novo structure determination of an assembled retrovirus particle.

4.
Mol Plant Pathol ; 25(6): e13487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877765

ABSTRACT

We had previously reported that a plum pox virus (PPV)-based chimera that had its P1-HCPro bi-cistron replaced by a modified one from potato virus Y (PVY) increased its virulence in some Nicotiana benthamiana plants, after mechanical passages. This correlated with the natural acquisition of amino acid substitutions in several proteins, including in HCPro at either position 352 (Ile→Thr) or 454 (Leu→Arg), or of mutations in non-coding regions. Thr in position 352 is not found among natural potyviruses, while Arg in 454 is a reversion to the native PVY HCPro amino acid. We show here that both mutations separately contributed to the increased virulence observed in the passaged chimeras that acquired them, and that Thr in position 352 is no intragenic suppressor to a Leu in position 454, because their combined effects were cumulative. We demonstrate that Arg in position 454 improved HCPro autocatalytic cleavage, while Thr in position 352 increased its accumulation and the silencing suppression of a reporter in agropatch assays. We assessed infection by four cloned chimera variants expressing HCPro with none of the two substitutions, one of them or both, in wild-type versus DCL2/4-silenced transgenic plants. We found that during infection, the transgenic context of altered small RNAs affected the accumulation of the four HCPro variants differently and hence, also infection virulence.


Subject(s)
Amino Acid Substitution , Nicotiana , Potyvirus , Viral Proteins , Virulence/genetics , Nicotiana/virology , Potyvirus/pathogenicity , Potyvirus/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Plant Diseases/virology , Chimera , Plum Pox Virus/pathogenicity , Plum Pox Virus/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Mutation/genetics
5.
Front Microbiol ; 15: 1411537, 2024.
Article in English | MEDLINE | ID: mdl-38832113

ABSTRACT

Lassa fever (LF), caused by Lassa virus (LASV), is one of the most dangerous diseases to public health. Homologous recombination (HR) is a basic genetic power driving biological evolution. However, as a negative-stranded RNA virus, it is unknown whether HR occurs between LASVs and its influence on the outbreak of LF. In this study, after analyzing 575 S and 433 L segments of LASV collected in Africa, we found that LASV can achieve HR in both of its segments. Interestingly, although the length of S segment is less than half of the L segment, the proportion of LASVs with S recombinants is significantly higher than that with L recombinants. These results suggest that HR may be a feature of LASV, which can be set by natural selection to produce beneficial or eliminate harmful mutations for the virus, so it plays a role in LASV evolution during the outbreak of LF.

6.
Emerg Microbes Infect ; 13(1): 2361814, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38828746

ABSTRACT

Echovirus 11 (E11) has gained attention owing to its association with severe neonatal infections. From 2018 to 2023, a surge in severe neonatal cases and fatalities linked to a novel variant of genotype D5 was documented in China, France, and Italy. However, the prevention and control of E11 variants have been hampered by limited background data on the virus circulation and genetic variance. Therefore, the present study investigated the circulating dynamics of E11 and the genetic variation and molecular evolution of genotype D5 through the collection of strains from the national acute flaccid paralysis (AFP) and hand, foot, and mouth disease (HFMD) surveillance system in China during 2000-2022 and genetic sequences published in the GenBank database. The results of this study revealed a prevalent dynamic of E11 circulation, with D5 being the predominant genotype worldwide. Further phylogenetic analysis of genotype D5 indicated that it could be subdivided into three important geographic clusters (D5-CHN1: 2014-2019, D5-CHN2: 2016-2022, and D5-EUR: 2022-2023). Additionally, variant-specific (144) amino acid mutation sites and positive-selection pressure sites (132, 262) were identified in the VP1 region. Cluster-specific recombination patterns were also identified, with CVB5, E6, and CVB4 as the major recombinant viruses. These findings provide a preliminary landscape of E11 circulation worldwide and basic scientific data for further study of the pathogenicity of E11 variants.


