Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.073
Filter
1.
Viruses ; 16(9)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39339897

ABSTRACT

Patients with immunodeficiencies and older age are at an increased risk of anal cancer. Transgenic K14E6/E7 mice with established high-grade anal dysplasia were treated topically at the anus with the protease inhibitor saquinavir (SQV) in the setting of CD4+ T-cell depletion to mimic immunodeficiency. To ensure tumor development, specific groups were treated with a topical carcinogen (7,12-Dimethylbenz[a]anthracene (DMBA)). The treatment groups included the vehicle (control), DMBA only, topical SQV, and topical SQV with DMBA, as well as the same four groups with CD4 depletion. The mice were monitored weekly for tumor development. Upon reaching 20 weeks of treatment, the mice were sacrificed, and their anal tissue was harvested for histological analysis. None of the mice in the SQV or control groups developed overt anal tumors, except three mice that were CD4-depleted. The CD4-depleted mice treated with DMBA had significantly increased tumor-free survival and overall survival as well as decreased tumor-volume growth over time when treated with SQV. These data suggest that topical SQV, in the setting of CD4 depletion and high-grade anal dysplasia, can increase tumor-free and overall survival; thus, it may represent a viable topical therapy to decrease the risk of progression of anal dysplasia to anal cancer.


Subject(s)
Administration, Topical , Anus Neoplasms , CD4-Positive T-Lymphocytes , Disease Models, Animal , Mice, Transgenic , Animals , Anus Neoplasms/drug therapy , Anus Neoplasms/pathology , Mice , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Protease Inhibitors/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/administration & dosage , Saquinavir/administration & dosage , Saquinavir/therapeutic use , Female , 9,10-Dimethyl-1,2-benzanthracene
2.
Drug Dev Res ; 85(5): e22246, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135358

ABSTRACT

Tilorone dihydrochloride (tilorone) is an orally active interferon inducer with anticancer effects. The present study aimed to evaluate the anticancer effects of tilorone in breast cancer. MTT assay was done to measure the proliferation of MCF-7 and MDA-MB-231 breast cancer cells after treatment with tilorone. Mammary carcinogenesis was induced by subcutaneous injection (35 mg/kg, 0.5 mL) of dimethylbenz[a]anthracene (DMBA) in mammary pads of Sprague Dawley (SD) rats. Tumors were allowed to grow for 16 weeks till their sizes reached to 550-700 mm3, and then treated with 10 and 20 mg/kg of tilorone and standard drug doxorubicin (4 mg/kg) twice a week for 3 weeks. Normal and disease-control animals received normal saline. Tumor volumes and body weights were measured. Tumors were isolated to measure the levels of interferon-ß (IFN-ß), vascular endothelial growth factor-A (VEGF-A), P53 and inflammatory markers by enzyme-linked immunosorbent assay (ELISA). Serum biochemistry, lipid peroxidation (LPO) and antioxidant enzymes were measured by standard methods. Histopathology and immunohistochemistry (IHC) of P53 was done in tumor sections. Tilorone reduced the proliferation of MCF-7 and MDA-MB-231 cells with IC50 concentrations at 34.08 µM and 14.27 µM, respectively. Tilorone treatment showed reduced tumor volume, and increased survival with no significant changes in the body weights. Tilorone treatment also decreased levels of inflammatory markers and VEGF-A and increased IFN-ß and P53 levels. Further, treatment with tilorone also decreased LPO and increased antioxidants levels. Histopathology of tumor sections showed normalizing morphology of treated animals. IHC of tumor sections showed increased levels of P53. In conclusion, tilorone has potential anticancer effects against breast cancer.


Subject(s)
Cytokines , Oxidative Stress , Rats, Sprague-Dawley , Tilorone , Animals , Female , Oxidative Stress/drug effects , Humans , Cytokines/metabolism , Tilorone/pharmacology , Rats , MCF-7 Cells , Down-Regulation/drug effects , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/metabolism , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Vascular Endothelial Growth Factor A/metabolism , Interferon-beta , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Doxorubicin
3.
Redox Biol ; 75: 103261, 2024 09.
Article in English | MEDLINE | ID: mdl-38963974

