Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 556
1.
Glycobiology ; 34(6)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38690785

Cellulose is an abundant component of plant cell wall matrices, and this para-crystalline polysaccharide is synthesized at the plasma membrane by motile Cellulose Synthase Complexes (CSCs). However, the factors that control CSC activity and motility are not fully resolved. In a targeted chemical screen, we identified the alkylated nojirimycin analog N-Dodecyl Deoxynojirimycin (ND-DNJ) as a small molecule that severely impacts Arabidopsis seedling growth. Previous work suggests that ND-DNJ-related compounds inhibit the biosynthesis of glucosylceramides (GlcCers), a class of glycosphingolipid associated with plant membranes. Our work uncovered major changes in the sphingolipidome of plants treated with ND-DNJ, including reductions in GlcCer abundance and altered acyl chain length distributions. Crystalline cellulose content was also reduced in ND-DNJ-treated plants as well as plants treated with the known GlcCer biosynthesis inhibitor N-[2-hydroxy-1-(4-morpholinylmethyl)-2-phenyl ethyl]-decanamide (PDMP) or plants containing a genetic disruption in GLUCOSYLCERAMIDE SYNTHASE (GCS), the enzyme responsible for sphingolipid glucosylation that results in GlcCer synthesis. Live-cell imaging revealed that CSC speed distributions were reduced upon treatment with ND-DNJ or PDMP, further suggesting an important relationship between glycosylated sphingolipid composition and CSC motility across the plasma membrane. These results indicate that multiple interventions compromising GlcCer biosynthesis disrupt cellulose deposition and CSC motility, suggesting that GlcCers regulate cellulose biosynthesis in plants.


Arabidopsis , Cellulose , Glucosylceramides , Glucosyltransferases , Arabidopsis/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Cellulose/metabolism , Cellulose/biosynthesis , Glucosylceramides/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/analogs & derivatives , Cell Wall/metabolism
2.
Biomolecules ; 14(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38785944

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mainly targets the upper respiratory tract. It gains entry by interacting with the host cell receptor angiotensin-converting enzyme 2 (ACE2) via its heavily glycosylated spike glycoprotein. SARS-CoV-2 can also affect the gastrointestinal tract. Given the significant role of glycosylation in the life cycle of proteins and the multisystem target of SARS-CoV-2, the role of glycosylation in the interaction of S1 with ACE2 in Caco-2 cells was investigated after modulation of their glycosylation patterns using N-butyldeoxynojirimycin (NB-DNJ) and 1-deoxymannojirimycin (dMM), in addition to mutant CHO cells harboring mutations at different stages of glycosylation. The data show a substantial reduction in the interactions between the altered glycosylation forms of S1 and ACE2 in the presence of NB-DNJ, while varied outcomes resulted from dMM treatment. These results highlight the promising effects of NB-DNJ and its potential use as an off-label drug to treat SARS-CoV-2 infections.


Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Caco-2 Cells , Angiotensin-Converting Enzyme 2/metabolism , Glycosylation , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/drug effects , Animals , CHO Cells , Cricetulus , Protein Transport , COVID-19/metabolism , COVID-19/virology , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/analogs & derivatives , Protein Binding , Intestinal Mucosa/metabolism , Intestinal Mucosa/virology
3.
Cells ; 13(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38667321

BACKGROUND: Fabry disease is a progressive, X chromosome-linked lysosomal storage disorder with multiple organ dysfunction. Due to the absence or reduced activity of alpha-galactosidase A (AGAL), glycosphingolipids, primarily globotriaosyl-ceramide (Gb3), concentrate in cells. In heterozygous women, symptomatology is heterogenous and currently routinely used fluorometry-based assays measuring mean activity mostly fail to uncover AGAL dysfunction. The aim was the development of a flow cytometry assay to measure AGAL activity in individual cells. METHODS: Conventional and multispectral imaging flow cytometry was used to detect AGAL activity. Specificity was validated using the GLA knockout (KO) Jurkat cell line and AGAL inhibitor 1-deoxygalactonojirimycin. The GLA KO cell line was generated via CRISPR-Cas9-based transfection, validated with exome sequencing, gene expression and substrate accumulation. RESULTS: Flow cytometric detection of specific AGAL activity is feasible with fluorescently labelled Gb3. In the case of Jurkat cells, a substrate concentration of 2.83 nmol/mL and 6 h of incubation are required. Quenching of the aspecific exofacial binding of Gb3 with 20% trypan blue solution is necessary for the specific detection of lysosomal substrate accumulation. CONCLUSION: A flow cytometry-based assay was developed for the quantitative detection of AGAL activity at the single-cell level, which may contribute to the diagnosis of Fabry patients.


