Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 356
Filter
1.
Am J Physiol Endocrinol Metab ; 327(1): E69-E80, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38717361

ABSTRACT

Acylglycerophosphate acyltransferases (AGPATs) catalyze the de novo formation of phosphatidic acid to synthesize glycerophospholipids and triglycerides. AGPATs demonstrate unique physiological roles despite a similar biochemical function. AGPAT3 is highly expressed in the testis, kidney, and liver, with intermediate expression in adipose tissue. Loss of AGPAT3 is associated with reproductive abnormalities and visual dysfunction. However, the role of AGPAT3 in adipose tissue and whole body metabolism has not been investigated. We found that male Agpat3 knockout (KO) mice exhibited reduced body weights with decreased white and brown adipose tissue mass. Such changes were less pronounced in the female Agpat3-KO mice. Agpat3-KO mice have reduced plasma insulin growth factor 1 (IGF1) and insulin levels and diminished circulating lipid metabolites. They manifested intact glucose homeostasis and insulin sensitivity despite a lean phenotype. Agpat3-KO mice maintained an energy balance with normal food intake, energy expenditure, and physical activity, except for increased water intake. Their adaptive thermogenesis was also normal despite reduced brown adipose mass and triglyceride content. Mechanistically, Agpat3 was elevated during mouse and human adipogenesis and enriched in adipocytes. Agpat3-knockdown 3T3-L1 cells and Agpat3-deficient mouse embryonic fibroblasts (MEFs) have impaired adipogenesis in vitro. Interestingly, pioglitazone treatment rescued the adipogenic deficiency in Agpat3-deficient cells. We conclude that AGPAT3 regulates adipogenesis and adipose development. It is possible that adipogenic impairment in Agpat3-deficient cells potentially leads to reduced adipose mass. Findings from this work support the unique role of AGPAT3 in adipose tissue.NEW & NOTEWORTHY AGPAT3 deficiency results in male-specific growth retardation. It reduces adipose tissue mass but does not significantly impact glucose homeostasis or energy balance, except for influencing water intake in mice. Like AGPAT2, AGPAT3 is upregulated during adipogenesis, potentially by peroxisome proliferator-activated receptor gamma (PPARγ). Loss of AGPAT3 impairs adipocyte differentiation, which could be rescued by pioglitazone. Overall, AGPAT3 plays a significant role in regulating adipose tissue mass, partially involving its influence on adipocyte differentiation.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase , Adipocytes , Mice, Knockout , Animals , Female , Male , Mice , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Adipocytes/metabolism , Adipogenesis/genetics , Adipogenesis/physiology , Adipose Tissue, Brown/metabolism , Cell Differentiation , Energy Metabolism/genetics , Insulin Resistance/genetics , Mice, Inbred C57BL , Phenotype , Thermogenesis/genetics , Thinness/metabolism , Thinness/genetics
2.
Proc Natl Acad Sci U S A ; 121(21): e2314570121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739804

ABSTRACT

Lipid polymers such as cutin and suberin strengthen the diffusion barrier properties of the cell wall in specific cell types and are essential for water relations, mineral nutrition, and stress protection in plants. Land plant-specific glycerol-3-phosphate acyltransferases (GPATs) of different clades are central players in cutin and suberin monomer biosynthesis. Here, we show that the GPAT4/6/8 clade in Arabidopsis thaliana, which is known to mediate cutin formation, is also required for developmentally regulated root suberization, in addition to the established roles of GPAT5/7 in suberization. The GPAT5/7 clade is mainly required for abscisic acid-regulated suberization. In addition, the GPAT5/7 clade is crucial for the formation of the typical lamellated suberin ultrastructure observed by transmission electron microscopy, as distinct amorphous globular polyester structures were deposited in the apoplast of the gpat5 gpat7 double mutant, in contrast to the thinner but still lamellated suberin deposition in the gpat4 gpat6 gpat8 triple mutant. Site-directed mutagenesis revealed that the intrinsic phosphatase activity of GPAT4, GPAT6, and GPAT8, which leads to monoacylglycerol biosynthesis, contributes to suberin formation. GPAT5/7 lack an active phosphatase domain and the amorphous globular polyester structure observed in the gpat5 gpat7 double mutant was partially reverted by treatment with a phosphatase inhibitor or the expression of phosphatase-dead variants of GPAT4/6/8. Thus, GPATs that lack an active phosphatase domain synthetize lysophosphatidic acids that might play a role in the formation of the lamellated structure of suberin. GPATs with active and nonactive phosphatase domains appear to have nonredundant functions and must cooperate to achieve the efficient biosynthesis of correctly structured suberin.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Glycerol-3-Phosphate O-Acyltransferase , Lipids , Plant Roots , 1-Acylglycerol-3-Phosphate O-Acyltransferase , Abscisic Acid/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant , Glycerol-3-Phosphate O-Acyltransferase/metabolism , Glycerol-3-Phosphate O-Acyltransferase/genetics , Lipids/chemistry , Membrane Lipids/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics
3.
Mol Microbiol ; 121(6): 1164-1181, 2024 06.
Article in English | MEDLINE | ID: mdl-38676355