ABSTRACT

Squamous cell carcinomas (SCCs), including lung, head & neck, bladder, and skin SCCs often display constitutive activation of the KEAP1-NRF2 pathway. Constitutive activation is achieved through multiple mechanisms, including activating mutations in NFE2L2 (NRF2). To determine the functional consequences of Nrf2 activation on skin SCC development, we assessed the effects of mutant Nrf2E79Q expression, one of the most common activating mutations in human SCCs, on tumor promotion and progression in the mouse skin multistage carcinogenesis model using a DMBA-initiation/TPA-promotion protocol where the Hras A->T mutation (Q61L) is the canonical driver mutation. Nrf2E79Q expression was temporally and conditionally activated in the epidermis at two stages of tumor development: 1) after DMBA initiation in the epidermis but before cutaneous tumor development and 2) in pre-existing DMBA-initiated/TPA-promoted squamous papillomas. Expression of Nrf2E79Q in the epidermis after DMBA initiation but before tumor occurrence inhibited the development/promotion of 70% of squamous papillomas. However, the remaining papillomas often displayed non-canonical Hras and Kras mutations and enhanced progression to SCCs compared to control mice expressing wildtype Nrf2. Nrf2E79Q expression in pre-existing tumors caused rapid regression of 60% of papillomas. The remaining papillomas displayed the expected canonical Hras A->T mutation (Q61L) and enhanced progression to SCCs. These results demonstrate that mutant Nrf2E79Q enhances the promotion and progression of a subset of skin tumors and alters the frequency and diversity of oncogenic Ras mutations when expressed early after initiation.


Subject(s)
Keratinocytes , Mutation , NF-E2-Related Factor 2 , Skin Neoplasms , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Animals , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/chemically induced , Mice , Keratinocytes/metabolism , Disease Progression , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Tetradecanoylphorbol Acetate/toxicity
4.
Toxicol Appl Pharmacol ; 489: 116981, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38838792

ABSTRACT

Obesity in adult females impairs fertility by altering oxidative stress, DNA repair and chemical biotransformation. Whether prepubertal obesity results in similar ovarian impacts is under-explored. The objective of this study was to induce obesity in prepubertal female mice and assess puberty onset, follicle number, and abundance of oxidative stress, DNA repair and chemical biotransformation proteins basally and in response to 7,12-dimethylbenz(a)anthracene (DMBA) exposure. DMBA is a polycyclic aromatic hydrocarbon that has been shown to be ovotoxic. Lactating dams (C57BL6J) were fed either a normal rodent containing 3.5% kCal from fat (lean), or a high fat diet comprised of 60% kCal from fat, and 9% kCal from sucrose. The offspring were weaned onto the diet of their dam and exposed at postnatal day 35 to either corn oil or DMBA (1 mg/kg) for 7 d via intraperitoneal injection. Mice on the HFD had reduced (P < 0.05) age at puberty onset as measured by vaginal opening but DMBA did not impact puberty onset. Heart, spleen, kidney, uterus and ovary weight were increased (P < 0.05) by obesity and liver weight was increased (P < 0.05) by DMBA exposure in obese mice. Follicle number was largely unaffected by obesity or DMBA exposure, with the exception of primary follicle number, which were higher (P < 0.05) in lean DMBA exposed and obese control relative to lean control mice. There were also greater numbers (P < 0.05) of corpora lutea in obese relative to lean mice. In lean mice, DMBA exposure reduced (P < 0.05) the level of CYP2E1, EPHX1, GSTP1, BRCA1, and CAT but this DMBA-induced reduction was absent in obese mice. Basally, obesity reduced (P < 0.05) the abundance of CYP2E1, EPHX1, GSTP1, BRCA1, SOD1 and CAT. There was greater (P < 0.05) fibrotic staining in obese DMBA-exposed ovaries and PPP2CA was decreased (P < 0.05) in growing follicles by both obesity and DMBA exposure. Thus, prepubertal obesity alters the capacity of the ovary to respond to DNA damage, ovotoxicant exposure and oxidative stress.


