Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters










Publication year range
1.
Bioact Mater ; 41: 46-60, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39101027

ABSTRACT

Hydrogels are promising materials for wound protection, but in wet, or underwater environments, the hydration layer and swelling of hydrogels can seriously reduce adhesion and limit their application. In this study, inspired by the structural characteristics of strong barnacle wet adhesion and combined with solvent exchange, a robust wet adhesive hydrogel (CP-Gel) based on chitosan and 2-phenoxyethyl acrylate was obtained by breaking the hydration layer and resisting swelling. As a result, CP-Gel exhibited strong wet adhesion to various interfaces even underwater, adapted to joint movement and skin twisting, resisted sustained rushing water, and sealed damaged organs. More importantly, on-demand detachment and controllable adhesion were achieved by promoting swelling. In addition, CP-Gel with good biosafety significantly promotes seawater-immersed wound healing and is promising for use in water-contact wound care, organ sealing, and marine emergency rescue.

2.
Mater Today Bio ; 27: 101159, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39149409

ABSTRACT

Diabetic wounds are serious clinical complications which manifest wet condition due to the mass exudate, along with disturbed regulation of inflammation, severe oxidative stress and repetitive bacterial infection. Existing treatments for diabetic wounds remain unsatisfactory due to the lack of ideal dressings that encompass mechanical performance, adherence to moist tissue surfaces, quick repair, and diverse therapeutic benefits. Herein, we fabricated a wet adhesive, self-healing, glucose-responsive drug releasing hydrogel with efficient antimicrobial and pro-healing properties for diabetic wound treatment. PAE hydrogel was constructed with poly(acrylic acid-co-acrylamide) (AA-Am) integrated with a dynamic E-F crosslinker, which consisted of epigallocatechin gallate (EGCG) and 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AFPBA). Due to the dynamic crosslinking nature of boronate esters, abundant catechol groups and hydrogen bonding, PAE hydrogel demonstrated excellent mechanical properties with about 1000 % elongation, robust adhesion to moist tissues, fast self-healing, and absorption of biofluids of 10 times of its own weight. Importantly, PAE hydrogel exhibited sustained and glucose-responsive release of EGCG. Together, the bioactive PAE hydrogel had effective antibacterial, antioxidative, and anti-inflammatory properties in vitro, and accelerated diabetic wound healing in rats via reducing tissue-inflammatory response, enhancing angiogenesis, and reprogramming of macrophages. Overall, this versatile hydrogel provides a straightforward solution for the treatment of diabetic wound, and shows potential for other wound-related application scenarios.

3.
Ann N Y Acad Sci ; 1538(1): 98-106, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091080

ABSTRACT

Scientific progress within the last few decades has revealed the functional morphology of an insect's sticky footpads-a compliant pad that secretes thin liquid films. However, the physico-chemical mechanisms underlying their adhesion remain elusive. Here, we explore these underlying mechanisms by simultaneously measuring adhesive force and contact geometry of the adhesive footpads of live, tethered Indian stick insects, Carausius morosus, spanning more than two orders of magnitude in body mass. We find that the adhesive force we measure is similar to the previous measurements that use a centrifuge. Our measurements afford us the opportunity to directly probe the adhesive stress in vivo and use existing theory on capillary adhesion to predict the surface tension of the secreted liquid and compare it to previous assumptions. From our predictions, we find that the surface tension required to generate the adhesive stresses we observed ranges between 0.68 and 12 mN m - 1 ${\rm m}^{-1}$ . The low surface tension of the liquid would enhance the wetting of the stick insect's footpads and promote their ability to conform to various substrates. Our insights may inform the biomimetic design of capillary-based, reversible adhesives and motivate future studies on the physico-chemical properties of the secreted liquid.