ABSTRACT

Latent tuberculosis, caused by dormant Mycobacterium tuberculosis (Mtb), poses a threat to global health through the incubation of undiagnosed infections within the community. Dormant Mtb, which is phenotypically tolerant to antibiotics, accumulates triacylglycerol (TAG) utilizing fatty acids obtained from macrophage lipid droplets. TAG is vital to mycobacteria, serving as a cell envelope component and energy reservoir during latency. TAG synthesis occurs by sequential acylation of glycerol-3-phosphate, wherein the second acylation step is catalyzed by acylglycerol-3-phosphate acyltransferase (AGPAT), resulting in the production of phosphatidic acid (PA), a precursor for the synthesis of TAG and various phospholipids. Here, we have characterized a putative acyltransferase of Mtb encoded by Rv3816c. We found that Rv3816c has all four characteristic motifs of AGPAT, exists as a membrane-bound enzyme, and functions as 1-acylglycerol-3-phosphate acyltransferase. The enzyme could transfer the acyl group to acylglycerol-3-phosphate (LPA) from monounsaturated fatty acyl-coenzyme A of chain length 16 or 18 to produce PA. Complementation of Escherichia coli PlsC mutant in vivo by Rv3816c confirmed that it functions as AGPAT. Its active site mutants, H43A and D48A, were incapable of transferring the acyl group to LPA in vitro and were not able to rescue the growth defect of E. coli PlsC mutant in vivo. Identifying Rv3816c as AGPAT and comparing its properties with other AGPAT homologs is not only a step toward understanding the TAG biosynthesis in mycobacteria but has the potential to explore it as a drug target.


Subject(s)
Mycobacterium tuberculosis , Triglycerides , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Triglycerides/biosynthesis , Triglycerides/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , Glycerol-3-Phosphate O-Acyltransferase/metabolism , Glycerol-3-Phosphate O-Acyltransferase/genetics , Acyltransferases/metabolism , Acyltransferases/genetics , Acylation , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Phosphatidic Acids/metabolism , Phosphatidic Acids/biosynthesis , Acyl Coenzyme A/metabolism
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167007, 2024 03.
Article in English | MEDLINE | ID: mdl-38185063

ABSTRACT

The development of nonalcoholic fatty liver disease (NAFLD) may worsen due to chronic stress or prolonged use of glucocorticoids. Glycerol-3-phosphate acyltransferase 3 (GPAT3), has a function in obesity and serves as a key rate-limiting enzyme that regulates triglyceride synthesis. However, the precise impact of GPAT3 on corticosterone (CORT)-induced NAFLD and its underlying molecular mechanism remain unclear. For our in vivo experiments, we utilized male and female mice that were GPAT3-/- and wild type (WT) and treated them with CORT for a duration of 4 weeks. In our in vitro experiments, we transfected AML12 cells with GPAT3 siRNA and subsequently treated them with CORT. Under CORT-treated conditions, the absence of GPAT3 greatly improved obesity and hepatic steatosis while enhancing the expression of genes involved in fatty acid oxidation, as evidenced by our findings. In addition, the deletion of GPAT3 significantly inhibited the production of reactive oxygen species (ROS), increased the expression of antioxidant genes, and recovered the mitochondrial membrane potential in AML12 cells treated with CORT. In terms of mechanism, the absence of GPAT3 encouraged the activation of the glycogen synthase kinase 3ß (GSK3ß)/nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway, which served as a defense mechanism against liver fat accumulation and oxidative stress. Furthermore, GPAT3 expression was directly controlled at the transcriptional level by the glucocorticoid receptor (GR). Collectively, our findings suggest that GPAT3 deletion significantly alleviated hepatic steatosis and oxidative stress through promoting GSK3ß/Nrf2 signaling pathways.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Female , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Corticosterone/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Oxidative Stress , Obesity/drug therapy , Obesity/genetics , Acyltransferases/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism
5.
J Clin Lipidol ; 18(1): e125-e128, 2024.
Article in English | MEDLINE | ID: mdl-37968200