Subject(s)
DNA Repair , Mice, Inbred C57BL , Obesity , Ovary , Oxidative Stress , Animals , Female , Oxidative Stress/drug effects , Ovary/drug effects , Ovary/metabolism , Obesity/metabolism , Obesity/chemically induced , Mice , DNA Repair/drug effects , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Biotransformation , Diet, High-Fat/adverse effects , Sexual Maturation/drug effects , Pregnancy
5.
Cancer Sci ; 115(8): 2839-2845, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38898727

ABSTRACT

By taking advantage of forward genetic analysis in mice, we have demonstrated that Pak1 plays a crucial role during DMBA/TPA skin carcinogenesis. Although Pak1 has been considered to promote cancer development, its overall function remains poorly understood. To clarify the functional significance of Pak1 in detail, we sought to evaluate the possible effect of an allosteric inhibitor against PAK1 (NVS-PAK1-1) on a syngeneic mouse model. To this end, we established two cell lines, 9AS1 and 19AS1, derived from DMBA/TPA-induced squamous cell carcinoma (SCC) that engrafted in FVB mice. Based on our present results, NVS-PAK1-1 treatment significantly inhibited the growth of tumors derived from 9AS1 and 19AS1 cells in vitro and in vivo. RNA-sequencing analysis on the engrafted tumors indicates that NVS-PAK1-1 markedly potentiates the epidermal cell differentiation and enhances the immune response in the engrafted tumors. Consistent with these observations, we found an expansion of Pan-keratin-positive regions and potentially elevated infiltration of CD8-positive immune cells in NVS-PAK1-1-treated tumors as examined by immunohistochemical analyses. Together, our present findings strongly suggest that PAK1 is tightly linked to the development of SCC, and that its inhibition is a promising therapeutic strategy against SCC.


Subject(s)
Carcinoma, Squamous Cell , Disease Models, Animal , Skin Neoplasms , p21-Activated Kinases , Animals , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , p21-Activated Kinases/antagonists & inhibitors , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Mice , Cell Line, Tumor , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Female , Cell Differentiation/drug effects , Tetradecanoylphorbol Acetate , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation/drug effects
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124387, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38704999

ABSTRACT

The development of tools that can provide a holistic picture of the evolution of the tumor microenvironment in response to intermittent fasting on the prevention of breast cancer is highly desirable. Here, we show, for the first time, the use of label-free Raman spectroscopy to reveal biomolecular alterations induced by intermittent fasting in the tumor microenvironment of breast cancer using a dimethyl-benzanthracene induced rat model. To quantify biomolecular alterations in the tumor microenvironment, chemometric analysis of Raman spectra obtained from untreated and treated tumors was performed using multivariate curve resolution-alternative least squares and support vector machines. Raman measurements revealed remarkable and robust differences in lipid, protein, and glycogen content prior to morphological manifestations in a dynamically changing tumor microenvironment, consistent with the proteomic changes observed by quantitative mass spectrometry. Taken together with its non-invasive nature, this research provides prospective evidence for the clinical translation of Raman spectroscopy to identify biomolecular variations in the microenvironment induced by intermittent fasting for the prevention of breast cancer, providing new perspectives on the specific molecular effects in the tumorigenesis of breast cancer.


Subject(s)
Breast Neoplasms , Fasting , Spectrum Analysis, Raman , Tumor Microenvironment , Spectrum Analysis, Raman/methods , Animals , Female , Tumor Microenvironment/drug effects , Breast Neoplasms/prevention & control , Breast Neoplasms/pathology , Rats , Disease Models, Animal , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Mammary Neoplasms, Experimental/prevention & control , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/pathology , Rats, Sprague-Dawley , Intermittent Fasting
7.
Biol Reprod ; 111(2): 496-511, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38813940

ABSTRACT

Obesity and ovotoxicant exposures impair female reproductive health with greater ovotoxicity reported in obese relative to lean females. The mother and developing fetus are vulnerable to both during gestation. 7,12-dimethylbenz[a]anthracene (DMBA) is released during carbon combustion including from cigarettes, coal, fossil fuels, and forest fires. This study investigated the hypothesis that diet-induced obesity would increase sensitivity of the ovaries to DMBA-induced ovotoxicity and determined impacts of both obesity and DMBA exposure during gestation on the maternal ovary. Female C57BL/6 J mice were fed a control or a High Sugar High Fat (45% kcal from fat; 20% kcal from sucrose) diet until ~30% weight gain was attained before mating with unexposed males. From gestation Day 7, mice were exposed intraperitoneally to either vehicle control (corn oil) or DMBA (1 mg/kg diluted in corn oil) for 7 d. Thus, there were four groups: lean control (LC); lean DMBA exposed; obese control; obese DMBA exposed. Gestational obesity and DMBA exposure decreased (P < 0.05) ovarian and increased liver weights relative to LC dams, but there was no treatment impact (P > 0.05) on spleen weight or progesterone. Also, obesity exacerbated the DMBA reduction (P < 0.05) in the number of primordial, secondary follicles, and corpora lutea. In lean mice, DMBA exposure altered abundance of 21 proteins; in obese dams, DMBA exposure affected 134 proteins while obesity alone altered 81 proteins in the maternal ovary. Thus, the maternal ovary is impacted by DMBA exposure and metabolic status influences the outcome.