Flow Cytometry , alpha-Galactosidase , Humans , Flow Cytometry/methods , Jurkat Cells , alpha-Galactosidase/metabolism , alpha-Galactosidase/genetics , Fabry Disease/metabolism , Fabry Disease/enzymology , Fabry Disease/diagnosis , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/analogs & derivatives
4.
BMC Vet Res ; 20(1): 133, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570815

BACKGROUND: Obesity is a serious disease with an alarmingly high incidence that can lead to other complications in both humans and dogs. Similar to humans, obesity can cause metabolic diseases such as diabetes in dogs. Natural products may be the preferred intervention for metabolic diseases such as obesity. The compound 1-deoxynojirimycin, present in Morus leaves and other sources has antiobesity effects. The possible antiobesity effect of 1-deoxynojirimycin containing Morus alba leaf-based food was studied in healthy companion dogs (n = 46) visiting the veterinary clinic without a history of diseases. Body weight, body condition score (BCS), blood-related parameters, and other vital parameters of the dogs were studied. Whole-transcriptome of blood and gut microbiome analysis was also carried out to investigate the possible mechanisms of action and role of changes in the gut microbiome due to treatment. RESULTS: After 90 days of treatment, a significant antiobesity effect of the treatment food was observed through the reduction of weight, BCS, and blood-related parameters. A whole-transcriptome study revealed differentially expressed target genes important in obesity and diabetes-related pathways such as MLXIPL, CREB3L1, EGR1, ACTA2, SERPINE1, NOTCH3, and CXCL8. Gut microbiome analysis also revealed a significant difference in alpha and beta-diversity parameters in the treatment group. Similarly, the microbiota known for their health-promoting effects such as Lactobacillus ruminis, and Weissella hellenica were abundant (increased) in the treatment group. The predicted functional pathways related to obesity were also differentially abundant between groups. CONCLUSIONS: 1-Deoxynojirimycin-containing treatment food have been shown to significantly improve obesity. The identified genes, pathways, and gut microbiome-related results may be pursued in further studies to develop 1-deoxynojirimycin-based products as candidates against obesity.


Diabetes Mellitus , Dog Diseases , Gastrointestinal Microbiome , Metabolic Diseases , Morus , Humans , Animals , Dogs , 1-Deoxynojirimycin/pharmacology , Plant Extracts/pharmacology , Obesity/drug therapy , Obesity/veterinary , Diabetes Mellitus/veterinary , Metabolic Diseases/veterinary , Plant Leaves
5.
J Med Chem ; 67(7): 5945-5956, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38504504

Multivalent glycosidase inhibitors based on 1-deoxynojirimycin derivatives against α-glucosidases have been rapidly developed. Nonetheless, the mechanism based on self-assembled multivalent glucosidase inhibitors in living systems needs to be further studied. It remains to be determined whether the self-assembly possesses sufficient stability to endure transit through the small intestine and subsequently bind to the glycosidases located therein. In this paper, two amphiphilic compounds, 1-deoxynojirimycin and α-peptoid conjugates (LP-4DNJ-3C and LP-4DNJ-6C), were designed. Their self-assembling behaviors, multivalent α-glucosidase inhibition effect, and fluorescence imaging on living organs were studied. LP-4DNJ-6C exhibited better multivalent α-glucosidase inhibition activities in vitro. Moreover, the self-assembly of LP-4DNJ-6C could effectively form a complex with Nile red. The complex showed fluorescence quenching effect upon binding with α-glucosidases and exhibited potent fluorescence imaging in the small intestine. This result suggests that a multivalent hypoglycemic effect achieved through self-assembly in the intestine is a viable approach, enabling the rational design of multivalent hypoglycemic drugs.