Subject(s)
Enterovirus B, Human , Evolution, Molecular , Genetic Variation , Genotype , Phylogeny , China/epidemiology , Humans , Enterovirus B, Human/genetics , Enterovirus B, Human/classification , Enterovirus B, Human/isolation & purification , Infant, Newborn , Echovirus Infections/virology , Echovirus Infections/epidemiology , Hand, Foot and Mouth Disease/virology , Hand, Foot and Mouth Disease/epidemiology , Infant
7.
Adv Virus Res ; 119: 39-61, 2024.
Article in English | MEDLINE | ID: mdl-38897708

ABSTRACT

RNA viruses are some of the most successful biological entities due their ability to adapt and evolve. Despite their small genome and parasitic nature, RNA viruses have evolved many mechanisms to ensure their survival and maintenance in the host population. We propose that one of these mechanisms of survival is the generation of nonstandard viral genomes (nsVGs) that accumulate during viral replication. NsVGs are often considered to be accidental defective byproducts of the RNA virus replication, but their ubiquity and the plethora of roles they have during infection indicate that they are an integral part of the virus life cycle. Here we review the different types of nsVGs and discuss how their multiple roles during infection could be beneficial for RNA viruses to be maintained in nature. By shifting our perspectives on what makes a virus successful, we posit that nsVG generation is a conserved phenomenon that arose during RNA virus evolution as an essential component of a healthy virus community.


Subject(s)
Evolution, Molecular , Genome, Viral , RNA Viruses , Virus Replication , RNA Viruses/genetics , RNA Viruses/physiology , Virus Replication/genetics , Humans , Animals , RNA, Viral/genetics , RNA Virus Infections/virology
8.
Infect Genet Evol ; 123: 105623, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901623

ABSTRACT

The discovery of Orsay virus (OrV), the first virus infecting wild populations of Caenorhabditis elegans, has boosted studies of viral immunity pathways in this nematode. Considering the many advantages that C. elegans offers for fundamental research in host-pathogen interactions, this pathosystem has high potential to become a model system for experimental virus evolution studies. However, the evolutionary constraints - i.e, the balance between genetic variation, selection, drift and historical contingency- operating in this pathosystem have barely been explored. Here we describe for the first time an evolution experiment of two different OrV strains in C. elegans. Comparison of the two ancestral strains showed differences in infectivity and sequence, and highlighted the importance of consistently normalize viral inocula for meaningful comparisons among strains. After 10 serial passages of evolution, we report slight changes in infectivity and non-synonymous mutations fixed in the evolved viral populations. In addition, we observed numerous minor variants emerging in the viral population. These minor variants were not randomly distributed along the genome but concentrated in polymorphic genomic regions. Overall, our work established the grounds for future experimental virus evolution studies using Caenorhabditis nematodes.

9.
mBio ; 15(7): e0103524, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38832788

ABSTRACT

The phylum Nucleocytoviricota consists of large and giant viruses that range in genome size from about 100 kilobases (kb) to more than 2.5 megabases. Here, using metagenome mining followed by extensive phylogenomic analysis and protein structure comparison, we delineate a distinct group of viruses with double-stranded (ds) DNA genomes in the range of 35-45 kb that appear to be related to the Nucleocytoviricota. In phylogenetic trees of the conserved double jelly-roll major capsid proteins (MCPs) and DNA packaging ATPases, these viruses do not show affinity to any particular branch of the Nucleocytoviricota and accordingly would comprise a class which we propose to name "Mriyaviricetes" (after Ukrainian "mriya," dream). Structural comparison of the MCP suggests that, among the extant virus lineages, mriyaviruses are the closest one to the ancestor of the Nucleocytoviricota. In the phylogenetic trees, mriyaviruses split into two well-separated branches, the family Yaraviridae and proposed new family "Gamadviridae." The previously characterized members of these families, yaravirus and Pleurochrysis sp. endemic viruses, infect amoeba and haptophytes, respectively. The genomes of the rest of the mriyaviruses were assembled from metagenomes from diverse environments, suggesting that mriyaviruses infect various unicellular eukaryotes. Mriyaviruses lack DNA polymerase, which is encoded by all other members of the Nucleocytoviricota, and RNA polymerase subunits encoded by all cytoplasmic viruses among the Nucleocytoviricota, suggesting that they replicate in the host cell nuclei. All mriyaviruses encode a HUH superfamily endonuclease that is likely to be essential for the initiation of virus DNA replication via the rolling circle mechanism. IMPORTANCE: The origin of giant viruses of eukaryotes that belong to the phylum Nucleocytoviricota is not thoroughly understood and remains a matter of major interest and debate. Here, we combine metagenome database searches with extensive protein sequence and structure analysis to describe a distinct group of viruses with comparatively small genomes of 35-45 kilobases that appear to comprise a distinct class within the phylum Nucleocytoviricota that we provisionally named "Mriyaviricetes." Mriyaviruses appear to be the closest identified relatives of the ancestors of the Nucleocytoviricota. Analysis of proteins encoded in mriyavirus genomes suggests that they replicate their genome via the rolling circle mechanism that is unusual among viruses with double-stranded DNA genomes and so far not described for members of Nucleocytoviricota.