Subject(s)
9,10-Dimethyl-1,2-benzanthracene , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Ovary , Proteome , Animals , Female , Diet, High-Fat/adverse effects , Pregnancy , Mice , Ovary/drug effects , Ovary/metabolism , Obesity/chemically induced , Obesity/metabolism , Obesity/etiology , Proteome/metabolism , Proteome/drug effects , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Ovarian Follicle/drug effects , Carcinogens/toxicity
8.
Toxicol Appl Pharmacol ; 486: 116930, 2024 May.
Article in English | MEDLINE | ID: mdl-38626870

ABSTRACT

Obesity impairs oocyte quality, fertility, pregnancy maintenance, and is associated with offspring birth defects. The model ovotoxicant, 7,12-dimethylbenz[a]anthracene (DMBA), causes ovarian DNA damage and follicle loss. Both DMBA-induced chemical biotransformation and the DNA damage response are partially attenuated in obese relative to lean female mice but whether weight loss could improve the DNA damage response to DMBA exposure has not been explored. Thus, at six weeks of age, C57BL/6 J female mice were divided in three groups: 1) Lean (L; n = 20) fed a chow diet for 12 weeks, 2) obese (O; n = 20) fed a high fat high sugar (HFHS) diet for 12 weeks and, 3) slim-down (S; n = 20). The S group was fed with HFHS diet for 7 weeks until attaining a higher body relative to L mice on week 7.5 and switched to a chow diet for 5 weeks to achieve weight loss. Mice then received either corn oil (CT) or DMBA (D; 1 mg/kg) for 7 d via intraperitoneal injection (n = 10/treatment). Obesity increased (P < 0.05) kidney and spleen weight, and DMBA decreased uterine weight (P < 0.05). Ovarian weight was reduced (P < 0.05) in S mice, but DMBA exposure increased ovary weight in the S mice. LC-MS/MS identified 18, 64, and 7 ovarian proteins as altered (P < 0.05) by DMBA in the L, S and O groups, respectively. In S and O mice, 24 and 8 proteins differed, respectively, from L mice. These findings support weight loss as a strategy to modulate the ovarian genotoxicant response.


Subject(s)
9,10-Dimethyl-1,2-benzanthracene , DNA Damage , Mice, Inbred C57BL , Obesity , Ovary , Weight Loss , Animals , Female , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Obesity/metabolism , DNA Damage/drug effects , Weight Loss/drug effects , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Mice , DNA Repair/drug effects , Ovarian Diseases/chemically induced , Ovarian Diseases/prevention & control , Ovarian Diseases/metabolism , Ovarian Diseases/pathology , Diet, High-Fat
9.
Biol Reprod ; 111(2): 483-495, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38625059

