Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.612
1.
Plant Signal Behav ; 19(1): 2359257, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38825861

Potassium (K+) plays a role in enzyme activation, membrane transport, and osmotic regulation processes. An increase in potassium content can significantly improve the elasticity and combustibility of tobacco and reduce the content of harmful substances. Here, we report that the expression analysis of Nt GF14e, a 14-3-3 gene, increased markedly after low-potassium treatment (LK). Then, chlorophyll content, POD activity and potassium content, were significantly increased in overexpression of Nt GF14e transgenic tobacco lines compared with those in the wild type plants. The net K+ efflux rates were severely lower in the transgenic plants than in the wild type under LK stress. Furthermore, transcriptome analysis identified 5708 upregulated genes and 2787 downregulated genes between Nt GF14e overexpressing transgenic tobacco plants. The expression levels of some potassium-related genes were increased, such as CBL-interacting protein kinase 2 (CIPK2), Nt CIPK23, Nt CIPK25, H+-ATPase isoform 2 a (AHA2a), Nt AHA4a, Stelar K+ outward rectifier 1(SKOR1), and high affinity K+ transporter 5 (HAK5). The result of yeast two-hybrid and luciferase complementation imaging experiments suggested Nt GF14e could interact with CIPK2. Overall, these findings indicate that NtGF14e plays a vital roles in improving tobacco LK tolerance and enhancing potassium nutrition signaling pathways in tobacco plants.


14-3-3 Proteins , Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Plants, Genetically Modified , Potassium , Nicotiana/genetics , Nicotiana/metabolism , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Potassium/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics
2.
Sci Rep ; 14(1): 11092, 2024 05 15.
Article En | MEDLINE | ID: mdl-38750089

Sudden infant death syndrome (SIDS) is the leading cause of post-neonatal infant mortality, but the underlying cause(s) are unclear. A subset of SIDS infants has abnormalities in the neurotransmitter, serotonin (5-hydroxytryptamine [5-HT]) and the adaptor molecule, 14-3-3 pathways in regions of the brain involved in gasping, response to hypoxia, and arousal. To evaluate our hypothesis that SIDS is, at least in part, a multi-organ dysregulation of 5-HT, we examined whether blood platelets, which have 5-HT and 14-3-3 signaling pathways similar to brain neurons, are abnormal in SIDS. We also studied platelet surface glycoprotein IX (GPIX), a cell adhesion receptor which is physically linked to 14-3-3. In infants dying of SIDS compared to infants dying of known causes, we found significantly higher intra-platelet 5-HT and 14-3-3 and lower platelet surface GPIX. Serum and plasma 5-HT were also elevated in SIDS compared to controls. The presence in SIDS of both platelet and brainstem 5-HT and 14-3-3 abnormalities suggests a global dysregulation of these pathways and the potential for platelets to be used as a model system to study 5-HT and 14-3-3 interactions in SIDS. Platelet and serum biomarkers may aid in the forensic determination of SIDS and have the potential to be predictive of SIDS risk in living infants.


14-3-3 Proteins , Blood Platelets , Serotonin , Sudden Infant Death , Humans , Serotonin/blood , Serotonin/metabolism , Sudden Infant Death/etiology , Sudden Infant Death/blood , Blood Platelets/metabolism , 14-3-3 Proteins/blood , 14-3-3 Proteins/metabolism , Female , Male , Infant , Infant, Newborn
3.
Protein Sci ; 33(6): e5016, 2024 Jun.
Article En | MEDLINE | ID: mdl-38747381