1-Deoxynojirimycin , Hypoglycemic Agents , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/metabolism , 1-Deoxynojirimycin/pharmacology , alpha-Glucosidases/metabolism , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases , Glycoside Hydrolase Inhibitors/pharmacology
6.
J Ethnopharmacol ; 319(Pt 3): 117307, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-37939911

ETHNOPHARMACOLOGICAL RELEVANCE: Phytochemicals have unique advantages in the treatment of diabetes due to their multi-target activity and low toxicity. Mulberry leaves, a traditional Chinese herbal medicine, have been used in the prevention and treatment of diabetes for centuries. The main active ingredients in mulberry leaves with regards to the hypoglycemic effect are 1-deoxynojirimycin, flavonoids, and polysaccharides. However, the combined hypoglycemic effects and mechanisms of mulberry leaf multi-components remain unclear. AIM OF THE STUDY: This study explored the anti-diabetic effects of mulberry leaf multi-components (MMC) and the role of the PI-3K/Akt insulin signalling pathway in improving insulin resistance. MATERIALS AND METHODS: The main chemical components of MMC were analyzed using the phenol-sulfuric acid method, aluminum nitrate-sodium nitrite method, and HPLC-ultraviolet/fluorescence detection method. The T2DM rat model was created via feeding a high-fat diet and peritoneal injection of streptozotocin. T2DM rats were divided into four groups: model, model plus metformin, model plus low-dose, and model plus high-dose MMC groups (100 and 200 mg/kg body weight/day, respectively), and plus normal group for a total of five groups. MMC was administered by oral gavage for six weeks. Fasting blood glucose and serum lipid profiles were measured using a glucometer and an automatic biochemistry analyzer, respectively. Serum insulin and adipocytokine levels were analyzed by ELISA. Hepatic glucose metabolizing enzyme activity was evaluated by ELISA and the double antibody sandwich method. Expression of PI-3K/Akt signalling pathway proteins was analyzed by RT-PCR and Western blotting. RESULTS: Extracted 1-deoxynojirimycin, flavonoid, and polysaccharide purity was 70.40%, 52.34%, and 32.60%, respectively. These components were then mixed at a ratio of 1:6:8 to form MMC. MMC significantly reduced serum glucose, insulin, and lipid levels. In diabetic rats, MMC enhanced insulin sensitivity and alleviated inflammatory and oxidative damage by lowing adipocytokine levels and increasing anti-oxidative enzyme activity. Insulin resistance was also mitigated. MMC regulated the activity of key downstream enzymes of hepatic glucose metabolism via activating the expression of PI-3K, Akt, PDX-1, and GLUT4 at the mRNA and protein levels, thereby correcting hepatic glucolipid metabolism disorders and exerting a hypoglycemic effect. CONCLUSION: MMC ameliorated hepatic glucolipid metabolism disorders and improved insulin resistance in T2DM rats by activating the PI-3K/Akt signaling pathway. These results highlight the multi-component, multi-target, and combined effects of MMC, and suggest it may be further developed as a hypoglycemic drug.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Morus , Rats , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Insulin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , 1-Deoxynojirimycin/pharmacology , Glucose/metabolism , Signal Transduction , Polysaccharides/pharmacology , Plant Leaves/metabolism , Adipokines , Lipids/pharmacology
7.
PLoS One ; 18(11): e0294437, 2023.
Article En | MEDLINE | ID: mdl-38019733

Site-directed Enzyme Enhancement Therapy (SEE-Tx®) technology is a disease-agnostic drug discovery tool that can be applied to any protein target of interest with a known three-dimensional structure. We used this proprietary technology to identify and characterize the therapeutic potential of structurally targeted allosteric regulators (STARs) of the lysosomal hydrolase ß-galactosidase (ß-Gal), which is deficient due to gene mutations in galactosidase beta 1 (GLB1)-related lysosomal storage disorders (LSDs). The biochemical HaloTag cleavage assay was used to monitor the delivery of wildtype (WT) ß-Gal and four disease-related ß-Gal variants (p.Ile51Thr, p.Arg59His, p.Arg201Cys and p.Trp273Leu) in the presence and absence of two identified STAR compounds. In addition, the ability of STARs to reduce toxic substrate was assessed in a canine fibroblast cell model. In contrast to the competitive pharmacological chaperone N-nonyl-deoxygalactonojirimycin (NN-DGJ), the two identified STAR compounds stabilized and substantially enhanced the lysosomal transport of wildtype enzyme and disease-causing ß-Gal variants. In addition, the two STAR compounds reduced the intracellular accumulation of exogenous GM1 ganglioside, an effect not observed with the competitive chaperone NN-DGJ. This proof-of-concept study demonstrates that the SEE-Tx® platform is a rapid and cost-effective drug discovery tool for identifying STARs for the treatment of LSDs. In addition, the HaloTag assay developed in our lab has proved valuable in investigating the effect of STARs in promoting enzyme transport and lysosomal delivery. Automatization and upscaling of this assay would be beneficial for screening STARs as part of the drug discovery process.