ABSTRACT

Both obesity and exposure to environmental genotoxicants, such as 7,12-dimethylbenz[a]anthracene, negatively impair female reproductive health. Hyperphagic lean KK.Cg-a/a (n = 8) and obese KK.Cg-Ay/J (n = 10) mice were exposed to corn oil as vehicle control (CT) or 7,12-dimethylbenz[a]anthracene (1 mg/kg/day) for 7d intraperitoneally, followed by a recovery period. Obesity increased liver and spleen weight (P < 0.05), and 7,12-dimethylbenz[a]anthracene exposure decreased uterine weight (P < 0.05) in obese mice. Primordial follicle loss (P < 0.05) caused by 7,12-dimethylbenz[a]anthracene exposure was observed in obese mice only. Primary (lean P < 0.1; obese P < 0.05) and secondary (lean P < 0.05, obese P < 0.1) follicle loss initiated by 7,12-dimethylbenz[a]anthracene exposure continued across recovery. Reduced pre-antral follicle number in lean mice (P < 0.05), regardless of 7,12-dimethylbenz[a]anthracene exposure, was evident with no effect on antral follicles or corpora lutea number. Immunofluorescence staining of DNA damage marker, γH2AX, did not indicate ongoing DNA damage but TRP53 abundance was decreased in follicles (P < 0.05) of 7,12-dimethylbenz[a]anthracene-exposed obese mice. In contrast, increased (P < 0.05) superoxide dismutase was observed in the corpora lutea of 7,12-dimethylbenz[a]anthracene-exposed obese mice and reduced (P < 0.05) TRP53 abundance was noted in preantral and antral follicles of 7,12-dimethylbenz[a]anthracene-exposed obese mice. This study indicates that obesity influences ovotoxicity caused by a genotoxicant, potentially involving accelerated primordial follicle activation and hampering normal follicular dynamics.


Subject(s)
9,10-Dimethyl-1,2-benzanthracene , Obesity , Ovarian Follicle , Animals , Female , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Mice , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Obesity/chemically induced , Obesity/metabolism , Mice, Obese , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
10.
Anticancer Res ; 44(5): 1885-1894, 2024 May.
Article in English | MEDLINE | ID: mdl-38677721

ABSTRACT

BACKGROUND/AIM: Breast cancer is a leading cause of cancer-related deaths among women. Down-regulation of the tumor suppressor gene Cyld in breast cancer has been linked to a poor prognosis. This study investigated the role of Cyld in breast cancer using conditional mutant mouse models carrying a Cyld mutation, which inactivates the deubiquitinating activity of its protein product CYLD in mammary epithelial cells. MATERIALS AND METHODS: We examined the potential of CYLD inactivation to induce mammary tumors spontaneously or modify the susceptibility of mice to mammary tumorigenesis by DMBA treatment or ErbB2 over-expression. RESULTS: CYLD inactivation significantly increased susceptibility to breast cancer induced by either DMBA treatment or ErbB2 over-expression. Moreover, while CYLD inactivation alone did not lead to spontaneous mammary tumorigenesis, it did contribute to the formation of multifocal hyperplastic lesions in virgin mice of predominantly FVB/NJ background. CONCLUSION: Our study demonstrates the tumor enhancing potential of CYLD inactivation in mammary tumorigenesis in vivo and establishes novel relevant mouse models that can be exploited for developing prognostic and therapeutic protocols.


Subject(s)
Deubiquitinating Enzyme CYLD , Animals , Female , Mice , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Deubiquitinating Enzyme CYLD/genetics , Deubiquitinating Enzyme CYLD/metabolism , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/genetics , Mutation , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
11.
Am J Pathol ; 194(7): 1329-1345, 2024 07.
Article in English | MEDLINE | ID: mdl-38537934

ABSTRACT

A remote carcinogen exposure can predispose to breast cancer onset decades later, suggesting that carcinogen-induced mutations generate long-lived premalignant clones. How subsequent events influence the progression of specific premalignant clones remains poorly understood. Herein, multistage mouse models of mammary carcinogenesis were generated by combining chemical carcinogen exposure [using 7,12-dimethylbenzanthracene (DMBA)] with transgenes that enable inducible expression of one of two clinically relevant mammary oncogenes: c-MYC (MYC) or PIK3CAH1047R (PIK). In prior work, DMBA exposure generated mammary clones bearing signature HrasQ61L mutations, which only progressed to mammary cancer after inducible Wnt1 oncogene expression. Here, after an identical DMBA exposure, MYC versus PIK drove cancer progression from mammary clones bearing mutations in distinct Ras family paralogs. For example, MYC drove cancer progression from either Kras- or Nras-mutant clones, whereas PIK transformed Kras-mutant clones only. These Ras mutation patterns were maintained whether oncogenic transgenes were induced within days of DMBA exposure or months later. Completing a full-term pregnancy (parity) failed to protect against either MYC- or PIK-driven tumor progression. Instead, a postpartum increase in mammary tumor predisposition was observed in the context of PIK-driven progression. However, parity decreased the overall prevalence of tumors bearing Krasmut, and the magnitude of this decrease depended on both the number and timing of pregnancies. These multistage models may be useful for elucidating biological features of premalignant mammary neoplasia.