RAF kinases are key components of the RAS-MAPK signaling pathway, which drives cell growth and is frequently overactivated in cancer. Upstream signaling activates the small GTPase RAS, which recruits RAF to the cell membrane, driving a transition of the latter from an auto-inhibited monomeric conformation to an active dimer. Despite recent progress, mechanistic details underlying RAF activation remain unclear, particularly the role of RAS and the membrane in mediating this conformational rearrangement of RAF together with 14-3-3 to permit RAF kinase domain dimerization. Here, we reconstituted an active complex of dimeric BRAF, a 14-3-3 dimer and two KRAS4B on a nanodisc bilayer and verified that its assembly is GTP-dependent. Biolayer interferometry (BLI) was used to compare the binding affinities of monomeric versus dimeric full-length BRAF:14-3-3 complexes for KRAS4B-conjugated nanodiscs (RAS-ND) and to investigate the effects of membrane lipid composition and spatial density of KRAS4B on binding. 1,2-Dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and higher KRAS4B density enhanced the interaction of BRAF:14-3-3 with RAS-ND to different degrees depending on BRAF oligomeric state. We utilized our reconstituted system to dissect the effects of KRAS4B and the membrane on the kinase activity of monomeric and dimeric BRAF:14-3-3 complexes, finding that KRAS4B or nanodiscs alone were insufficient to stimulate activity, whereas RAS-ND increased activity of both states of BRAF. The reconstituted assembly of full-length BRAF with 14-3-3 and KRAS on a cell-free, defined lipid bilayer offers a more holistic biophysical perspective to probe regulation of this multimeric signaling complex at the membrane surface.


14-3-3 Proteins , Nanostructures , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/genetics , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Humans , Nanostructures/chemistry , Protein Multimerization , Protein Binding , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism
4.
Proc Natl Acad Sci U S A ; 121(20): e2316266121, 2024 May 14.
Article En | MEDLINE | ID: mdl-38709923

Neurons regulate the microtubule-based transport of certain vesicles selectively into axons or dendrites to ensure proper polarization of function. The mechanism of this polarized vesicle transport is still not fully elucidated, though it is known to involve kinesins, which drive anterograde transport on microtubules. Here, we explore how the kinesin-3 family member KIF13A is regulated such that vesicles containing transferrin receptor (TfR) travel only to dendrites. In experiments involving live-cell imaging, knockout of KIF13A, BioID assay, we found that the kinase MARK2 phosphorylates KIF13A at a 14-3-3 binding motif, strengthening interaction of KIF13A with 14-3-3 such that it dissociates from TfR-containing vesicles, which therefore cannot enter axons. Overexpression of KIF13A or knockout of MARK2 leads to axonal transport of TfR-containing vesicles. These results suggest a unique kinesin-based mechanism for polarized transport of vesicles to dendrites.


14-3-3 Proteins , Dendrites , Kinesins , Protein Serine-Threonine Kinases , Receptors, Transferrin , Kinesins/metabolism , Kinesins/genetics , 14-3-3 Proteins/metabolism , Dendrites/metabolism , Phosphorylation , Receptors, Transferrin/metabolism , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Humans , Binding Sites , Microtubules/metabolism , Rats , Mice , Protein Binding
5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732131

Overexpression of the 14-3-3ε protein is associated with suppression of apoptosis in cutaneous squamous cell carcinoma (cSCC). This antiapoptotic activity of 14-3-3ε is dependent on its binding to CDC25A; thus, inhibiting 14-3-3ε - CDC25A interaction is an attractive therapeutic approach to promote apoptosis in cSCC. In this regard, designing peptide inhibitors of 14-3-3ε - CDC25A interactions is of great interest. This work reports the rational design of peptide analogs of pS, a CDC25A-derived peptide that has been shown to inhibit 14-3-3ε-CDC25A interaction and promote apoptosis in cSCC with micromolar IC50. We designed new peptide analogs in silico by shortening the parent pS peptide from 14 to 9 amino acid residues; then, based on binding motifs of 14-3-3 proteins, we introduced modifications in the pS(174-182) peptide. We studied the binding of the peptides using conventional molecular dynamics (MD) and steered MD simulations, as well as biophysical methods. Our results showed that shortening the pS peptide from 14 to 9 amino acids reduced the affinity of the peptide. However, substituting Gln176 with either Phe or Tyr amino acids rescued the binding of the peptide. The optimized peptides obtained in this work can be candidates for inhibition of 14-3-3ε - CDC25A interactions in cSCC.


14-3-3 Proteins , Molecular Dynamics Simulation , Protein Binding , cdc25 Phosphatases , cdc25 Phosphatases/metabolism , cdc25 Phosphatases/chemistry , cdc25 Phosphatases/antagonists & inhibitors , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/chemistry , Humans , Peptides/chemistry , Peptides/metabolism , Amino Acid Sequence
6.
J Mol Biol ; 436(12): 168592, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38702038

Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phosphosites in NPM1 reside within signal sequences, this work suggests a mechanism of NPM1 regulation by which NPM1 phosphorylation can promote 14-3-3 binding to affect NPM1 shuttling between cell compartments. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.