Gangliosidosis, GM1 , Lysosomal Storage Diseases , Animals , Dogs , Gangliosidosis, GM1/drug therapy , Gangliosidosis, GM1/genetics , Gangliosidosis, GM1/metabolism , 1-Deoxynojirimycin/pharmacology , beta-Galactosidase/metabolism
8.
J Clin Invest ; 133(14)2023 07 17.
Article En | MEDLINE | ID: mdl-37200096

Hypertrophic cardiomyopathy (HCM) is the most prominent cause of sudden cardiac death in young people. Due to heterogeneity in clinical manifestations, conventional HCM drugs have limitations for mitochondrial hypertrophic cardiomyopathy. Discovering more effective compounds would be of substantial benefit for further elucidating the pathogenic mechanisms of HCM and treating patients with this condition. We previously reported the MT-RNR2 variant associated with HCM that results in mitochondrial dysfunction. Here, we screened a mitochondria-associated compound library by quantifying the mitochondrial membrane potential of HCM cybrids and the survival rate of HCM-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) in galactose media. 1-Deoxynojirimycin (DNJ) was identified to rescue mitochondrial function by targeting optic atrophy protein 1 (OPA1) to promote its oligomerization, leading to reconstruction of the mitochondrial cristae. DNJ treatment further recovered the physiological properties of HCM iPSC-CMs by improving Ca2+ homeostasis and electrophysiological properties. An angiotensin II-induced cardiac hypertrophy mouse model further verified the efficacy of DNJ in promoting cardiac mitochondrial function and alleviating cardiac hypertrophy in vivo. These results demonstrated that DNJ could be a potential mitochondrial rescue agent for mitochondrial hypertrophic cardiomyopathy. Our findings will help elucidate the mechanism of HCM and provide a potential therapeutic strategy.


1-Deoxynojirimycin , Cardiomyopathy, Hypertrophic , Animals , Mice , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/metabolism , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Cardiomegaly/drug therapy , Cardiomegaly/genetics , Cardiomegaly/metabolism
9.
Drugs ; 83(8): 739-745, 2023 Jun.
Article En | MEDLINE | ID: mdl-37184753

Cipaglucosidase alfa (Pombiliti™) is a recombinant human acid α-glucosidase (GAA) product being developed by Amicus Therapeutics along with the enzyme stabilizer miglustat as a two-component therapy for Pompe disease. Pompe disease is a rare, inherited lysosomal disease caused by a deficiency of the enzyme GAA, which leads to accumulation of glycogen in various tissues. On 27 March 2023, cipaglucosidase alfa was approved in the EU as a long-term enzyme replacement therapy (ERT) used in combination with miglustat for the treatment of adults with late-onset Pompe disease. This article summarizes the milestones in the development of cipaglucosidase alfa leading to this first approval.


Glycogen Storage Disease Type II , Adult , Humans , Glycogen Storage Disease Type II/drug therapy , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Enzyme Replacement Therapy , Glycogen/therapeutic use
10.
J Med Chem ; 66(4): 2744-2760, 2023 02 23.
Article En | MEDLINE | ID: mdl-36762932

Enveloped viruses depend on the host endoplasmic reticulum (ER) quality control (QC) machinery for proper glycoprotein folding. The endoplasmic reticulum quality control (ERQC) enzyme α-glucosidase I (α-GluI) is an attractive target for developing broad-spectrum antivirals. We synthesized 28 inhibitors designed to interact with all four subsites of the α-GluI active site. These inhibitors are derivatives of the iminosugars 1-deoxynojirimycin (1-DNJ) and valiolamine. Crystal structures of ER α-GluI bound to 25 1-DNJ and three valiolamine derivatives revealed the basis for inhibitory potency. We established the structure-activity relationship (SAR) and used the Site Identification by Ligand Competitive Saturation (SILCS) method to develop a model for predicting α-GluI inhibition. We screened the compounds against SARS-CoV-2 in vitro to identify those with greater antiviral activity than the benchmark α-glucosidase inhibitor UV-4. These host-targeting compounds are candidates for investigation in animal models of SARS-CoV-2 and for testing against other viruses that rely on ERQC for correct glycoprotein folding.