Subject(s)
Disease Progression , Mammary Neoplasms, Experimental , Animals , Female , Mice , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/pathology , Oncogenes/genetics , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Precancerous Conditions/chemically induced , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Mice, Transgenic , Disease Models, Animal , Mutation/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
12.
J Complement Integr Med ; 21(2): 205-214, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38515384

ABSTRACT

OBJECTIVES: Sesamum indicum L. seeds; rich in zinc and lignans are endowed with antioxidant and immunomodulatory properties which attract research on their anticancer potential. Although many studies have reported the in vitro antitumor potential of S. indicum and its phytoconstituents, much is yet to be known about its in vivo effects. To fill this gap, the effects of dietary supplementation with seeds of S. indicum in 7,12-dimethylbenz(a)anthracene-exposed rats was assessed. METHODS: 42 rats aged 30-35 days were randomized into six groups (n=6) as follows: the normal (NOR) and negative (DMBA) control groups were fed with standard diet; the positive control group (DMBA + Zinc) was fed with standard diet supplemented with commercial zinc (0.01 %); the test groups were fed with standard diet supplemented with S. indicum seeds in different proportions (6.25 , 12.5 and 25 %). Breast cancer was induced by a single administration of DMBA (50 mg/kg BW, s.c.) diluted in corn oil. The experiment lasted 20 weeks and afterward, tumor incidence; tumor burden, tumor volume, tumor micro-architecture and some biochemical parameters were evaluated. RESULTS: As salient result, 100 % of rats in the DMBA group developed tumors, while rats feed with rat chow supplemented with S. indicum seeds (25 %) had a reduced incidence of tumors (33.3 %) and tumor volume (2.71 cm3 in sesame 25 % vs. 4.69 cm3 in the DMBA group, p˂0.01). The seeds (25 %) also slowed DMBA-induced neoplasm expansion in mammary ducts as compared to rats of DMBA group. CONCLUSIONS: In summary, supplementation with S. indicum seeds slowed breast tumorigenesis via its antioxidant capacity.


Subject(s)
9,10-Dimethyl-1,2-benzanthracene , Dietary Supplements , Seeds , Sesamum , Animals , Sesamum/chemistry , Seeds/chemistry , Female , Rats , Plant Extracts/pharmacology , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/prevention & control , Tumor Burden/drug effects , Antioxidants/pharmacology , Breast Neoplasms/chemically induced , Breast Neoplasms/prevention & control
13.
NPJ Syst Biol Appl ; 10(1): 23, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431714

ABSTRACT

Skin cancer and other skin-related inflammatory pathologies are rising due to heightened exposure to environmental pollutants and carcinogens. In this context, natural products and repurposed compounds hold promise as novel therapeutic and preventive agents. Strengthening the skin's antioxidant defense mechanisms is pivotal in neutralizing reactive oxygen species (ROS) and mitigating oxidative stress. Sunset Yellow (SY) exhibits immunomodulatory characteristics, evidenced by its capacity to partially inhibit the secretion of proinflammatory cytokines, regulate immune cell populations, and modulate the activation of lymphocytes. This study aimed to investigate the antioxidant and anti-genotoxic properties of SY using in-silico, in vitro, and physiochemical test systems, and to further explore its potential role in 7,12-dimethylbenz(a) anthracene (DMBA)/ 12-o-tetradecanoylphorbol-13-acetate (TPA)-induced two-stage skin carcinogenesis. In vitro experiments showed that pre-treatment of SY significantly enhanced the cell viability of HaCaT cells when exposed to tertiary-Butyl Hydrogen Peroxide (tBHP). This increase was accompanied by reduced ROS levels, restoration of mitochondrial membrane potential, and notable reduction in DNA damage in (SY + tBHP) treated cells. Mechanistic investigations using DPPH chemical antioxidant activity test and potentiometric titrations confirmed SY's antioxidant properties, with a standard reduction potential ( E o ) of 0.211 V. Remarkably, evaluating the effect of topical application of SY in DMBA/TPA-induced two-step skin carcinogenesis model revealed dose-dependent decreases in tumor latency, incidence, yield, and burden over 21-weeks. Furthermore, computational analysis and experimental validations identified GSK3ß, KEAP1 and EGFR as putative molecular targets of SY. Collectively, our findings reveal that SY enhances cellular antioxidant defenses, exhibits anti-genotoxic effects, and functions as a promising chemopreventive agent.