Subject(s)
Insecta , Surface Tension , Animals , Insecta/physiology , Adhesiveness , Capillaries/physiology , Biomechanical Phenomena
4.
ACS Appl Mater Interfaces ; 16(28): 37147-37156, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38949691

ABSTRACT

An essential requirement for biomedical devices is the capability of conformal adaptability on diverse irregular 3D (three-dimensional) nonflat surfaces in the human body that may be covered with liquids such as mucus or sweat. However, the development of reversible adhesive interface materials for biodevices that function on complex biological surfaces is challenging due to the wet, slippery, smooth, and curved surface properties. Herein, we present an ultra-adaptive bioadhesive for irregular 3D oral cavities covered with saliva by integrating a kirigami-metastructure and vertically self-aligning suction cups. The flared suction cup, inspired by octopus tentacles, allows adhesion to moist surfaces. Additionally, the kirigami-based auxetic metastructure with a negative Poisson's ratio relieves the stress caused by tensile strain, thereby mitigating the stress caused by curved surfaces and enabling conformal contact with the surface. As a result, the adhesive strength of the proposed auxetic adhesive is twice that of adhesives with a flat backbone on highly curved porcine palates. For potential application, the proposed auxetic adhesive is mounted on a denture and performs successfully in human subject feasibility evaluations. An integrated design of these two structures may provide functionality and potential for biomedical applications.


Subject(s)
Adhesives , Octopodiformes , Adhesives/chemistry , Animals , Humans , Surface Properties , Swine , Adhesiveness
5.
ACS Biomater Sci Eng ; 10(6): 3935-3945, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38741453

ABSTRACT

Achieving underwater adhesion possesses a significant challenge, primarily due to the presence of interfacial water, which restricts the potential applications of adhesives. In this study, we present a straightforward and environmentally friendly one-pot approach for synthesizing a solvent-free supramolecular TPFe bioadhesive composed of thioctic acid, proanthocyanidins, and FeCl3. The bioadhesive exhibits excellent biocompatibility and photothermal antibacterial properties and demonstrates effective adhesion on various substrates in both wet and dry environments. Importantly, the adhesive strength of this bioadhesive on steel exceeds 1.2 MPa and that on porcine skin exceeds 100 kPa, which is greater than the adhesive strength of most reported bioadhesives. In addition, the bioadhesive exhibits the ability to effectively halt bleeding, close wounds promptly, and promote wound healing in the rat skin wound model. Therefore, the TPFe bioadhesive has potential as a medical bioadhesive for halting bleeding quickly and promoting wound healing in the biomedical field. This study provides a new idea for the development of bioadhesives with firm wet adhesion.


Subject(s)
Wound Healing , Animals , Wound Healing/drug effects , Rats , Swine , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Rats, Sprague-Dawley , Adhesives/chemistry , Adhesives/pharmacology , Skin/drug effects , Skin/injuries , Skin/pathology , Wound Closure Techniques
6.
J Control Release ; 370: 643-652, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744344

ABSTRACT

Neonatal hypoglycemia is a common disease in newborns, which can precipitate energy shortage and follow by irreversible brain and neurological injury. Herein, we present a novel approach for treating neonatal hypoglycemia involving an adhesive polyvinylpyrrolidone/gallic acid (PVP/GA) film loading glucose. The PVP/GA film with loose cross-linking can be obtained by mixing their ethanol solution and drying complex. When depositing this soft film onto wet tissue, it can absorb interfacial water to form a hydrogel with a rough surface, which facilitates tight contact between the hydrogel and tissue. Meanwhile, the functional groups in the hydrogels and tissues establish both covalent and non-covalent bonds, leading to robust bioadhesion. Moreover, the adhered PVP/GA hydrogel can be detached without damaging tissue as needed. Furthermore, the PVP/GA films exhibit excellent antibacterial properties and biocompatibility. Notably, these films effectively load glucose and deliver it to the sublingual tissue of newborn rabbits, showcasing a compelling therapeutic effect against neonatal hypoglycemia. The strengths of the PVP/GA film encompass excellent wet adhesion in the wet and highly dynamic environment of the oral cavity, on-demand detachment, antibacterial efficacy, biocompatibility, and straightforward preparation. Consequently, this innovative film holds promise for diverse biomedical applications, including but not limited to wearable devices, sealants, and drug delivery systems.