1-Deoxynojirimycin , Antiviral Agents , COVID-19 , Glycoside Hydrolase Inhibitors , alpha-Glucosidases , Animals , 1-Deoxynojirimycin/chemistry , 1-Deoxynojirimycin/pharmacology , alpha-Glucosidases/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Endoplasmic Reticulum/enzymology , Glycoproteins , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , SARS-CoV-2/metabolism , Quantitative Structure-Activity Relationship
11.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article En | MEDLINE | ID: mdl-36674610

Fabry disease is a lysosomal storage disease caused by mutations in the GLA gene that encodes alpha-galactosidase (AGAL). The disease causes abnormal globotriaosylceramide (Gb3) storage in the lysosomes. Variants responsible for the genotypic spectrum of Fabry disease include mutations that abolish enzymatic activity and those that cause protein instability. The latter can be successfully treated with small molecules that either bind and stabilize AGAL or indirectly improve its cellular activity. This paper describes the first attempt to reposition curcumin, a nutraceutical, to treat Fabry disease. We tested the efficacy of curcumin in a cell model and found an improvement in AGAL activity for 80% of the tested mutant genotypes (four out of five tested). The fold-increase was dependent on the mutant and ranged from 1.4 to 2.2. We produced evidence that supports a co-chaperone role for curcumin when administered with AGAL pharmacological chaperones (1-deoxygalactonojirimycin and galactose). The combined treatment with curcumin and either pharmacological chaperone was beneficial for four out of five tested mutants and showed fold-increases ranging from 1.1 to 2.3 for DGJ and from 1.1 to 2.8 for galactose. Finally, we tested a long-term treatment on one mutant (L300F) and detected an improvement in Gb3 clearance and lysosomal markers (LAMP-1 and GAA). Altogether, our findings confirmed the necessity of personalized therapies for Fabry patients and paved the way to further studies and trials of treatments for Fabry disease.


Curcumin , Fabry Disease , Humans , Fabry Disease/drug therapy , Fabry Disease/genetics , alpha-Galactosidase/metabolism , Curcumin/pharmacology , Curcumin/therapeutic use , Curcumin/metabolism , Galactose/metabolism , Mutation , Lysosomes/metabolism , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use
12.
J Pharmacokinet Pharmacodyn ; 50(1): 63-74, 2023 02.
Article En | MEDLINE | ID: mdl-36376611

Recently, a new mechanism of drug-drug interaction (DDI) was reported between agalsidase, a therapeutic protein, and migalastat, a small molecule, both of which are treatment options of Fabry disease. Migalastat is a pharmacological chaperone that stabilizes the native form of both endogenous and exogenous agalsidase. In Fabry patients co-administrated with agalsidase and migalastat, the increase in active agalsidase exposure is considered a pharmacokinetic effect of agalsidase infusion but a pharmacodynamic effect of migalastat administration, which makes this new DDI mechanism even more interesting. To quantitatively characterize the interaction between agalsidase and migalastat in human, a pharmacometric DDI model was developed using literature reported concentration-time data. The final model includes three components: a 1-compartment linear model component for migalastat; a 2-compartment linear model component for agalsidase; and a DDI component where the agalsidase-migalastat complex is formed via second order association constant kon, dissociated with first order dissociation constant koff, and distributed/eliminated with same rates as agalsidase alone, albeit the complex (i.e., bound agalsidase) has higher enzyme activity compared to free agalsidase. The final model adequately captured several key features of the unique interaction between agalsidase and migalastat, and successfully characterized the kinetics of migalastat as well as the kinetics and activities of agalsidase when both drugs were used alone or in combination following different doses. Most parameters were reasonably estimated with good precision. Because the model includes mechanistic basis of therapeutic protein and small molecule pharmacological chaperone interaction, it can potentially serve as a foundational work for DDIs with similar mechanism.


1-Deoxynojirimycin , alpha-Galactosidase , Humans , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism , Mutation , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Drug Interactions
13.
Molecules ; 27(21)2022 Nov 04.
Article En | MEDLINE | ID: mdl-36364410

Chalcone-1-deoxynojirimycin heterozygote (DC-5), a novel compound which was designed and synthesized in our laboratory for diabetes treatment, showed an extremely strong in vitro inhibitory activity on α-glucosidase in our previous studies. In the current research, its potential in vivo anti-diabetic effects were further investigated by integration detection and the analysis of blood glucose concentration, blood biochemical parameters, tissue section and gut microbiota of the diabetic rats. The results indicated that oral administration of DC-5 significantly reduced the fasting blood glucose and postprandial blood glucose, both in diabetic and normal rats; meanwhile, it alleviated the adverse symptoms of elevated blood lipid level and lipid metabolism disorder in diabetic rats. Furthermore, DC-5 effectively decreased the organ coefficient and alleviated the pathological changes of the liver, kidney and small intestine of the diabetic rats at the same time. Moreover, the results of 16S rDNA gene sequencing analysis suggested that DC-5 significantly increased the ratio of Firmicutes to Bacteroidetes and improved the disorder of gut microbiota in diabetic rats. In conclusion, DC-5 displayed a good therapeutic effect on the diabetic rats, and therefore had a good application prospect in hypoglycemic drugs and foods.