Subject(s)
Antioxidants , Azo Compounds , Skin Neoplasms , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Antioxidants/adverse effects , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/therapeutic use , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Skin Neoplasms/chemically induced , Skin Neoplasms/drug therapy , Skin Neoplasms/prevention & control , Tetradecanoylphorbol Acetate/adverse effects , Oxidative Stress , Chemoprevention , Carcinogenesis
14.
Reprod Toxicol ; 124: 108553, 2024 03.
Article in English | MEDLINE | ID: mdl-38307155

ABSTRACT

Fetal hepatic dimethylbenz(a)anthracene (DMBA) biotransformation is not defined, thus, this study investigated whether the fetal liver metabolizes DMBA and differs with biological sex. KK.Cg-a/a (lean; n = 20) or KK.Cg-Ay/J (obese; n = 20) pregnant mice were exposed to corn oil (CT) or DMBA (1 mg/kg bw/day) by intraperitoneal injection (n = 10/treatment) from gestation day 7-14. Postnatal day 2 male or female offspring livers were collected. Total RNA (n = 6) and protein (n = 6) were analyzed via a PCR-based array or LC-MS/MS, respectively. The level of Mgst3 was lower (P < 0.05) in livers of female compared to male offspring. Furthermore, in utero DMBA exposure increased (P < 0.1) Cyp2c29 and Gpx3 levels (P < 0.05) in female offspring. In male offspring, the abundance of Ahr, Comt (P < 0.1), Alox5, and Asna1 (P < 0.05) decreased due to DMBA exposure. Female and male offspring had 34 and 21 hepatic proteins altered (P < 0.05) by in utero DMBA exposure, respectively. Opposing patterns for hepatic CD81 and KRT78 occurred, being decreased in females but increased in males, while YWHAG was decreased by DMBA exposure in both. Functional KEGG pathway analysis identified enrichment of 26 and 13 hepatic metabolic proteins in male and female offspring, respectively, due to in utero DMBA exposure. In silico transcription factor analysis of differentially expressed proteins predicted involvement of female NRF1 but male AHR. Thus, hepatic biological sex differences and capacity to respond to toxicants in utero are supported.


Subject(s)
9,10-Dimethyl-1,2-benzanthracene , Sex Characteristics , Pregnancy , Mice , Female , Male , Animals , Chromatography, Liquid , Tandem Mass Spectrometry , Liver/metabolism
15.
Zhongguo Zhong Yao Za Zhi ; 49(2): 431-442, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403319

ABSTRACT

This paper aims to explore the inhibitory effect of Yueju Pills on breast cancer and decipher the underlying mechanism. A total of 92 SPF-grade SD female rats were involved in this study, and 14 of them were randomly selected into control group. The remaining 78 rats were administrated with 7,12-dimethylbenzanthracene(DMBA) by gavage to establish the breast cancer model. The modeled rats were randomized into model, tamoxifen(1.9 mg·kg~(-1)·d~(-1)), and low-and high-dose(17, 34 g·kg~(-1)·d~(-1)) Yueju Pills groups. The mental state, food intake, and activities of the rats were observed daily, and the body weight was measured on alternate days. After 12 weeks of administration, the rats were sacrificed and the tumor weight was measured. The serum estrogen and progeste-rone levels were determined by enzyme-linked immunosorbent assay. The histopathological changes of the breast and tumor were observed by hematoxylin-eosin staining. Western blot was employed to measure the protein levels of glucose transporter 1(GLUT1), lactate dehydrogenase A(LDHA), phosphofructokinase muscle(PFKM), pyruvate kinase isozyme type M2(PKM2), hexokinase 2(HK2), nuclear factor-kappaB(NF-κB), and phosphorylated NF-κB. The intestinal microbiome was examined by 16S rRNA high-throughput sequencing. The results showed that compared with the model group, high and low-dose Yueju Pills showed the tumor inhibition rate of 15.8% and 64.5%, respectively, and the low dose group had stronger inhibitory effect. Compared with the control group, the model group presented elevated the levels of estrogen and progesterone in serum. The administration of Yueju Pills lowered such ele-vation, and the low-dose group showed stronger lowering effect(P<0.05). Compared with the model group, Yueju Pills reduced the glands with increased breast tissue, the degree of breast duct expansion, the number and area of acinar cavity, the secretions, and the layers of mammary epithelial cells. Furthermore, Yueju Pills down-regulated the expression of GLUT1, LDHA, PFKM, PKM2, HK2, and NF-κB(P<0.05) and altered the diversity, composition, structure, and abundance of intestinal flora. The results showed that Yueju Pills could inhibit breast cancer by regulating the secretion of estrogen and progesterone, glycolysis, inflammatory cytokines, and intestinal flora.