Subject(s)
Animals, Newborn , Glucose , Hypoglycemia , Povidone , Animals , Rabbits , Glucose/administration & dosage , Glucose/chemistry , Povidone/chemistry , Infant, Newborn , Humans , Hydrogels/administration & dosage , Hydrogels/chemistry , Adhesives/administration & dosage , Adhesives/chemistry , Anti-Bacterial Agents/administration & dosage , Drug Delivery Systems
7.
Article in English | MEDLINE | ID: mdl-38669466

ABSTRACT

The development of anti-adhesion hydrogels for preventing postoperative adhesions is an ongoing challenge, particularly in achieving a balance between exceptional antifouling properties and effective in situ tissue retention. In this study, we propose a unique approach with the design of a single-component Janus zwitterionic hydrogel patch featuring a bionic microstructure. The Janus patches were prepared through free radical polymerization of sulfobetaine methacrylate with N, N'-methylenebis(2-propenamide) as the cross-linker. The incorporation of hexagonal facets separated by interconnecting grooves on one side imparts durable and reliable in situ retention capabilities to the Janus hydrogel patch when it is applied to traumatized tissues. The opposing flat surface exhibits outstanding resistance to bacteria, proteins, and cell adhesion, due to the superhydrophilicity and excellent antifouling characteristics of zwitterionic polymers. This dual functionality empowers the Janus hydrogel patch to mitigate adhesions between traumatized and surrounding tissues. The hexagonal and groove bionic microstructures facilitate rapid drainage, promoting swift contact with the tissue for increased adhesion strength, while independent hexagonal microfacets enhance the peeling energy. In an in vivo setting, Janus zwitterionic hydrogel patches with surface microstructures form mutually embedded structures with the cecum surface, minimizing the likelihood of slippage and detachment. Remarkably, in vivo experiments involving abdominal wall cecum injuries illustrate the Janus zwitterionic hydrogel patch's superior anti-adhesion effectiveness compared to commercial controls. Thus, the Janus hydrogel patch, distinguished by its bionic microstructure surface, presents substantial potential in the biomedical field for averting postoperative adhesions.

8.
ACS Appl Mater Interfaces ; 16(17): 22689-22695, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38622496

ABSTRACT

The need for improved wet adhesives has driven research on mussel-inspired materials incorporating dihydroxyphenylalanine (DOPA) and related analogs of the parent catechol, but their susceptibility to oxidation limits practical application of these functionalities. Here, we investigate the molecular-level adhesion of the catechol analogs dihydroxybenzamide (DHB) and hydroxypyridinone (HOPO) as a function of pH. We find that the molecular structure of the catechol analogs influences their susceptibility to oxidation in alkaline conditions, with HOPO emerging as a particularly promising candidate for pH-tolerant adhesives for diverse environmental conditions.

9.
Small ; 20(33): e2311859, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38643382

ABSTRACT

The quest for efficient hemostatic agents in emergency medicine is critical, particularly for managing massive hemorrhages in dynamic and high-pressure wound environments. Traditional self-gelling powders, while beneficial due to their ease of application and rapid action, fall short in such challenging conditions. To bridge this gap, the research introduces a novel self-gelling powder that combines ultrafast covalent gelation and robust wet adhesion, presenting a significant advancement in acute hemorrhage control. This ternary system comprises ε-polylysine (ε-PLL) and 4-arm polyethylene glycol succinyl succinate (4-arm-PEG-NHS) forming the hydrogel framework. Na2HPO4 functions as the "H+ sucker" to expedite the amidation reaction, slashing gelation time to under 10 s, crucial for immediate blood loss restriction. Moreover, PEG chains' hydrophilicity facilitates efficient absorption of interfacial blood, increasing the generated hydrogel's cross-linking density and strengthens its tissue bonding, thereby resulting in excellent mechanical and wet adhesion properties. In vitro experiments reveal the optimized formulation's exceptional tissue compliance, procoagulant activity, biocompatibility and antibacterial efficacy. In porcine models of heart injuries and arterial punctures, it outperforms commercial hemostatic agent Celox, confirming its rapid and effective hemostasis. Conclusively, this study presents a transformative approach to hemostasis, offering a reliable and potent solution for the emergency management of massive hemorrhage.