Chalcone , Chalcones , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Rats , Animals , Blood Glucose , Diabetes Mellitus, Experimental/pathology , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Chalcones/pharmacology , Chalcones/therapeutic use , Chalcone/pharmacology , Heterozygote , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy
14.
Nutrients ; 14(21)2022 Oct 28.
Article En | MEDLINE | ID: mdl-36364802

Pre-diabetic or early-stage type 2 diabetes patients may develop an adverse diabetic progression, leading to several complications and increasing hospitalization rates. Mulberry leaves, which contain 1-deoxynojirimycin (DNJ), have been used as a complementary medicine for diabetes prevention and treatment. Our recent study demonstrated that mulberry leaf powder with 12 mg of DNJ improves postprandial hyperglycemia, fasting plasma glucose, and glycated hemoglobin. However, the detailed mechanisms are still unknown. This study investigates the effect of long-term (12-week) supplementation of mulberry leaves in obese people with prediabetes and patients with early-stage type 2 diabetes. Participants' blood was collected before and after supplementation. The protein profile of the plasma was examined by proteomics. In addition, the mitochondrial function was evaluated by energetic and homeostatic markers using immunoelectron microscopy. The proteomics results showed that, from a total of 1291 proteins, 32 proteins were related to diabetes pathogenesis. Retinol-binding protein 4 and haptoglobin protein were downregulated, which are associated with insulin resistance and inflammation, respectively. For mitochondrial function, the haloacid dehalogenase-like hydrolase domain-containing protein 3 (HDHD-3) and dynamin-related protein 1 (Drp-1) displayed a significant increment in the after treatment group. In summary, administration of mulberry leaf powder extract in prediabetes and the early stage of diabetes can alleviate insulin resistance and inflammation and promote mitochondrial function in terms of energy production and fission.


Diabetes Mellitus, Type 2 , Insulin Resistance , Morus , Prediabetic State , Humans , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , 1-Deoxynojirimycin/metabolism , Diabetes Mellitus, Type 2/metabolism , Haptoglobins/metabolism , Inflammation/metabolism , Plant Extracts/metabolism , Plant Leaves/metabolism , Powders , Prediabetic State/metabolism
15.
Biomed Pharmacother ; 155: 113648, 2022 Nov.
Article En | MEDLINE | ID: mdl-36108388

Cardiac dysfunction caused by sepsis is the predominant reason for death in patients with sepsis. However, the effective drugs for its prevention and the molecular mechanisms remain elusive. 1-Deoxynojirimycin (DNJ), a natural iminopyranose, exhibits various biological properties, such as hypoglycemic, antitumor, antiviral, and anti-inflammatory activities. However, whether DNJ can mediate biological activity resistance in sepsis-induced myocardial injury and the underlying mechanisms are unclear. Janus kinase and signal transducer and activator of transcription (JAK/STAT) signaling is an important pathway for the signal transduction of several key cytokines in the pathogenesis of sepsis, which can transcribe and modulate the host immune response. This study was conducted to confirm whether DNJ mediates oxidative stress, apoptosis, and inflammation in cardiomyocytes, thereby alleviating myocardial injury in sepsis via the JAK2/STAT6 signaling pathway. Septic cardiomyopathy was induced in mice using lipopolysaccharide (LPS), and they were then treated with DNJ. The results showed that DNJ markedly improved sepsis-induced cardiac dysfunction, attenuated reactive oxygen species generation, reduced cardiomyocyte apoptosis, and mitigated inflammation. Mechanistically, increased JAK2/STAT6 phosphorylation was observed in the mouse sepsis models, which decreased significantly after DNJ oral treatment. To further confirm whether DNJ mediates the JAK2/STAT6 pathway, the selective inhibitor fedratinib was used to block the JAK2 signaling pathway in vitro, which enhanced the protective effects of DNJ against the sepsis-induced cardiac damage. Collectively, these findings suggest that DNJ attenuates sepsis-induced myocardial injury by decreasing myocardial oxidative damage, apoptosis, and inflammation via the regulation of the JAK2/STAT6 signaling pathway.