14-3-3 Proteins , Nuclear Proteins , Nucleophosmin , Protein Binding , Nucleophosmin/metabolism , Nucleophosmin/genetics , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/genetics , Humans , Phosphorylation , Nuclear Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Binding Sites , Protein Multimerization
7.
Int Immunopharmacol ; 135: 112317, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38796965

Colorectal cancer (CRC) is a significant global health challenge, with increasing rates of incidence and mortality. Despite advancements in immunotherapy, resistance, particularly due to T cell exhaustion, remains a major hurdle. This study explores the role of YWHAH, mediated by N4-acetylcytidine (ac4C) modification, in CRC progression and its impact on CD8+ T cell exhaustion. Analysis of five paired CRC patient tissue samples using acetylated RNA immunoprecipitation and sequencing (acRIP-seq)identified ac4C-modified mRNAs. Functional assays, including cell culture, transfection, qRT-PCR, and immune assays, investigated the influence of YWHAH expression on CRC advancement. Bioinformatics analysis of TCGA data assessed the correlation between YWHAH and immune responses, as well as checkpoint inhibitors. Flow cytometry and Immunohistochemistry validated these findings, complemented by a co-culture experiment involving CD8+ T cells and CRC cell lines (LOVO and HCT116). acRIP-seq revealed YWHAH as a potential driver of CRC progression, exhibiting ac4C modification-mediated stability and upregulation. High YWHAH levels correlated with adverse outcomes and immune evasion in CRC patients, showing strong associations with immune checkpoint proteins and modest correlations with CD8+ T cell infiltration. Co-culture experiments demonstrated YWHAH-induced CD8+ T cell exhaustion, characterized by decreased proliferation and increased exhaustion markers. NAT10-mediated ac4C modification enhanced YWHAH stability in CRC. The involvement of YWHAH in CD8 + T cell exhaustion suggests its potential as a therapeutic target and prognostic marker in CRC immunotherapy, highlighting the intricate interplay between epitranscriptomic modifications, the tumor microenvironment, and immune responses in CRC progression.


CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Humans , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Cell Line, Tumor , Cytidine/analogs & derivatives , Cytidine/pharmacology , Gene Expression Regulation, Neoplastic , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , T-Cell Exhaustion
8.
Cell Mol Biol Lett ; 29(1): 84, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822246

BACKGROUND: Canine mammary tumors (CMTs) in intact female dogs provide a natural model for investigating metastatic human cancers. Our prior research identified elevated expression of Anterior Gradient 2 (AGR2), a protein disulfide isomerase (PDI) primarily found in the endoplasmic reticulum (ER), in CMT tissues, highly associated with CMT progression. We further demonstrated that increased AGR2 expression actively influences the extracellular microenvironment, promoting chemotaxis in CMT cells. Unraveling the underlying mechanisms is crucial for assessing the potential of therapeutically targeting AGR2 as a strategy to inhibit a pro-metastatic microenvironment and impede tumor metastasis. METHODS: To identify the AGR2-modulated secretome, we employed proteomics analysis of the conditioned media (CM) from two CMT cell lines ectopically expressing AGR2, compared with corresponding vector-expressing controls. AGR2-regulated release of 14-3-3ε (gene: YWHAE) and α-actinin 4 (gene: ACTN4) was validated through ectopic expression, knockdown, and knockout of the AGR2 gene in CMT cells. Extracellular vesicles derived from CMT cells were isolated using either differential ultracentrifugation or size exclusion chromatography. The roles of 14-3-3ε and α-actinin 4 in the chemotaxis driven by the AGR2-modulated CM were investigated through gene knockdown, antibody-mediated interference, and recombinant protein supplement. Furthermore, the clinical relevance of the release of 14-3-3ε and α-actinin 4 was assessed using CMT tissue-immersed saline and sera from CMT-afflicted dogs. RESULTS: Proteomics analysis of the AGR2-modulated secretome revealed increased abundance in 14-3-3ε and α-actinin 4. Ectopic expression of AGR2 significantly increased the release of 14-3-3ε and α-actinin 4 in the CM. Conversely, knockdown or knockout of AGR2 expression remarkably reduced their release. Silencing 14-3-3ε or α-actinin 4 expression diminished the chemotaxis driven by AGR2-modulated CM. Furthermore, AGR2 controls the release of 14-3-3ε and α-actinin 4 primarily via non-vesicular routes, responding to the endoplasmic reticulum (ER) stress and autophagy activation. Knockout of AGR2 resulted in increased α-actinin 4 accumulation and impaired 14-3-3ε translocation in autophagosomes. Depletion of extracellular 14-3-3ε or α-actinin 4 reduced the chemotaxis driven by AGR2-modulated CM, whereas supplement with recombinant 14-3-3ε in the CM enhanced the CM-driven chemotaxis. Notably, elevated levels of 14-3-3ε or α-actinin 4 were observed in CMT tissue-immersed saline compared with paired non-tumor samples and in the sera of CMT dogs compared with healthy dogs. CONCLUSION: This study elucidates AGR2's pivotal role in orchestrating unconventional secretion of 14-3-3ε and α-actinin 4 from CMT cells, thereby contributing to paracrine-mediated chemotaxis. The insight into the intricate interplay between AGR2-involved ER stress, autophagy, and unconventional secretion provides a foundation for refining strategies aimed at impeding metastasis in both canine mammary tumors and potentially human cancers.