ABSTRACT

Chanarin-Dorfman Syndrome (CDS) is a rare lipid storage disease with ichthyosis, hepatomegaly, myopathy, neuropathy, deafness, and ocular findings. Here, we aim to present an elderly CDS case and highlight the new endocrinological findings. A 66-year-old male patient with cirrhosis was hospitalized for liver transplantation. We suspected Chanarin-Dorfman Syndrome with ichthyosis, fatty liver, and syndromic facial features with bilateral ectropion, deafness, and malocclusion. We showed the lipid droplets in neutrophils called patognomonic Jordans' anomaly. Homozygous c.47+1 G>A mutation in the ABHD5 (NM_016006.6) gene were detected by clinical exome sequencing. Out of <160 CDS cases in the literature, this is the second eldest CDS patient and first with adrenal insufficiency, parathyroid lipoadenoma and atrophic pancreas. Clinicians should be aware of CDS as a rare cause of fatty liver. We recommend a blood smear and genetic analyses in patients with severe ichtiosis, ectropion, deafness and multiple endocrinolgic disorders.


Subject(s)
Deafness , Ectropion , Fatty Liver , Ichthyosiform Erythroderma, Congenital , Ichthyosis , Lipid Metabolism, Inborn Errors , Liver Transplantation , Muscular Diseases , Male , Humans , Aged , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Fatty Liver/diagnosis , Fatty Liver/genetics , Lipids , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics
6.
Am J Med Genet A ; 194(4): e63481, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37984424

ABSTRACT

Chanarin-Dorfman syndrome is an autosomal recessively inherited disorder characterized by ichthyosis, sensorineural hearing loss, and hepatic dysfunction. We report on a 60-year-old female of Venezuelan descent who presented with congenital ichthyosis, progressive sensorineural hearing loss, and liver cirrhosis. We identify a heterozygous copy number deletion involving exon 1 and another heterozygous deletion involving exon 3 of the ABHD5 gene. Exon 2 is preserved. Both deletions were confirmed with RT-PCR. RNAseq from peripheral blood shows a reduction of ABHD5 expression overall and an absence of exon 3 expression, confirming the deleterious effects of the identified deletions. We present exonic deletions as a potentially common type of ABHD5 variation.


Subject(s)
Hearing Loss, Sensorineural , Ichthyosiform Erythroderma, Congenital , Ichthyosis , Lipid Metabolism, Inborn Errors , Muscular Diseases , Female , Humans , Middle Aged , Ichthyosiform Erythroderma, Congenital/complications , Ichthyosiform Erythroderma, Congenital/diagnosis , Ichthyosiform Erythroderma, Congenital/genetics , Lipid Metabolism, Inborn Errors/genetics , Muscular Diseases/genetics , Ichthyosis/complications , Ichthyosis/diagnosis , Ichthyosis/genetics , Liver Cirrhosis , Hearing Loss, Sensorineural/complications , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics
7.
Arch Med Res ; 55(1): 102925, 2024 01.
Article in English | MEDLINE | ID: mdl-38042031

ABSTRACT

BACKGROUND AND AIM: Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders in pregnancy, and a novel association of maternal lipid profile has been suggested to play an important role. However, the molecular mechanism is not clear. METHODS: Bio-analyzed combined with placental metabonomics and single-cell RNA-sequencing (scRNA-seq) successfully identified a potentially important molecule: α-ß hydrolase domain-containing protein 5 (ABHD5). The syncytiotrophoblast (SCT) cell model was adopted as a fusion of BeWo cells in response to forskolin. On this basis, the high glucose-stimulated cell experiment was carried out. 15 women with GDM and 15 normal pregnant women were recruited for validation experiments. RESULTS: ABHD5 was mainly expressed in the trophoblast cells, especially in SCT cells, and significantly decreased in the GDM placenta. After stimulation by high glucose, the expression of ABHD5 was downregulated in a time-dependent manner in BeWo cells treated with forskolin. At the same time, lipid droplets (LDs) were increased in the SCT. LD storage was also increased in the SCT with siABHD5, while it was significantly reduced in SCT cells with high ABHD5 expression. However, this effect could be attenuated by downregulated carnitine palmitoyltransferase 1B (CPT1B). CONCLUSIONS: ABHD5-CPT1B is confirmed as an important regulator of placental lipid metabolism.