Subject(s)
Hemorrhage , Powders , Hemorrhage/drug therapy , Animals , Swine , Adhesives/chemistry , Adhesives/pharmacology , Polyethylene Glycols/chemistry , Hemostatics/chemistry , Hemostatics/pharmacology , Pressure , Hydrogels/chemistry
10.
Adv Mater ; 36(25): e2309774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38490747

ABSTRACT

Tissue adhesives are promising alternatives to sutures and staples to achieve wound closure and hemostasis. However, they often do not work well on tissues that are soaked in blood or other biological fluids, and organs that are typically exposed to a variety of harsh environments such as different pH values, nonhomogeneous distortions, continuous expansions and contractions, or high pressures. In this study, a nature-derived multilayered hetero-bioadhesive patch (skin secretion of Andrias davidianus (SSAD)-Patch) based on hydrophilic/hydrophobic pro-healing bioadhesives derived from the SSAD is developed, which is designed to form pressure-triggered strong adhesion with wet tissues. The SSAD-Patch is successfully applied for the sealing and healing of tissue defects within 10 s in diverse extreme injury scenarios in vivo including rat stomach perforation, small intestine perforation, fetal membrane defect, porcine carotid artery incision, and lung lobe laceration. The findings reveal a promising new type of self-adhesive regenerative SSAD-Patch, which is potentially adaptable to broad applications (under different pH values and air or liquid pressures) in sutureless wound sealing and healing.


Subject(s)
Tissue Adhesives , Wound Healing , Animals , Wound Healing/drug effects , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Rats , Swine , Hydrophobic and Hydrophilic Interactions , Skin , Stomach
11.
Carbohydr Polym ; 333: 121998, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494208

ABSTRACT

Hemostatic powders that adapt to irregularly shaped wounds, allowing for easy application and stable storage, have gained popularity for first-aid hemorrhage control. However, traditional powders often provide weak thrombus support and exhibit limited tissue adhesion, making them susceptible to dislodgment by the bloodstream. Inspired by fibrin fibers coagulation mediator, we have developed a bi-component hemostatic powder composed of positively charged quaternized chitosan (QCS) and negatively charged catechol-modified alginate (Cat-SA). Upon application to the wound, the bi-component powders (QCS/Cat-SA) rapidly absorb plasma and dissolve into chains. These chains interact with each other to form a network, which can effectively bind and entraps clustered red blood cells and platelets, ultimately leading to the creation of a durable and robust thrombus. Significantly, these interconnected polymers adhere to the injury site, offering protection against thrombus disruption caused by the bloodstream. Benefiting from these synthetic properties, QCS/Cat-SA demonstrates superior hemostatic performance compared to commercial hemostatic powders like Celox™ in both arterial injuries and non-compressible liver puncture wounds. Importantly, QCS/Cat-SA exhibits excellent antibacterial activity, cytocompatibility, and hemocompatibility. These advantages of QCS/Cat-SA, including strong blood clotting, wet tissue adherence, antibacterial activity, biosafety, ease of use, and stable storage, make it a promising hemostatic agent for emergency situations.


Subject(s)
Chitosan , Hemostatics , Thrombosis , Humans , Fibrin , Adhesives/pharmacology , Blood Coagulation , Hemostatics/pharmacology , Chitosan/pharmacology , Polysaccharides/pharmacology , Anti-Bacterial Agents/pharmacology
12.
Mater Today Bio ; 25: 100947, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38298562

ABSTRACT

Cyclophosphamide is commonly used in the treatment of various cancers and autoimmune diseases, while concurrently imposing substantial toxicity on the bladder, frequently manifesting hemorrhagic cystitis. Intravesical interventions, such as hyaluronic acid supplementation, present a therapeutic strategy to reinstate bladder barrier function and alleviate the effects of metabolic toxicants. However, it remains a great challenge to achieve efficient cyclophosphamide-induced hemorrhagic cystitis (CHC) management with accelerated tissue repair owing to the low wet-adhesion, poor hemostasis, and acute inflammatory responses. To address these issues, a hemostatic and anti-inflammatory hydrogel adhesive of chitosan methylacryloyl/silk fibroin methylacryloyl (CHMA/SFMA) is developed for promoting the healing of CHC. The obtained hydrogels show a high adhesive strength of 26.21 N/m with porcine bladder, facilitating the rapid hemostasis within 15 s, and reinstate bladder barrier function. Moreover, this hydrogel adhesive promotes the proliferation and aggregation of SV-HUC-1 and regulates macrophage polarization. Implanting the hydrogels into CHC bladders of a SD rat model, they not only can be completely biodegraded in 14 days, but also effectively control hematuria and inflammation, and accelerate angiogenesis, thereby significantly promote the healing of bladder injury. Overall, CHMA/SFMA hydrogels exhibit rapid hemostasis for treating CHC and accelerate muscle tissue repair via angiogenesis and inflammation amelioration, which may provide a new path for managing severe hemorrhagic cystitis in the clinics.