Subject(s)
Genome, Viral , Giant Viruses , Phylogeny , Giant Viruses/genetics , Giant Viruses/classification , Genome, Viral/genetics , DNA Viruses/genetics , DNA Viruses/classification , Capsid Proteins/genetics , Capsid Proteins/chemistry , Metagenome , DNA, Viral/genetics
10.
Bull Math Biol ; 86(8): 88, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877355

ABSTRACT

Models are often employed to integrate knowledge about epidemics across scales and simulate disease dynamics. While these approaches have played a central role in studying the mechanics underlying epidemics, we lack ways to reliably predict how the relationship between virulence (the harm to hosts caused by an infection) and transmission will evolve in certain virus-host contexts. In this study, we invoke evolutionary invasion analysis-a method used to identify the evolution of uninvadable strategies in dynamical systems-to examine how the virulence-transmission dichotomy can evolve in models of virus infections defined by different natural histories. We reveal peculiar patterns of virulence evolution between epidemics with different disease natural histories (SARS-CoV-2 and hepatitis C virus). We discuss the findings with regards to the public health implications of predicting virus evolution, and in broader theoretical canon involving virulence evolution in host-parasite systems.


Subject(s)
Biological Evolution , COVID-19 , Epidemics , Hepacivirus , Mathematical Concepts , Models, Biological , SARS-CoV-2 , Virulence , Humans , Epidemics/statistics & numerical data , SARS-CoV-2/pathogenicity , SARS-CoV-2/genetics , COVID-19/transmission , COVID-19/virology , COVID-19/epidemiology , Hepacivirus/pathogenicity , Hepacivirus/genetics , Hepatitis C/virology , Hepatitis C/transmission , Hepatitis C/epidemiology , Host-Pathogen Interactions , Epidemiological Models
11.
Mol Plant ; 17(6): 955-971, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38745413

ABSTRACT

Circular single-stranded DNA (ssDNA) viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. In this study, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1-P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases fungal virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that DsCDV1 P3 is systematically localized in the plasmodesmata, while its expression in trans-complementation experiments could restore systematic infection of a movement-deficient plant virus, suggesting that P3 is a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.


Subject(s)
DNA, Single-Stranded , Fungal Viruses , Phylogeny , Plant Diseases , Fungal Viruses/genetics , Fungal Viruses/physiology , Plant Diseases/microbiology , Plant Diseases/virology , DNA, Single-Stranded/genetics , Ascomycota/virology , Ascomycota/physiology , DNA Viruses/genetics , Disease Resistance/genetics , Genome, Viral , Pyrus/microbiology , Pyrus/virology , Nicotiana/virology , Nicotiana/microbiology
12.
bioRxiv ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38712159

ABSTRACT

The phylum Preplasmiviricota (kingdom Bamfordvirae, realm Varidnaviria) is a broad assemblage of diverse viruses with comparatively short double-stranded DNA genomes (<50 kbp) that produce icosahedral capsids built from double jelly-roll major capsid proteins. Preplasmiviricots infect hosts from all cellular domains, testifying to their ancient origin and, in particular, are associated with six of the seven supergroups of eukaryotes. Preplasmiviricots comprise four major groups of viruses, namely, polintons, polinton-like viruses (PLVs), virophages, and adenovirids. We employed protein structure modeling and analysis to show that protein-primed DNA polymerases (pPolBs) of polintons, virophages, and cytoplasmic linear plasmids encompass an N-terminal domain homologous to the terminal proteins (TPs) of prokaryotic PRD1-like tectivirids and eukaryotic adenovirids that are involved in protein-primed replication initiation, followed by a viral ovarian tumor-like cysteine deubiquitinylase (vOTU) domain. The vOTU domain is likely responsible for the cleavage of the TP from the large pPolB polypeptide and is inactivated in adenovirids, in which TP is a separate protein. Many PLVs and transpovirons encode a distinct derivative of polinton-like pPolB that retains the TP, vOTU and pPolB polymerization palm domains but lacks the exonuclease domain and instead contains a supefamily 1 helicase domain. Analysis of the presence/absence and inactivation of the vOTU domains, and replacement of pPolB with other DNA polymerases in eukaryotic preplasmiviricots enabled us to outline a complete scenario for their origin and evolution.