14-3-3 Proteins , Actinin , Autophagy , Chemotaxis , Endoplasmic Reticulum Stress , Mammary Neoplasms, Animal , Mucoproteins , Animals , Dogs , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , Female , Actinin/metabolism , Actinin/genetics , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Cell Line, Tumor , Chemotaxis/genetics , Autophagy/genetics , Endoplasmic Reticulum Stress/genetics , Mucoproteins/genetics , Mucoproteins/metabolism , Oncogene Proteins/metabolism , Oncogene Proteins/genetics
9.
Int J Mol Sci ; 25(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38791145

The diagnostic and prognostic value of plasma glial fibrillary acidic protein (pl-GFAP) in sporadic Creutzfeldt-Jakob disease (sCJD) has never been assessed in the clinical setting of rapidly progressive dementia (RPD). Using commercially available immunoassays, we assayed the plasma levels of GFAP, tau (pl-tau), and neurofilament light chain (pl-NfL) and the CSF total tau (t-tau), 14-3-3, NfL, phospho-tau181 (p-tau), and amyloid-beta isoforms 42 (Aß42) and 40 (Aß40) in sCJD (n = 132) and non-prion RPD (np-RPD) (n = 94) patients, and healthy controls (HC) (n = 54). We also measured the CSF GFAP in 67 sCJD patients. Pl-GFAP was significantly elevated in the sCJD compared to the np-RPD and HC groups and affected by the sCJD subtype. Its diagnostic accuracy (area under the curve (AUC) 0.760) in discriminating sCJD from np-RPD was higher than the plasma and CSF NfL (AUCs of 0.596 and 0.663) but inferior to the 14-3-3, t-tau, and pl-tau (AUCs of 0.875, 0.918, and 0.805). Pl-GFAP showed no association with sCJD survival after adjusting for known prognostic factors. Additionally, pl-GFAP levels were associated with 14-3-3, pl-tau, and pl-NfL but not with CSF GFAP, Aß42/Aß40, and p-tau. The diagnostic and prognostic value of pl-GFAP is inferior to established neurodegeneration biomarkers. Nonetheless, pl-GFAP noninvasively detects neuroinflammation and neurodegeneration in sCJD, warranting potential applications in disease monitoring.


Amyloid beta-Peptides , Biomarkers , Creutzfeldt-Jakob Syndrome , Dementia , Glial Fibrillary Acidic Protein , tau Proteins , Humans , Creutzfeldt-Jakob Syndrome/blood , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid , Female , Male , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Aged , Middle Aged , Prognosis , tau Proteins/blood , tau Proteins/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Dementia/blood , Dementia/diagnosis , Dementia/cerebrospinal fluid , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Disease Progression , 14-3-3 Proteins/cerebrospinal fluid , 14-3-3 Proteins/blood
10.
Cell Rep ; 43(4): 114054, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38578832