13.
ACS Appl Mater Interfaces ; 16(9): 11263-11274, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38404067

ABSTRACT

Hemostatic powder is commonly used in emergency bleeding control due to its suitability for irregularly shaped wounds, ease of use, and stable storage. However, traditional powder often has limited tissue adhesion and weak thrombus support, which makes it vulnerable to displacement by blood flow. Herein, we have developed a tricomponent hemostatic powder (MQS) composed of mesoporous bioactive glass nanoparticle (MBG), positively charged quaternized chitosan (QCS), and negatively charged catechol-modified alginate (SADA). Upon application to the wound, MBG with its high specific surface area quickly absorbs plasma, concentrating the blood coagulation factor. Simultaneously, the water-soluble QCS and SADA interact with each other and form a net, which can be further cross-linked by MBG. This network efficiently binds and entraps clustered blood coagulation factors, ultimately resulting in the formation of a durable and robust thrombus. Furthermore, the formed net adheres to the injury site, offering protection against thrombus disruption caused by the bloodstream. Benefiting from the synergistic effect of these three components, MQS demonstrates superior hemostatic performance compared to commercial hemostatic powders like Celox in both arterial injuries and noncompressible liver puncture wounds. Furthermore, MQS can effectively accelerate wound healing. In addition, MQS exhibits excellent antibacterial activity, cytocompatibility, and hemocompatibility. These advantages of MQS, including strong blood clotting, wet tissue adherence, antibacterial activity, wound healing ability, biosafety, ease of use, and stable storage, make it a promising hemostatic agent for emergency situations.


Subject(s)
Chitosan , Hemostatics , Thrombosis , Humans , Powders/pharmacology , Hemostasis , Hemostatics/pharmacology , Wound Healing , Chitosan/pharmacology , Biopolymers/pharmacology , Anti-Bacterial Agents/pharmacology
14.
Regen Biomater ; 11: rbad101, 2024.
Article in English | MEDLINE | ID: mdl-38173771

ABSTRACT

As a superior alternative to sutures, tissue adhesives have been developed significantly in recent years. However, existing tissue adhesives struggle to form fast and stable adhesion between tissue interfaces, bond weakly in wet environments and lack bioactivity. In this study, a degradable and bioactive citrate-based polyurethane adhesive is constructed to achieve rapid and strong tissue adhesion. The hydrophobic layer was created with polycaprolactone to overcome the bonding failure between tissue and adhesion layer in wet environments, which can effectively improve the wet bonding strength. This citrate-based polyurethane adhesive provides rapid, non-invasive, liquid-tight and seamless closure of skin incisions, overcoming the limitations of sutures and commercial tissue adhesives. In addition, it exhibits biocompatibility, biodegradability and hemostatic properties. The degradation product citrate could promote the process of angiogenesis and accelerate wound healing. This study provides a novel approach to the development of a fast-adhering wet tissue adhesive and provides a valuable contribution to the development of polyurethane-based tissue adhesives.