Subject(s)
Diabetes, Gestational , Placenta , Female , Humans , Pregnancy , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Colforsin/pharmacology , Colforsin/metabolism , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , Glucose/metabolism , Lipid Metabolism , Placenta/metabolism
8.
Mol Cancer Res ; 22(3): 308-321, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38015751

ABSTRACT

Myeloid-derived suppressor cell (MDSC) levels are elevated in patients with cancer and contribute to reduced efficacy of immune checkpoint therapy. MDSC express Bruton's tyrosine kinase (BTK) and BTK inhibition with ibrutinib, an FDA-approved irreversible inhibitor of BTK, leads to reduced MDSC expansion/function in mice and significantly improves the antitumor activity of anti-PD-1 antibody treatments. Single-cell RNA sequencing (scRNA-seq) was used to characterize the effect of ibrutinib on gene expression of fluorescence-activated cell sorting-enriched MDSC from patients with different cancer types [breast, melanoma, head and neck squamous cell cancer (HNSCC)]. Melanoma patient MDSC were treated in vitro for 4 hours with 5 µmol/L ibrutinib or DMSO, processed for scRNA-seq using the Chromium 10× Genomics platform, and analyzed via the Seurat v4 standard integrative workflow. Baseline gene expression of MDSC from patients with breast, melanoma, and HNSCC cancer revealed similarities among the top expressed genes. In vitro ibrutinib treatment of MDSC from patients with melanoma resulted in significant changes in gene expression. GBP1, IL-1ß, and CXCL8 were among the top downregulated genes whereas RGS2 and ABHD5 were among the top upregulated genes (P < 0.001). Double positive CD14+CD15+ MDSC and PMN-MDSC responded similarly to BTK inhibition and exhibited more pronounced gene changes compared with early MDSC and M-MDSC. Pathway analysis revealed significantly downregulated pathways including TREM1, nitric oxide signaling, and IL-6 signaling (P < 0.004). IMPLICATIONS: scRNA-seq revealed characteristic gene expression patterns for MDSC from different patients with cancer and BTK inhibition led to the downregulation of multiple genes and pathways important to MDSC function and migration.


Subject(s)
Head and Neck Neoplasms , Melanoma , Myeloid-Derived Suppressor Cells , Animals , Humans , Mice , 1-Acylglycerol-3-Phosphate O-Acyltransferase , Agammaglobulinaemia Tyrosine Kinase , Single-Cell Gene Expression Analysis , Squamous Cell Carcinoma of Head and Neck
9.
Curr Probl Cardiol ; 49(2): 102345, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38103823

ABSTRACT

The review centers on the scientific evidence underlying obesity, providing a detailed examination of the role of perilipin in this condition. It explores potential causes of obesity and delves into therapeutic approaches involving exercise, yoga, and herbal treatments. The paper discusses natural sources that can contribute to combating obesity and underscores the importance of exercise in a scientific context for overcoming obesity. Additionally, it includes information on herbal ingredients that aid in reducing obesity. The review also examines the impact of exercise type and intensity at various time intervals on muscle development. It elucidates triglyceride hydrolysis through different enzymes and the deposition of fatty acids in adipose tissue. The mechanisms by which alpha/beta hydrolase domain-containing protein 5 (ABHD5) and hormone-sensitive lipase (HSL) target and activate their functions are detailed. The inflammatory response in obesity is explored, encompassing inflammatory markers, lipid storage diseases, and their classification with molecular mechanisms. Furthermore, the hormonal regulation of lipolysis is elaborated upon in the review.


Subject(s)
Lipase , Yoga , Humans , Lipase/metabolism , Diet, Healthy , Lipolysis/physiology , Obesity/therapy , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism
10.
J Lipid Res ; 65(1): 100491, 2024 01.
Article in English | MEDLINE | ID: mdl-38135254

ABSTRACT

Lipolysis is an essential metabolic process that releases unesterified fatty acids from neutral lipid stores to maintain energy homeostasis in living organisms. Adipose triglyceride lipase (ATGL) plays a key role in intracellular lipolysis and can be coactivated upon interaction with the protein comparative gene identification-58 (CGI-58). The underlying molecular mechanism of ATGL stimulation by CGI-58 is incompletely understood. Based on analysis of evolutionary conservation, we used site directed mutagenesis to study a C-terminally truncated variant and full-length mouse ATGL providing insights in the protein coactivation on a per-residue level. We identified the region from residues N209-N215 in ATGL as essential for coactivation by CGI-58. ATGL variants with amino acids exchanges in this region were still able to hydrolyze triacylglycerol at the basal level and to interact with CGI-58, yet could not be activated by CGI-58. Our studies also demonstrate that full-length mouse ATGL showed higher tolerance to specific single amino acid exchanges in the N209-N215 region upon CGI-58 coactivation compared to C-terminally truncated ATGL variants. The region is either directly involved in protein-protein interaction or essential for conformational changes required in the coactivation process. Three-dimensional models of the ATGL/CGI-58 complex with the artificial intelligence software AlphaFold demonstrated that a large surface area is involved in the protein-protein interaction. Mapping important amino acids for coactivation of both proteins, ATGL and CGI-58, onto the 3D model of the complex locates these essential amino acids at the predicted ATGL/CGI-58 interface thus strongly corroborating the significance of these residues in CGI-58-mediated coactivation of ATGL.