Cell fate conversion is associated with extensive post-translational modifications (PTMs) and architectural changes of sub-organelles, yet how these events are interconnected remains unknown. We report here the identification of a phosphorylation code in 14-3-3 binding motifs (PC14-3-3) that greatly stimulates induced cardiomyocyte (iCM) formation from fibroblasts. PC14-3-3 is identified in pivotal functional proteins for iCM reprogramming, including transcription factors and chromatin modifiers. Akt1 kinase and protein phosphatase 2A are the key writer and key eraser of the PC14-3-3 code, respectively. PC14-3-3 activation induces iCM formation with the presence of only Tbx5. In contrast, PC14-3-3 inhibition by mutagenesis or inhibitor-mediated code removal abolishes reprogramming. We discover that key PC14-3-3-embedded factors, such as histone deacetylase 4 (Hdac4), Mef2c, and Foxo1, form Hdac4-organized inhibitory nuclear condensates. PC14-3-3 activation disrupts Hdac4 condensates to promote cardiac gene expression. Our study suggests that sub-organelle dynamics regulated by a PTM code could be a general mechanism for stimulating cell reprogramming.


14-3-3 Proteins , Cellular Reprogramming , Histone Deacetylases , Myocytes, Cardiac , 14-3-3 Proteins/metabolism , Histone Deacetylases/metabolism , Phosphorylation , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Cellular Reprogramming/drug effects , Mice , Humans , Fibroblasts/metabolism , MEF2 Transcription Factors/metabolism , Amino Acid Motifs , Protein Binding
11.
Mol Biol Cell ; 35(6): ar81, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38598291

Neurons are polarized and typically extend multiple dendrites and one axon. To maintain polarity, vesicles carrying dendritic proteins are arrested upon entering the axon. To determine whether kinesin regulation is required for terminating anterograde axonal transport, we overexpressed the dendrite-selective kinesin KIF13A. This caused mistargeting of dendrite-selective vesicles to the axon and a loss of dendritic polarity. Polarity was not disrupted if the kinase MARK2/Par1b was coexpressed. MARK2/Par1b is concentrated in the proximal axon, where it maintains dendritic polarity-likely by phosphorylating S1371 of KIF13A, which lies in a canonical 14-3-3 binding motif. We probed for interactions of KIF13A with 14-3-3 isoforms and found that 14-3-3ß and 14-3-3ζ bound KIF13A. Disruption of MARK2 or 14-3-3 activity by small molecule inhibitors caused a loss of dendritic polarity. These data show that kinesin regulation is integral for dendrite-selective transport. We propose a new model in which KIF13A that moves dendrite-selective vesicles in the proximal axon is phosphorylated by MARK2. Phosphorylated KIF13A is then recognized by 14-3-3, which causes dissociation of KIF13A from the vesicle and termination of transport. These findings define a new paradigm for the regulation of vesicle transport by localized kinesin tail phosphorylation, to restrict dendrite-selective vesicles from entering the axon.


14-3-3 Proteins , Axons , Dendrites , Kinesins , Kinesins/metabolism , Dendrites/metabolism , 14-3-3 Proteins/metabolism , Animals , Axons/metabolism , Phosphorylation , Humans , Protein Serine-Threonine Kinases/metabolism , Cell Polarity/physiology , Axonal Transport/physiology , Rats , Neurons/metabolism
12.
J Parkinsons Dis ; 14(3): 495-506, 2024.
Article En | MEDLINE | ID: mdl-38640169

Background: Parkinson's disease is a progressive neurodegenerative disorder mainly distinguished by sporadic etiology, although a genetic component is also well established. Variants in the LRRK2 gene are associated with both familiar and sporadic disease. We have previously shown that PAK6 and 14-3-3γ protein interact with and regulate the activity of LRRK2. Objective: The aim of this study is to quantify PAK6 and 14-3-3γ in plasma as reliable biomarkers for the diagnosis of both sporadic and LRRK2-linked Parkinson's disease. Methods: After an initial quantification of PAK6 and 14-3-3γ expression by means of Western blot in post-mortem human brains, we verified the presence of the two proteins in plasma by using quantitative ELISA tests. We analyzed samples obtained from 39 healthy subjects, 40 patients with sporadic Parkinson's disease, 50 LRRK2-G2019S non-manifesting carriers and 31 patients with LRRK2-G2019S Parkinson's disease. Results: The amount of PAK6 and 14-3-3γ is significantly different in patients with Parkinson's disease compared to healthy subjects. Moreover, the amount of PAK6 also varies with the presence of the G2019S mutation in the LRRK2 gene. Although the generalized linear models show a low association between the presence of Parkinson's disease and PAK6, the kinase could be added in a broader panel of biomarkers for the diagnosis of Parkinson's disease. Conclusions: Changes of PAK6 and 14-3-3γ amount in plasma represent a shared readout for patients affected by sporadic and LRRK2-linked Parkinson's disease. Overall, they can contribute to the establishment of an extended panel of biomarkers for the diagnosis of Parkinson's disease.