13.
Cell Rep Med ; 5(5): 101553, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38723626

ABSTRACT

BA.2.86, a recently described sublineage of SARS-CoV-2 Omicron, contains many mutations in the spike gene. It appears to have originated from BA.2 and is distinct from the XBB variants responsible for many infections in 2023. The global spread and plethora of mutations in BA.2.86 has caused concern that it may possess greater immune-evasive potential, leading to a new wave of infection. Here, we examine the ability of BA.2.86 to evade the antibody response to infection using a panel of vaccinated or naturally infected sera and find that it shows marginally less immune evasion than XBB.1.5. We locate BA.2.86 in the antigenic landscape of recent variants and look at its ability to escape panels of potent monoclonal antibodies generated against contemporary SARS-CoV-2 infections. We demonstrate, and provide a structural explanation for, increased affinity of BA.2.86 to ACE2, which may increase transmissibility.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Viral , COVID-19 , Immune Evasion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Humans , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Antibodies, Monoclonal/immunology , Mutation/genetics , Antibodies, Neutralizing/immunology , Antibody Affinity
14.
Viruses ; 16(4)2024 04 20.
Article in English | MEDLINE | ID: mdl-38675984

ABSTRACT

Virus-encoded replicases often generate aberrant RNA genomes, known as defective viral genomes (DVGs). When co-infected with a helper virus providing necessary proteins, DVGs can multiply and spread. While DVGs depend on the helper virus for propagation, they can in some cases disrupt infectious virus replication, impact immune responses, and affect viral persistence or evolution. Understanding the dynamics of DVGs alongside standard viral genomes during infection remains unclear. To address this, we conducted a long-term experimental evolution of two betacoronaviruses, the human coronavirus OC43 (HCoV-OC43) and the murine hepatitis virus (MHV), in cell culture at both high and low multiplicities of infection (MOI). We then performed RNA-seq at regular time intervals, reconstructed DVGs, and analyzed their accumulation dynamics. Our findings indicate that DVGs evolved to exhibit greater diversity and abundance, with deletions and insertions being the most common types. Notably, some high MOI deletions showed very limited temporary existence, while others became prevalent over time. We observed differences in DVG abundance between high and low MOI conditions in HCoV-OC43 samples. The size distribution of HCoV-OC43 genomes with deletions differed between high and low MOI passages. In low MOI lineages, short and long DVGs were the most common, with an additional cluster in high MOI lineages which became more prevalent along evolutionary time. MHV also showed variations in DVG size distribution at different MOI conditions, though they were less pronounced compared to HCoV-OC43, suggesting a more random distribution of DVG sizes. We identified hotspot regions for deletions that evolved at a high MOI, primarily within cistrons encoding structural and accessory proteins. In conclusion, our study illustrates the widespread formation of DVGs during betacoronavirus evolution, influenced by MOI and cell- and virus-specific factors.


Subject(s)
Coronavirus OC43, Human , Defective Viruses , Evolution, Molecular , Genome, Viral , Murine hepatitis virus , Virus Replication , Animals , Humans , Defective Viruses/genetics , Murine hepatitis virus/genetics , Coronavirus OC43, Human/genetics , Mice , RNA, Viral/genetics , Cell Line
15.
J Microbiol ; 62(5): 409-418, 2024 May.
Article in English | MEDLINE | ID: mdl-38689047