Subject(s)
Artificial Intelligence , Lipase , Animals , Mice , Lipase/metabolism , Lipolysis/physiology , Triglycerides/metabolism , Amino Acids/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism
11.
Proc Natl Acad Sci U S A ; 120(52): e2312666120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38127985

ABSTRACT

AGPAT2 (1-acyl-sn-glycerol-3-phosphate-acyltransferase-2) converts lysophosphatidic acid (LPA) into phosphatidic acid (PA), and mutations of the AGPAT2 gene cause the most common form of congenital generalized lipodystrophy which leads to steatohepatitis. The underlying mechanism by which AGPAT2 deficiency leads to lipodystrophy and steatohepatitis has not been elucidated. We addressed this question using an antisense oligonucleotide (ASO) to knockdown expression of Agpat2 in the liver and white adipose tissue (WAT) of adult male Sprague-Dawley rats. Agpat2 ASO treatment induced lipodystrophy and inflammation in WAT and the liver, which was associated with increased LPA content in both tissues, whereas PA content was unchanged. We found that a controlled-release mitochondrial protonophore (CRMP) prevented LPA accumulation and inflammation in WAT whereas an ASO against glycerol-3-phosphate acyltransferase, mitochondrial (Gpam) prevented LPA content and inflammation in the liver in Agpat2 ASO-treated rats. In addition, we show that overnutrition, due to high sucrose feeding, resulted in increased hepatic LPA content and increased activated macrophage content which were both abrogated with Gpam ASO treatment. Taken together, these data identify LPA as a key mediator of liver and WAT inflammation and lipodystrophy due to AGPAT2 deficiency as well as liver inflammation due to overnutrition and identify LPA as a potential therapeutic target to ameliorate these conditions.


Subject(s)
Fatty Liver , Lipodystrophy , Overnutrition , Male , Rats , Animals , Acyltransferases/metabolism , Glycerol , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Rats, Sprague-Dawley , Lipodystrophy/genetics , Adipose Tissue, White/metabolism , Phosphatidic Acids , Inflammation , Phosphates
12.
Genes (Basel) ; 14(11)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003015

ABSTRACT

During triacylglycerol synthesis, the acylglycerol-3-phosphate acyltransferase (AGPAT) family catalyzes the conversion of lysophosphatidic acid to phosphatidic acid and the acylation of sn-2 fatty acids. However, the catalytic activity of different AGPAT members is different. Therefore, this study aimed to investigate the mechanism through which different AGPATs affect the efficiency of TAG synthesis and fatty acid composition. The conservation of amino acid sequences and protein domains of the AGPAT family was analyzed, and the functions of AGPAT1, AGPAT3, and AGPAT4 genes in buffalo mammary epithelial cells (BMECs) were studied using RNA interference and gene overexpression. Prediction of the protein tertiary structure of the AGPAT family demonstrated that four conservative motifs (motif1, motif2, motif3, and motif6) formed a hydrophobic pocket in AGPAT proteins, except AGPAT6. According to cytological studies, AGPAT1, AGPAT3, and AGPAT4 were found to promote the synthesis and fatty acid compositions of triacylglycerol, especially UFA compositions of triacylglycerol, by regulating ACSL1, FASN, GPAM, DGAT2, and PPARG gene expression. This study provides new insights into the role of different AGPAT gene family members involved in TAG synthesis, and a reference for improving the fatty acid composition of milk.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase , Buffaloes , Animals , Buffaloes/genetics , Buffaloes/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , Milk/metabolism , Fatty Acids/genetics , Triglycerides
13.
Biomed Pharmacother ; 168: 115677, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37857252

ABSTRACT

Depression is often associated with fatigue/energy loss. However, we lack a detailed understanding of the factors explaining this association. In this study, we uncovered that depressed mice have a defect in fat absorption, resulting in weight loss and reduced circulating lipid levels. Si-Ni-San (SNS), a basic formula of traditional Chinese medicine (TCM) for the treatment of depression, was found to not only alleviate depression-like behaviors, but also reverse the weight loss and dietary fat absorption of depressed mice. We found that SNS improved body weight and circulating lipid levels of depressed mice by up-regulating proteins [such as FFA uptake protein (CD36), TAG synthesis proteins (GPAT3, MOGAT2, DGAT1 and DGAT2) and chylomicron packaging proteins (MTP and APOB)] in the fat absorption pathway. Furthermore, cell-based results conducted with LPS-stimulated mouse MODE-K and human Caco-2 cells support that SNS, as well as Sinensetin (SIN) and Nobiletin (NOB), the two active components of the formula, have a role in regulating lipid absorption. Mechanistic studies revealed that SNS reverses body weight and fat absorption defects of depressed mice in part through the NR1D1/BMAL1/DGAT2 axis. These findings advance our understanding of the crosstalk between depression and energy loss, highlight the importance of gut function in disease management, and provide a basis for the application of SNS in the clinical treatment of depression and related disorders.