14-3-3 Proteins , Biomarkers , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , p21-Activated Kinases , Humans , Parkinson Disease/blood , Parkinson Disease/diagnosis , Parkinson Disease/genetics , 14-3-3 Proteins/blood , Male , p21-Activated Kinases/blood , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Female , Aged , Biomarkers/blood , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Middle Aged , Aged, 80 and over , Prospective Studies , Adult , Mutation
13.
Genes (Basel) ; 15(4)2024 Mar 24.
Article En | MEDLINE | ID: mdl-38674334

There are about 14,000 pseudogenes that are mutated or truncated sequences resembling functional parent genes. About two-thirds of pseudogenes are processed, while others are duplicated. Although initially thought dead, emerging studies indicate they have functional and regulatory roles. We study 14-3-3ζ, an adaptor protein that regulates cytokine signaling and inflammatory diseases, including rheumatoid arthritis, cancer, and neurological disorders. To understand how 14-3-3ζ (gene symbol YWHAZ) performs diverse functions, we examined the human genome and identified nine YWHAZ pseudogenes spread across many chromosomes. Unlike the 32 kb exon-to-exon sequence in YWHAZ, all pseudogenes are much shorter and lack introns. Out of six, four YWHAZ exons are highly conserved, but the untranslated region (UTR) shows significant diversity. The putative amino acid sequence of pseudogenes is 78-97% homologous, resulting in striking structural similarities with the parent protein. The OMIM and Decipher database searches revealed chromosomal loci containing pseudogenes are associated with human diseases that overlap with the parent gene. To the best of our knowledge, this is the first report on pseudogenes of the 14-3-3 family protein and their implications for human health. This bioinformatics-based study introduces a new insight into the complexity of 14-3-3ζ's functions in biology.


14-3-3 Proteins , Pseudogenes , Humans , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Exons/genetics , Genome, Human , Pseudogenes/genetics
14.
ACS Chem Neurosci ; 15(9): 1926-1936, 2024 May 01.
Article En | MEDLINE | ID: mdl-38635928

The aggregation of α-synuclein (αS) plays a key role in Parkinson's disease (PD) etiology. While the onset of PD is age-related, the cellular quality control system appears to regulate αS aggregation throughout most human life. Intriguingly, the protein 14-3-3τ has been demonstrated to delay αS aggregation and the onset of PD in various models. However, the molecular mechanisms behind this delay remain elusive. Our study confirms the delay in αS aggregation by 14-3-3τ, unveiling a concentration-dependent relation. Utilizing microscale thermophoresis (MST) and single-molecule burst analysis, we quantified the early αS multimers and concluded that these multimers exhibit properties that classify them as nanoscale condensates that form in a cooperative process, preceding the critical nucleus for fibril formation. Significantly, the αS multimer formation mechanism changes dramatically in the presence of scaffold protein 14-3-3τ. Our data modeling suggests that 14-3-3τ modulates the multimerization process, leading to the creation of mixed multimers or co-condensates, comprising both αS and 14-3-3τ. These mixed multimers form in a noncooperative process. They are smaller, more numerous, and distinctively not on the pathway to amyloid formation. Importantly, 14-3-3τ thus acts in the very early stage of αS multimerization, ensuring that αS does not aggregate but remains soluble and functional. This offers long-sought novel entries for the pharmacological modulation of PD.