ABSTRACT

Adenovirus (Ad) is a ubiquitous pathogen capable of infecting a wide range of animals and humans. Human Adenovirus (HAdV) can cause severe infection, particularly in individuals with compromised immune systems. To date, over 110 types of HAdV have been classified into seven species from A to G, with the majority belonging to the human adenovirus species D (HAdV-D). In the HAdV-D, the most significant factor for the creation of new adenovirus types is homologous recombination between viral genes involved in determining the virus tropism or evading immune system of host cells. The E4 gene, consisting of seven Open Reading Frames (ORFs), plays a role in both the regulation of host cell metabolism and the replication of viral genes. Despite long-term studies, the function of each ORF remains unclear. Based on our updated information, ORF2, ORF3, and ORF4 have been identified as regions with relatively high mutations compared to other ORFs in the E4 gene, through the use of in silico comparative analysis. Additionally, we managed to visualize high mutation sections, previously undetectable at the DNA level, through a powerful amino acid sequence analysis tool known as proteotyping. Our research has revealed the involvement of the E4 gene in the evolution of human adenovirus, and has established accurate sequence information of the E4 gene, laying the groundwork for further research.


Subject(s)
Adenoviruses, Human , Evolution, Molecular , Open Reading Frames , Adenoviruses, Human/genetics , Adenoviruses, Human/classification , Humans , Adenovirus E4 Proteins/genetics , Computer Simulation , Mutation , Adenovirus Infections, Human/virology , Phylogeny , Amino Acid Sequence , DNA, Viral/genetics
16.
Biol Proced Online ; 26(1): 11, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664647

ABSTRACT

BACKGROUND: The efficacy of oncolytic viruses (OV) in cancer treatment depends on their ability to successfully infect and destroy tumor cells. However, patients' tumors vary, and in the case of individual insensitivity to an OV, therapeutic efficacy is limited. Here, we present a protocol for rapid generation of tumor cell-specific adapted oncolytic coxsackievirus B3 (CVB3) with enhanced oncolytic potential and a satisfactory safety profile. This is achieved by combining directed viral evolution (DVE) with genetic modification of the viral genome and the use of a microRNA-dependent regulatory tool. METHODS: The oncolytic CVB3 variant PD-H was adapted to the refractory colorectal carcinoma cell line Colo320 through serial passaging. XTT assays and virus plaque assays were used to determine virus cytotoxicity and virus replication in vitro. Recombinant PD-H variants were generated through virus mutagenesis. Apoptosis was detected by Western blots, Caspase 3/7 assays, and DAPI staining. The therapeutic efficacy and safety of the adapted recombinant OV PD-SK-375TS were assessed in vivo using a subcutaneous Colo320 xenograft mouse model. RESULTS: PD-H was adapted to the colorectal cancer cell line Colo320 within 10 passages. Sequencing of passage 10 virus P-10 revealed a heterogenous virus population with five nucleotide mutations resulting in amino acid substitutions. The genotypically homogeneous OV PD-SK was generated by inserting the five detected mutations of P-10 into the genome of PD-H. PD-SK showed significantly stronger replication and cytotoxicity than PD-H in Colo320 cells, but not in other colorectal carcinoma cell lines. Increase of apoptosis induction was detected as key mechanisms of Colo320 cell-specific adaptation of PD-SK. For in vivo safety PD-SK was engineered with target sites of the miR-375 (miR-375TS) to exclude virus replication in normal tissues. PD-SK-375TS, unlike the PD-H-375TS not adapted homolog suppressed the growth of subcutaneous Colo320 tumors in nude mice without causing any side effects. CONCLUSION: Taken together, here we present an optimized protocol for the rapid generation of tumor cell-specific adapted oncolytic CVB3 based on the oncolytic CVB3 strain PD-H. The protocol is promising for the generation of personalized OV for tumor therapy and has the potential to be applied to other OV.