Subject(s)
Depression , Dietary Fats , Mice , Humans , Animals , Disease Models, Animal , Caco-2 Cells , Depression/drug therapy , Body Weight , Weight Loss , 1-Acylglycerol-3-Phosphate O-Acyltransferase
14.
Metabolism ; 148: 155693, 2023 11.
Article in English | MEDLINE | ID: mdl-37741434

ABSTRACT

BACKGROUND & AIMS: Autophagy-related 14 (ATG14) is a key regulator of autophagy. ATG14 is also localized to lipid droplet; however, the function of ATG14 on lipid droplet remains unclear. In this study, we aimed to elucidate the role of ATG14 in lipid droplet homeostasis. METHODS: ATG14 loss-of-function and gain-of-function in lipid droplet metabolism were analyzed by fluorescence imaging in ATG14 knockdown or overexpression hepatocytes. Specific domains involved in the ATG14 targeting to lipid droplets were analyzed by deletion or site-specific mutagenesis. ATG14-interacting proteins were analyzed by co-immunoprecipitation. The effect of ATG14 on lipolysis was analyzed in human hepatocytes and mouse livers that were deficient in ATG14, comparative gene identification-58 (CGI-58), or both. RESULTS: Our data show that ATG14 is enriched on lipid droplets in hepatocytes. Mutagenesis analysis reveals that the Barkor/ATG14 autophagosome targeting sequence (BATS) domain of ATG14 is responsible for the ATG14 localization to lipid droplets. Co-immunoprecipitation analysis illustrates that ATG14 interacts with adipose triglyceride lipase (ATGL) and CGI-58. Moreover, ATG14 also enhances the interaction between ATGL and CGI-58. In vitro lipolysis analysis demonstrates that ATG14 deficiency remarkably decreases triglyceride hydrolysis. CONCLUSIONS: Our data suggest that ATG14 can directly enhance lipid droplet breakdown through interactions with ATGL and CGI-58.


Subject(s)
Lipase , Lipid Droplets , Mice , Animals , Humans , Lipase/metabolism , Lipid Droplets/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Lipolysis , Lipid Metabolism/genetics , Liver/metabolism , Homeostasis , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism
15.
J Biol Chem ; 299(7): 104882, 2023 07.
Article in English | MEDLINE | ID: mdl-37269945

ABSTRACT

Biosynthesis of the various lipid species that compose cellular membranes and lipid droplets depends on the activity of multiple enzymes functioning in coordinated pathways. The flux of intermediates through lipid biosynthetic pathways is regulated to respond to nutritional and environmental demands placed on the cell necessitating that there be flexibility in pathway activity and organization. This flexibility can in part be achieved through the organization of enzymes into metabolon supercomplexes. However, the composition and organization of such supercomplexes remain unclear. Here, we identified protein-protein interactions between acyltransferases Sct1, Gpt2, Slc1, Dga1, and the Δ9 acyl-CoA desaturase Ole1 in Saccharomyces cerevisiae. We further determined that a subset of these acyltransferases interact with each other independent of Ole1. We show that truncated versions of Dga1 lacking the carboxyl-terminal 20 amino acid residues are nonfunctional and unable to bind Ole1. Furthermore, charged-to-alanine scanning mutagenesis revealed that a cluster of charged residues near the carboxyl terminus was required for the interaction with Ole1. Mutation of these charged residues disrupted the interaction between Dga1 and Ole1 but allowed Dga1 to retain catalytic activity and to induce lipid droplet formation. These data support the formation of a complex of acyltransferases involved in lipid biosynthesis that interacts with Ole1, the sole acyl-CoA desaturase in S. cerevisiae, that can channel unsaturated acyl chains toward phospholipid or triacylglycerol synthesis. This desaturasome complex may provide the architecture that allows for the necessary flux of de novo-synthesized unsaturated acyl-CoA to phospholipid or triacylglycerol synthesis as demanded by cellular requirements.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Stearoyl-CoA Desaturase , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Acyltransferases/metabolism , Fatty Acid Desaturases/genetics , Phospholipids/genetics , Phospholipids/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Triglycerides/metabolism
16.
JCI Insight ; 8(10)2023 05 22.
Article in English | MEDLINE | ID: mdl-37212279