Cardiomyopathies , Heart Diseases , Sepsis , Mice , Animals , 1-Deoxynojirimycin/pharmacology , Lipopolysaccharides/pharmacology , Reactive Oxygen Species , Janus Kinase 2/metabolism , Signal Transduction , Apoptosis , Inflammation/drug therapy , Oxidative Stress , Janus Kinases/metabolism , Sepsis/complications , Sepsis/drug therapy , Cytokines/metabolism , Hypoglycemic Agents/pharmacology , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Heart Diseases/drug therapy , Antiviral Agents/pharmacology
16.
Molecules ; 27(15)2022 Jul 26.
Article En | MEDLINE | ID: mdl-35897947

Bambusurils, BU[4] and BU[6], were used for the first time as multivalent scaffolds to link glycosidases inhibitors derived from 1-deoxynojirimycin (DNJ). Two linear DNJ ligands having six or nine carbon alkyl azido linkers or a trivalent DNJ dendron were grafted onto octapropargylated BU[4] and dodecapropargylated BU[6] using copper-catalyzed cycloaddition (CuAAC) to yield corresponding neoglycobambus[4] and neoglycobambus[6]urils bearing 8 to 24 iminosugars. The inhibition potencies of neoglycoBU[4], neoglycoBU[6] and neoglycoBU[6] caging anions were evaluated against Jack Bean α-mannosidase and compared to monovalent DNJ derivatives. Strong affinity enhancements per inhibitory head were obtained for the clusters holding trivalent dendrons with inhibitory constants in the nanomolar range (Ki = 24 nM for BU[4] with 24 DNJ units). Interestingly, the anion (bromide or iodide) encapsulated inside the cavity of BU[6] does not modify the inhibition potency of neoglycoBU[6], opening the way to water-soluble glycosidase-directed anion caging agents that may find applications in important fields such as bio(in)organic chemistry or oncology.


Imino Sugars , 1-Deoxynojirimycin/pharmacology , Anions , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/metabolism , Imino Sugars/pharmacology , Ion Transport
17.
Org Biomol Chem ; 20(36): 7250-7260, 2022 09 21.
Article En | MEDLINE | ID: mdl-35838176

L-ido-Deoxynojirimycin (L-ido-DNJ) itself showed no affinity for human lysosomal acid α-glucosidase (GAA), whereas 5-C-methyl-L-ido-DNJ showed a strong affinity for GAA, comparable to the glucose analog DNJ, with a Ki value of 0.060 µM. This excellent affinity for GAA and enzyme stabilization was observed only when methyl and ethyl groups were introduced. Docking simulation analysis revealed that the alkyl chains of 5-C-alkyl-L-ido-DNJs were stored in three different pockets, depending on their length, thereby the molecular orientation was changed. Comparison of the binding poses of DNJ and 5-C-methyl-L-ido-DNJ showed that they formed a common ionic interaction with Asp404, Asp518, and Asp616, but both the binding orientation and the distance between the ligand and each amino acid residue were different. 5-C-Methyl-L-ido-DNJ dose-dependently increased intracellular GAA activity in Pompe patient fibroblasts with the M519V mutation and also promoted enzyme transport to lysosomes. This study provides the first example of a strategy to design high-affinity ligands by introducing alkyl branches into rare sugars and L-sugar-type iminosugars to change the orientation of binding.


1-Deoxynojirimycin , Glycoside Hydrolase Inhibitors , Imino Sugars , alpha-Glucosidases , 1-Deoxynojirimycin/chemistry , 1-Deoxynojirimycin/pharmacology , Amino Acids , Catalytic Domain , Glucose/analogs & derivatives , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Imino Sugars/chemistry , Imino Sugars/pharmacology , Ligands , Protein Binding , alpha-Glucosidases/chemistry
18.
Int J Mol Sci ; 23(9)2022 May 04.
Article En | MEDLINE | ID: mdl-35563496

Fabry disease is caused by a deficiency of lysosomal alpha galactosidase and has a very large genotypic and phenotypic spectrum. Some patients who carry hypomorphic mutations can benefit from oral therapy with a pharmacological chaperone. The drug requires a very precise regimen because it is a reversible inhibitor of alpha-galactosidase. We looked for molecules that can potentiate this pharmacological chaperone, among drugs that have already been approved for other diseases. We tested candidate molecules in fibroblasts derived from a patient carrying a large deletion in the gene GLA, which were stably transfected with a plasmid expressing hypomorphic mutants. In our cell model, three drugs were able to potentiate the action of the pharmacological chaperone. We focused our attention on one of them, acetylsalicylic acid. We expect that acetylsalicylic acid can be used in synergy with the Fabry disease pharmacological chaperone and prolong its stabilizing effect on alpha-galactosidase.