15.
Small Methods ; : e2301726, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38284322

ABSTRACT

Nature has created various organisms with unique chemical components and multi-scale structures (e.g., foot proteins, toe pads, suckers, setose gill lamellae) to achieve wet adhesion functions to adapt to their complex living environments. These organisms can provide inspirations for designing wet adhesives with mediated drug release behaviors in target locations of biological surfaces. They exhibit conformal and enhanced wet adhesion, addressing the bottleneck of weaker tissue interface adhesion in the presence of body fluids. Herein, it is focused on the research progress of different wet adhesion and bioinspired fabrications, including adhesive protein-based adhesion and inspired adhesives (e.g., mussel adhesion); capillarity and Stefan adhesion and inspired adhesive surfaces (e.g., tree frog adhesion); suction-based adhesion and inspired suckers (e.g., octopus' adhesion); interlocking and friction-based adhesion and potential inspirations (e.g., mayfly larva and teleost adhesion). Other secreted protein-induced wet adhesion is also reviewed and various suckers for other organisms and their inspirations. Notably, one representative application scenario of these bioinspired wet adhesives is highlighted, where they function as efficient drug delivery platforms on target tissues and/or organs with requirements of both controllable wet adhesion and optimized drug release. Finally, the challenges of these bioinspired wet drug delivery platforms in the future is presented.

16.
Adv Mater ; 36(8): e2310164, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37925614

ABSTRACT

Hydrogel adhesion materials are widely reported for tissue engineering repair applications, however, wet tissue surface moisture can reduce the wet-adhesion properties and mechanical strength of hydrogels limiting their application. Here, anti-hydration gelatin-acrylic acid-ethylene dimethacrylate (GAE) hydrogels with hydrophobic cross-linked chains are constructed. The prepared GAE hydrogel is soaked in PBS (3 days) with a volume change of 0.6 times of the original and the adhesive strength, Young's modulus, toughness, and burst pressure are maintained by ≈70% of the original. A simple and universal method is used to introduce hydrophobic chains as cross-linking points to prepare hydrogels with anti-hydration, toughness, and high wet state adhesion. The hydrophobic cross-linked chains not only restrict the movement of molecular chains but also hinder the intrusion of water molecules. Antihydration GAE hydrogels exhibit good biocompatibility, slow drug release, and dynamic oral wet-state tissue repair properties. Therefore, the anti-hydration hydrogel has excellent toughness, wet tissue adhesion properties, and good prospects for biological applications.


Subject(s)
Hydrogels , Tissue Engineering , Humans , Hydrogels/chemistry , Tissue Adhesions , Tensile Strength , Hydrophobic and Hydrophilic Interactions , Adhesives
17.
Int J Biol Macromol ; 255: 128288, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992924

ABSTRACT

Tissue adhesives have attracted intense and increasing interest due to their multiple biomedical applications. Despite the rapid development of adhesive hydrogels, huge challenges remain for materials that can ensure strong adhesion and seal hemostasis in aqueous and blood environments. To address this issue, we have developed an innovative design of PAA-based coacervate hydrogel with strong wet adhesion capability through a simple mixture of PAA copolymers with oxidized-carboxymethylcellulose (OCMC), and tannic acid (TA) as the main components, and structurally enhanced with natural clays (Laponite XLG). The absorbed TA provides solid adhesion to dry and wet substrates via multiple interactions, which endows the XLG-enhanced coacervate with the desired underwater adhesive strength. More importantly, the dielectric constant is introduced to evaluate the polarity of the tested samples, which may be used as guidance for the design of mussel-inspired adhesives with even better underwater adhesive properties. In vivo hemorrhage experiments further confirmed that the hydrogel adhesive dramatically shortened the hemostatic time to tens of seconds. Overall, the persistent adhesion and acceptable cytocompatibility of the hydrogel nanocomposite make it a promising alternative suture-free approach for rapid hemostasis at different length scales and is expected to be extended to clinical application for other organ injuries.


Subject(s)
Hydrogels , Tissue Adhesives , Humans , Hydrogels/chemistry , Carboxymethylcellulose Sodium , Adhesives/chemistry , Tissue Adhesives/chemistry , Tissue Adhesions , Hemostasis
18.
Adv Sci (Weinh) ; 11(4): e2306289, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38044313