ABSTRACT

In eutherians, the placenta plays a critical role in the uptake, storage, and metabolism of lipids. These processes govern the availability of fatty acids to the developing fetus, where inadequate supply has been associated with substandard fetal growth. Whereas lipid droplets are essential for the storage of neutral lipids in the placenta and many other tissues, the processes that regulate placental lipid droplet lipolysis remain largely unknown. To assess the role of triglyceride lipases and their cofactors in determining placental lipid droplet and lipid accumulation, we assessed the role of patatin like phospholipase domain containing 2 (PNPLA2) and comparative gene identification-58 (CGI58) in lipid droplet dynamics in the human and mouse placenta. While both proteins are expressed in the placenta, the absence of CGI58, not PNPLA2, markedly increased placental lipid and lipid droplet accumulation. These changes were reversed upon restoration of CGI58 levels selectively in the CGI58-deficient mouse placenta. Using co-immunoprecipitation, we found that, in addition to PNPLA2, PNPLA9 interacts with CGI58. PNPLA9 was dispensable for lipolysis in the mouse placenta yet contributed to lipolysis in human placental trophoblasts. Our findings establish a crucial role for CGI58 in placental lipid droplet dynamics and, by extension, in nutrient supply to the developing fetus.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase , Acyltransferases , Lipase , Lipolysis , Placenta , Lipase/metabolism , Humans , Animals , Mice , Placenta/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Acyltransferases/metabolism , Trophoblasts , Female , Lipid Droplets
17.
Front Immunol ; 14: 1026669, 2023.
Article in English | MEDLINE | ID: mdl-36845084

ABSTRACT

Background: Liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer-related death worldwide. Hepatocellular carcinoma accounts for an estimated 90% of all liver cancers. Many enzymes of the GPAT/AGPAT family are required for the synthesis of triacylglycerol. Expression of AGPAT isoenzymes has been reported to be associated with an increased risk of tumorigenesis or development of aggressive phenotypes in a variety of cancers. However, whether members of the GPAT/AGPAT gene family also influence the pathophysiology of HCC is unknown. Methods: Hepatocellular carcinoma datasets were obtained from the TCGA and ICGC databases. Predictive models related to the GPAT/AGPAT gene family were constructed based on LASSO-Cox regression using the ICGC-LIRI dataset as an external validation cohort. Seven immune cell infiltration algorithms were used to analyze immune cell infiltration patterns in different risk groups. IHC, CCK-8, Transwell assay, and Western blotting were used for in vitro validation. Results: Compared with low-risk patients, high-risk patients had shorter survival and higher risk scores. Multivariate Cox regression analysis showed that risk score was a significant independent predictor of overall survival (OS) after adjustment for confounding clinical factors (p < 0.001). The established nomogram combined risk score and TNM staging to accurately predict survival at 1, 3, and 5 years in patients with HCC with AUC values of 0.807, 0.806, and 0.795, respectively. This risk score improved the reliability of the nomogram and guided clinical decision-making. In addition, we comprehensively analyzed immune cell infiltration (using seven algorithms), response to immune checkpoint blockade, clinical relevance, survival, mutations, mRNA expression-based stemness index, signaling pathways, and interacting proteins related to the three core genes of the prognostic model (AGPAT5, LCLAT1, and LPCAT1). We also performed preliminary validation of the differential expression, oncological phenotype, and potential downstream pathways of the three core genes by IHC, CCK-8, Transwell assay, and Western blotting. Conclusion: These results improve our understanding of the function of GPAT/AGPAT gene family members and provide a reference for prognostic biomarker research and individualized treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Prognosis , Reproducibility of Results , Sincalide , Tumor Microenvironment/genetics , Glycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics
18.
Pediatr Dermatol ; 40(5): 879-881, 2023.
Article in English | MEDLINE | ID: mdl-36709747

ABSTRACT

Chanarin-Dorfman syndrome (CDS) is a rare, autosomal recessive disorder of impaired triacylglycerol catabolism leading to cytoplasmic deposition of triglycerides in various cell types. We describe the case of an 8-month-old boy with cataracts, strabismus, motor delays, and an ichthyosiform rash since birth. Genetic testing revealed a pathogenic variant of the ABHD5 gene, suggestive of CDS, and further workup demonstrated hepatic steatosis and myopathy. His ichthyosis improved with initiation of a diet low in very long-chain fatty acids and medium-chain fatty acid supplementation.