Fabry Disease , alpha-Galactosidase , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , Aspirin/pharmacology , Aspirin/therapeutic use , Drug Repositioning , Fabry Disease/drug therapy , Fabry Disease/genetics , Humans , Lysosomes , Molecular Chaperones/genetics , Mutation , alpha-Galactosidase/genetics , alpha-Galactosidase/therapeutic use
19.
Planta ; 255(6): 121, 2022 May 10.
Article En | MEDLINE | ID: mdl-35538157

MAIN CONCLUSION: The novel C-methyltransferase, MaMT1, could catalyze the conversion of piperidine to 2-methylpiperidine, which may be involved in the methylation step of DNJ biosynthesis in mulberry leaves. Mulberry (Morus alba L.) is a worldwide crop with medicinal, feeding and nutritional value, and 1-deoxynojirimycin ((2R, 3R, 4R, 5S)-2-hydroxymethyl-3, 4, 5-trihydroxypiperidine, DNJ) alkaloid, a potent α-glucosidase inhibitor, is its main active ingredient. Our previous researches clarified the biosynthetic pathway of DNJ from lysine to Δ1-piperideine, but its downstream pathway is unclear. Herein, eight differential methyltransferases (MTs) genes were screened from transcriptome profiles of mulberry leaves with significant differences in DNJ content (P < 0.01). Subsequently, MaMT1 (OM140666) and MaMT2 (OM140667) were hypothesized as candidate genes related to DNJ biosynthesis by correlation analysis of genes expression levels and DNJ content of mulberry leaves at different dates. Functional characterization of MaMT1 and MaMT2 were performed by cloning, prokaryotic expression and enzymatic reaction in vitro, and it showed that MaMT1 protein could catalyze the conversion of piperidine to 2-methylpiperidine. Moreover, molecular docking confirmed the interaction of MaMT1 protein with piperidine and S-adenosyl-L-methionine (SAM), indicating that MaMT1 had C-methyltransferase activity, while MaMT2 did not. The above results suggested that MaMT1 may be involved in the methylation step of DNJ alkaloid biosynthesis in mulberry leaves, which is a breakthrough in the analysis of DNJ alkaloid biosynthetic pathway. It is worth mentioning that the novel MaMT1, annotated as serine hydroxymethyltransferase, could rely on SAM to perform C-methyltransferase function. Therefore, our findings contribute new insights into the research of DNJ alkaloid biosynthesis and C-methyltransferase family.


Alkaloids , Morus , 1-Deoxynojirimycin/analysis , 1-Deoxynojirimycin/metabolism , 1-Deoxynojirimycin/pharmacology , Alkaloids/metabolism , Cloning, Molecular , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Molecular Docking Simulation , Morus/genetics , Morus/metabolism , Plant Leaves/metabolism , Transcriptome
20.
Antiviral Res ; 199: 105269, 2022 03.
Article En | MEDLINE | ID: mdl-35227758

Dendritic cells (DCs) are important targets for dengue virus (DENV) infection and play a significant role in the early immune response. Antiviral effects of iminosugars against DENV in primary cells have been demonstrated previously in monocyte-derived macrophages (MDMΦs). Given the important role played by DCs in innate immune defense against DENV, the antiviral effects of three deoxynojirimycin (DNJ) derivatives (NN-DNJ, EOO-DNJ and 2THO-DNJ) and a deoxygalactonojirimycin (DGJ) negative control were evaluated in DENV-infected primary human monocyte-derived immature DCs (imDCs). DNJ- but not DGJ-derivatives elicited antiviral activity in DENV-infected imDCs, similar to that observed in MDMΦs. The DNJ-derivatives inhibited DENV secretion in a dose-dependent manner. Endoplasmic reticulum (ER) α-glucosidase I inhibition by DNJ-derived iminosugars, at concentrations of 3.16 µM, correlated with a reduction in the specific infectivity of virions that were still secreted, as well as a reduction in DENV-induced tumour necrosis factor alpha secretion. This suggests iminosugar-mediated ER α-glucosidase I inhibition may give rise to further benefits during DENV infection, beyond the reduction in viral secretion associated with ER α-glucosidase II inhibition.


Dengue Virus , Dengue , 1-Deoxynojirimycin/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Dendritic Cells , Dengue/drug therapy , Endoplasmic Reticulum , Humans , Macrophages
...