ABSTRACT

Rapid and effective control of non-compressible massive hemorrhage poses a great challenge in first-aid and clinical settings. Herein, a biopolymer-based powder is developed for the control of non-compressible hemorrhage. The powder is designed to facilitate rapid hemostasis by its excellent hydrophilicity, great specific surface area, and adaptability to the shape of wound, enabling it to rapidly absorb fluid from the wound. Specifically, the powder can undergo sequential cross-linking based on "click" chemistry and Schiff base reaction upon contact with the blood, leading to rapid self-gelling. It also exhibits robust tissue adhesion through covalent/non-covalent interactions with the tissues (adhesive strength: 89.57 ± 6.62 KPa, which is 3.75 times that of fibrin glue). Collectively, this material leverages the fortes of powder and hydrogel. Experiments with animal models for severe bleeding have shown that it can reduce the blood loss by 48.9%. Studies on the hemostatic mechanism also revealed that, apart from its physical sealing effect, the powder can enhance blood cell adhesion, capture fibrinogen, and synergistically induce the formation of fibrin networks. Taken together, this hemostatic powder has the advantages for convenient preparation, sprayable use, and reliable hemostatic effect, conferring it with a great potential for the control of non-compressible hemorrhage.


Subject(s)
Coagulants , Hemostatics , Animals , Powders , Tissue Adhesions , Hemorrhage , Hemostatics/pharmacology
19.
ACS Appl Mater Interfaces ; 15(42): 49035-49050, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37823272

ABSTRACT

Bioadhesives have been widely used in hemostasis and tissue repair, but the overmoist and wet nature of wound surface (due to the presence of blood and/or wound exudate) has led to poor wet adhesion of bioadhesives, which interrupts the continuous care of wounds. Here, a thirsty polyphenolic silk granule (Tan@SF-pwd-hydro), which absorbs blood and exudate to self-convert to robust bioadhesives (Tan@SF-gel-hydro) in situ, was facilely developed in this study for enhanced wet adhesion toward hemostasis and tissue repair. Tan@SF-pwd-hydro could shield wounds' wetness and immediately convert itself to Tan@SF-gel-hydro to seal wounds for hemorrhage control and wound healing. The maximum adhesiveness of Tan@SF-gel-hydro over wet pigskin was as high as 59.8 ± 2.1 kPa. Tan@SF-pwd-hydro is a promising transformative dressing for hemostasis and tissue repair since its hemostatic time was approximately half of that of the commercial hemostatic product, CeloxTM, and its healing period was much shorter than that of the commercial bioadhesive product, TegadermTM. This pioneering study utilized adverse wetness over wounds to arouse robust adhesiveness by converting thirsty granules to bioadhesives in situ, creatively turning adversity into opportunities. The facile fabrication approach also offers new perspectives for manufacturing sustainability of biomaterials.


Subject(s)
Hemostatics , Wound Healing , Humans , Hemostasis , Hemostatics/pharmacology , Hemostatics/therapeutic use , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Silk/pharmacology , Tissue Adhesions
20.
Int J Biol Macromol ; 253(Pt 6): 126793, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37709238

ABSTRACT

The incidence of peripheral nerve injury (PNI) is high worldwide, and a poor prognosis is common. Surgical closure and repair of the affected area are crucial to ensure the effective treatment of peripheral nerve injuries. Despite being the standard treatment approach, reliance on sutures to seal the severed nerve ends introduces several limitations and restrictions. This technique is intricate and time-consuming, and the application of threading and punctate sutures may lead to tissue damage and heightened tension concentrations, thus increasing the risk of fixation failure and local inflammation. This study aimed to develop easily implantable chitosan-based peripheral nerve repair conduits that combine acrylic acid and cleavable N-hydroxysuccinimide to reduce nerve damage during repair. In ex vivo tissue adhesion tests, the conduit achieved maximal interfacial toughness of 705 J m-2 ± 30 J m-2, allowing continuous bridging of the severed nerve ends. Adhesive repair significantly reduces local inflammation caused by conventional sutures, and the positive charge of chitosan disrupts the bacterial cell wall and reduces implant-related infections. This promises to open new avenues for sutureless nerve repair and reliable medical implants.


Subject(s)
Chitosan , Peripheral Nerve Injuries , Sutureless Surgical Procedures , Humans , Peripheral Nerve Injuries/surgery , Adhesives , Inflammation , Nerve Regeneration , Peripheral Nerves/surgery
SELECTION OF CITATIONS
SEARCH DETAIL