Subject(s)
Cataract , Ichthyosiform Erythroderma, Congenital , Ichthyosis, Lamellar , Ichthyosis , Lipid Metabolism, Inborn Errors , Muscular Diseases , Male , Humans , Infant , Ichthyosiform Erythroderma, Congenital/diagnosis , Ichthyosiform Erythroderma, Congenital/genetics , Ichthyosis, Lamellar/diagnosis , Ichthyosis, Lamellar/genetics , Ichthyosis/diagnosis , Ichthyosis/genetics , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Muscular Diseases/pathology , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/pathology , Cataract/diagnosis , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics
19.
Cancer Biother Radiopharm ; 38(5): 336-346, 2023 Jun.
Article in English | MEDLINE | ID: mdl-32822232

ABSTRACT

Background: Lung adenocarcinoma (LAC) is a common malignancy worldwide. Emerging findings indicated that circular RNAs possess complex capacities of gene modulation in tumorigenesis and metastasis. Nevertheless, the role of circular RNA in LAC is still largely unknown. Materials and Methods: The level of circular RNA cMras (circ_cMras), alpha-beta hydrolase domain 5 (ABHD5), and adipose triglyceride lipase (ATGL) was determined by quantitative real-time polymerase chain reaction assay. Protein levels of ABHD5, ATGL, p53, p65, and phospho-p65 (p-p65) were examined by Western blot. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used to detect cell proliferation in vitro. Cell apoptosis was estimated using flow cytometry. Transwell assay was used to measure cell migration and invasion in A549 and HCC827 cells. Finally, the role of circ_cMras was explored using xenograft tumor model. Results: Low levels of circ_cMras, ABHD5, and ATGL were observed in LAC tissues and cells. Upregulation of circ_cMras could hamper tumor aggression in vitro and in vivo, exhibiting as the inhibition of cell proliferation, migration, invasion, and promotion of cell apoptosis, as well as the inhibition on tumor growth in vivo. Moreover, ABHD5 deletion could overturn the effects of circ_cMras overexpression on cell behaviors in LAC cells. Furthermore, the inhibiting effects of ABHD5 on cell aggression were reversed by ATGL deficiency in vitro. Mechanically, circ_cMras/ABHD5/ATGL axis exerted its role through NF-κB signaling pathway in LAC cells. Conclusion: Circ_cMras exerted its function through ABHD5/ATGL axis using NF-κB signaling pathway in LAC, which might provide a novel insight for the diagnosis and prognosis of LAC.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , NF-kappa B/metabolism , Hydrolases/metabolism , Cell Line, Tumor , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Signal Transduction , Lung Neoplasms/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Apoptosis/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism
20.
Diabetes ; 72(1): 71-84, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35771980

ABSTRACT

Acquired generalized lipodystrophy (AGL) is a rare condition characterized by massive loss of adipose tissue through the body, causing severe metabolic complications. Autoimmune destruction of adipocytes is strongly suspected based on the frequent association of AGL with autoimmune disorders. In 2018, autoantibodies against perilipin 1 (PLIN1) were identified in three patients with autoimmune-associated AGL. However, the pathogenic mechanism and clinical impact of anti-PLIN1 remain unsolved. The prevalence of anti-PLIN1 autoantibodies in an AGL cohort of 40 patients was 50% (20 of 40). Among positive patients, 10 had the autoimmune variety and 10 had panniculitis-associated AGL. The IgG isotype was predominant, although some IgM antibodies were detected. Epitope-mapping studies did not identify a single, major epitope. Instead, autoantibodies typically bound to several different peptides, among which the central (233-405) domain was detected in all antibody-positive patients, for both IgG and IgM autoantibodies. In-depth epitope mapping indicated that anti-PLIN1 autoantibodies predominantly recognize the αß-hydrolase domain containing 5 (ABHD5) binding site (383-405). Autoantibodies dose-dependently blocked the binding of PLIN1 to ABHD5 and caused a dislocation of ABHD5 toward the cytosol, leading to an increase in lipolysis and lipase activities. Finally, anti-PLIN1 titers significantly correlated with the amount of fat loss, metabolic control impairment, and severity of liver injury. Our data strongly support that anti-PLIN1 autoantibodies are a diagnostic biomarker and a cause of lipodystrophy in patients with AGL.


Subject(s)
Lipodystrophy, Congenital Generalized , Lipodystrophy , Humans , Perilipin-1/metabolism , Lipodystrophy, Congenital Generalized/complications , Autoantibodies/metabolism , Lipodystrophy/metabolism , Immunoglobulin G/metabolism , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...