14-3-3 Proteins , Amyloid , Protein Multimerization , alpha-Synuclein , alpha-Synuclein/metabolism , 14-3-3 Proteins/metabolism , Humans , Amyloid/metabolism , Parkinson Disease/metabolism , Protein Aggregation, Pathological/metabolism
15.
Biomed Pharmacother ; 174: 116542, 2024 May.
Article En | MEDLINE | ID: mdl-38574620

Previous studies have demonstrated that the underlying mechanisms of myocardial ischemia/reperfusion injury (MIRI) are complex and involve multiple types of regulatory cell death, including ferroptosis, apoptosis, and autophagy. Thus, we aimed to identify the mechanisms underlying MIRI and validate the protective role of epigallocatechin-3-gallate (EGCG) and its related mechanisms in MIRI. An in vivo and in vitro models of MIRI were constructed. The results showed that pretreatment with EGCG could attenuate MIRI, as indicated by increased cell viability, reduced lactate dehydrogenase (LDH) activity and apoptosis, inhibited iron overload, abnormal lipid metabolism, preserved mitochondrial function, decreased infarct size, maintained cardiac function, decreased reactive oxygen species (ROS) level, and reduced TUNEL-positive cells. Additionally, EGCG pretreatment could attenuate ferroptosis, apoptosis, and autophagy induced by MIRI via upregulating 14-3-3η protein levels. Furthermore, the protective effects of EGCG could be abolished with pAd/14-3-3η-shRNA or Compound C11 (a 14-3-3η inhibitor) but not pAd/NC-shRNA. In conclusion, EGCG pretreatment attenuated ferroptosis, apoptosis, and autophagy by mediating 14-3-3η and protected cardiomyocytes against MIRI.


14-3-3 Proteins , Apoptosis , Autophagy , Catechin , Catechin/analogs & derivatives , Ferroptosis , Myocardial Reperfusion Injury , Catechin/pharmacology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/drug therapy , Animals , Autophagy/drug effects , Apoptosis/drug effects , Ferroptosis/drug effects , 14-3-3 Proteins/metabolism , Male , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Mice , Cardiotonic Agents/pharmacology , Cell Survival/drug effects , Rats, Sprague-Dawley
16.
Sci Rep ; 14(1): 8852, 2024 04 17.
Article En | MEDLINE | ID: mdl-38632288

Ischemic stroke (IS) is a common cerebrovascular disease whose pathogenesis involves a variety of immune molecules, immune channels and immune processes. 6-methyladenosine (m6A) modification regulates a variety of immune metabolic and immunopathological processes, but the role of m6A in IS is not yet understood. We downloaded the data set GSE58294 from the GEO database and screened for m6A-regulated differential expression genes. The RF algorithm was selected to screen the m6A key regulatory genes. Clinical prediction models were constructed and validated based on m6A key regulatory genes. IS patients were grouped according to the expression of m6A key regulatory genes, and immune markers of IS were identified based on immune infiltration characteristics and correlation. Finally, we performed functional enrichment, protein interaction network analysis and molecular prediction of the immune biomarkers. We identified a total of 7 differentially expressed genes in the dataset, namely METTL3, WTAP, YWHAG, TRA2A, YTHDF3, LRPPRC and HNRNPA2B1. The random forest algorithm indicated that all 7 genes were m6A key regulatory genes of IS, and the credibility of the above key regulatory genes was verified by constructing a clinical prediction model. Based on the expression of key regulatory genes, we divided IS patients into 2 groups. Based on the expression of the gene LRPPRC and the correlation of immune infiltration under different subgroups, LRPPRC was identified as an immune biomarker for IS. GO enrichment analyses indicate that LRPPRC is associated with a variety of cellular functions. Protein interaction network analysis and molecular prediction indicated that LRPPRC correlates with a variety of immune proteins, and LRPPRC may serve as a target for IS drug therapy. Our findings suggest that LRPPRC is an immune marker for IS. Further analysis based on LRPPRC could elucidate its role in the immune microenvironment of IS.


Ischemic Stroke , Humans , 14-3-3 Proteins , Biomarkers , Computational Biology , Ischemic Stroke/genetics , Ischemic Stroke/immunology , Ischemic Stroke/metabolism , Methyltransferases , Models, Statistical , Neoplasm Proteins , Prognosis , Adenosine/analogs & derivatives , Adenosine/metabolism
17.
Fish Shellfish Immunol ; 149: 109592, 2024 Jun.
Article En | MEDLINE | ID: mdl-38685443