18.
J Microbiol ; 62(5): 393-407, 2024 May.
Article in English | MEDLINE | ID: mdl-38451451

ABSTRACT

Human adenoviruses (HAdVs) can infect various epithelial mucosal cells, ultimately causing different symptoms in infected organ systems. With more than 110 types classified into seven species (A-G), HAdV-D species possess the highest number of viruses and are the fastest proliferating. The emergence of new adenovirus types and increased diversity are driven by homologous recombination (HR) between viral genes, primarily in structural elements such as the penton base, hexon and fiber proteins, and the E1 and E3 regions. A comprehensive analysis of the HAdV genome provides valuable insights into the evolution of human adenoviruses and identifies genes that display high variation across the entire genome to determine recombination patterns. Hypervariable regions within genetic sequences correlate with functional characteristics, thus allowing for adaptation to new environments and hosts. Proteotyping of newly emerging and already established adenoviruses allows for prediction of the characteristics of novel viruses. HAdV-D species evolved in a direction that increased diversity through gene recombination. Bioinformatics analysis across the genome, particularly in highly variable regions, allows for the verification or re-evaluation of recombination patterns in both newly introduced and pre-existing viruses, ultimately aiding in tracing various biological traits such as virus tropism and pathogenesis. Our research does not only assist in predicting the emergence of new adenoviruses but also offers critical guidance in regard to identifying potential regulatory factors of homologous recombination hotspots.


Subject(s)
Adenoviruses, Human , Computational Biology , Evolution, Molecular , Genome, Viral , Phylogeny , Recombination, Genetic , Adenoviruses, Human/genetics , Adenoviruses, Human/classification , Humans , Genome, Viral/genetics , Computational Biology/methods , Adenovirus Infections, Human/virology , Genetic Variation , Genomics
19.
Virus Evol ; 10(1): vead084, 2024.
Article in English | MEDLINE | ID: mdl-38516655

ABSTRACT

In secondary lymphoid tissues, human immunodeficiency virus (HIV) can replicate in both the follicular and extrafollicular compartments. Yet, virus is concentrated in the follicular compartment in the absence of antiretroviral therapy, in part due to the lack of cytotoxic T lymphocyte (CTL)-mediated activity there. CTLs home to the extrafollicular compartment, where they can suppress virus load to relatively low levels. We use mathematical models to show that this compartmentalization can explain seemingly counter-intuitive observations. First, it can explain the observed constancy of the viral decline slope during antiviral therapy in the peripheral blood, irrespective of the presence of CTL in Simian Immunodeficiency Virus (SIV)-infected macaques, under the assumption that CTL-mediated lysis significantly contributes to virus suppression. Second, it can account for the relatively long times it takes for CTL escape mutants to emerge during chronic infection even if CTL-mediated lysis is responsible for virus suppression. The reason is the heterogeneity in CTL activity and the consequent heterogeneity in selection pressure between the follicular and extrafollicular compartments. Hence, to understand HIV dynamics more thoroughly, this analysis highlights the importance of measuring virus populations separately in the extrafollicular and follicular compartments rather than using virus load in peripheral blood as an observable; this hides the heterogeneity between compartments that might be responsible for the particular patterns seen in the dynamics and evolution of the HIV in vivo.

20.
Curr Biol ; 34(6): 1247-1257.e3, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38428417

ABSTRACT

Adaptive radiations are generated through a complex interplay of biotic and abiotic factors. Although adaptive radiations have been widely studied in the context of animal and plant evolution, little is known about how they impact the evolution of the viruses that infect these hosts, which in turn may provide insights into the drivers of cross-species transmission and hence disease emergence. We examined how the rapid adaptive radiation of the cichlid fishes of African Lake Tanganyika over the last 10 million years has shaped the diversity and evolution of the viruses they carry. Through metatranscriptomic analysis of 2,242 RNA sequencing libraries, we identified 121 vertebrate-associated viruses among various tissue types that fell into 13 RNA and 4 DNA virus groups. Host-switching was commonplace, particularly within the Astroviridae, Metahepadnavirus, Nackednavirus, Picornaviridae, and Hepacivirus groups, occurring more frequently than in other fish communities. A time-calibrated phylogeny revealed that hepacivirus diversification was not constant throughout the cichlid radiation but accelerated 2-3 million years ago, coinciding with a period of rapid cichlid diversification and niche packing in Lake Tanganyika, thereby providing more closely related hosts for viral infection. These data depict a dynamic virus ecosystem within the cichlids of Lake Tanganyika, characterized by rapid virus diversification and frequent host jumping, and likely reflecting their close phylogenetic relationships that lower the barriers to cross-species virus transmission.


Subject(s)
Cichlids , Viruses , Animals , Phylogeny , Ecosystem , Tanzania , Lakes
SELECTION OF CITATIONS
SEARCH DETAIL