Akirin2 is pivotal for regulating host immunological responses in vertebrates, including antibacterial immunity and inflammation. However, the functional significance of Akirin2 in invertebrates remains largely unexplored. In this study, we cloned the complete cDNA sequence of Akirin2 from A. japonicus (AjAkirin2) and elucidated its immunological mechanism upon pathogen infection. The whole AjAkirin2 cDNA sequence spanned 1014 bp, which comprised a 630 bp open reading frame encoding 209 amino acids, a 230 bp 5'-untranslated region (UTR), and a 154 bp 3'-UTR. Spatial expression analysis displayed constitutive expression of AjAkirin2 in all examined tissues. Both mRNA and protein expression abundance of the AjAkirin2 showed considerably high in coelomocytes of sea cucumbers challenged with Vibrio splendidus or stimulated with lipopolysaccharide. In addition, we found that sea cucumbers with 107 CFU/mL V. splendidus infection had a lower survival rate upon AjAkirin2 knockdown. Mechanistically, the result of GST-pull down and co-IP assays indicated that AjAkirin2 directly interacted with Aj14-3-3ζ. Moreover, we also detected that AjAkirin2 positively regulated Aj14-3-3ζ expression in sea cucumber coelomocytes. Furthermore, the knockdown of AjAkirin2 or Aj14-3-3ζ resulted in increasing intracellular bacteria load and suppressed the expression of key genes of the NF-κB signaling pathway (p65 and p105) and inflammatory cytokines including IL-17, VEGF, and MMP-1. In summary, these results confirmed the critical role of AjAkirin2 in mediating innate immune responses against V. splendidus infection via interaction with Aj14-3-3ζ and thereby exerting antibacterial function.


Immunity, Innate , Phylogeny , Stichopus , Vibrio , Animals , Vibrio/physiology , Stichopus/immunology , Stichopus/genetics , Immunity, Innate/genetics , Amino Acid Sequence , 14-3-3 Proteins/genetics , 14-3-3 Proteins/immunology , 14-3-3 Proteins/metabolism , Gene Expression Regulation/immunology , Sequence Alignment/veterinary , Gene Expression Profiling/veterinary , Base Sequence
18.
Curr Opin Struct Biol ; 86: 102822, 2024 06.
Article En | MEDLINE | ID: mdl-38685162

Protein-protein interactions (PPIs) play a critical role in cellular signaling and represent interesting targets for therapeutic intervention. 14-3-3 proteins integrate many signaling targets via PPIs and are frequently implicated in disease, making them intriguing drug targets. Here, we review the recent advances in the 14-3-3 field. It will discuss the roles 14-3-3 proteins play within the cell, elucidation of their expansive interactome, and the complex mechanisms that underpin their function. In addition, the review will discuss significant advances in the development of molecular glues that target 14-3-3 PPIs. In particular, it will focus on novel drug discovery and development methodologies that have delivered selective, potent, and drug-like molecules that could open new avenues for the development of precision molecular tools and medicines.


14-3-3 Proteins , Protein Interaction Maps , 14-3-3 Proteins/metabolism , Humans , Protein Binding , Drug Discovery , Signal Transduction , Animals , Protein Interaction Mapping/methods
19.
Molecules ; 29(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38675584

To understand the biological relevance and mode of action of artificial protein ligands, crystal structures with their protein targets are essential. Here, we describe and investigate all known crystal structures that contain a so-called "molecular tweezer" or one of its derivatives with an attached natural ligand on the respective target protein. The aromatic ring system of these compounds is able to include lysine and arginine side chains, supported by one or two phosphate groups that are attached to the half-moon-shaped molecule. Due to their marked preference for basic amino acids and the fully reversible binding mode, molecular tweezers are able to counteract pathologic protein aggregation and are currently being developed as disease-modifying therapies against neurodegenerative diseases such as Alzheimer's and Parkinson's disease. We analyzed the corresponding crystal structures with 14-3-3 proteins in complex with mono- and diphosphate tweezers. Furthermore, we solved crystal structures of two different tweezer variants in complex with the enzyme Δ1-Pyrroline-5-carboxyl-dehydrogenase (P5CDH) and found that the tweezers are bound to a lysine and methionine side chain, respectively. The different binding modes and their implications for affinity and specificity are discussed, as well as the general problems in crystallizing protein complexes with artificial ligands.


Protein Binding , Crystallography, X-Ray , Ligands , Humans , Models, Molecular , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/metabolism , Binding Sites , Proteins/chemistry , Protein Conformation
...