Subject(s)
9,10-Dimethyl-1,2-benzanthracene , Neoplasms , Rats , Female , Animals , 9,10-Dimethyl-1,2-benzanthracene/toxicity , NF-kappa B/genetics , Progesterone , Glucose Transporter Type 1 , RNA, Ribosomal, 16S , Estrogens
16.
Molecules ; 29(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38257347

ABSTRACT

Breast cancer (BC) is one of the most common cancers in women and is a major cause of female cancer-related deaths. BC is a multifactorial disease caused by the dysregulation of many genes, raising the need to find novel drugs that function by targeting several signaling pathways. The antitumoral drug thymoquinone (TQ), found in black seed oil, has multitargeting properties against several signaling pathways. This study evaluated the inhibitory effects of TQ on the MCF7 and T47D human breast cancer cell lines and its antitumor activity against BC induced by a single oral dose (65 mg/kg) of 7,12-dimethylbenzanthracene (DMBA) in female rats. The therapeutic activity was evaluated in DMBA-treated rats who received oral TQ (50 mg/kg) three times weekly. TQ-treated MCF7 and T47D cells showed concentration-dependent inhibition of cell proliferation and induction of apoptosis. TQ also decreased the expression of DNA methyltransferase 1 (DNMT1) in both cancer cell types. In DMBA-treated animals, TQ inhibited the number of liver and kidney metastases. These effects were associated with a reduction in DNMT1 mRNA expression. These results indicate that TQ has protective effects against breast carcinogens through epigenetic mechanisms involving DNMT1 inhibition.


Subject(s)
Breast Neoplasms , Female , Humans , Animals , Rats , Breast Neoplasms/chemically induced , Breast Neoplasms/drug therapy , Benzoquinones/pharmacology , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Apoptosis
18.
J Biochem Mol Toxicol ; 38(1): e23553, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37840363

ABSTRACT

In this study, we investigated the chemopreventive efficacy of usnic acid (UA), an effective secondary metabolite component of lichens, against 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell carcinoma (OSCC) in the hamster model. Initially, the buccal pouch carcinogenesis was induced by administering 0.5% DMBA to the HBP (hamster buccal pouch) region about three times a week until the 10th week. Then, UA was orally treated with different concentrations (25, 50, 100 mg/kg b.wt) on alternative days of DMBA exposure, and the experimental process ended in the 16th week. After animal experimentation, we observed 100% tumor incidence with well-differentiated OSCC, dysplasia, and hyperplasia lesions in the DMBA-induced HBP region. Furthermore, the UA treatment of DMBA-induced hamster effectively inhibited tumor growth. In addition, UA upregulated antioxidant levels, interfered with the elevated lipid peroxidation by-product of thiobarbituric acid reactive substances, and changed the activities of the liver detoxification enzyme (Phase I and II) in DMBA-induced hamsters. Furthermore, immunohistochemical staining of inflammatory markers (iNOS and COX-2) and proliferative cell markers (cyclin-D1 and PCNA) were upregulated in the buccal pouch part of hamster animals induced with DMBA. Notably, the oral administration of UA significantly suppressed these markers during DMBA-induced hamsters. Collectively, our findings revealed that UA exhibits antioxidant, anti-inflammatory, antitumor, and apoptosis-inducing characteristics, demonstrating UA's protective properties against DMBA-induced HBP carcinogenesis.


Subject(s)
Benzofurans , Carcinoma, Squamous Cell , Mouth Neoplasms , Cricetinae , Animals , Male , Mesocricetus , Antioxidants/metabolism , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Carcinoma, Squamous Cell/chemically induced , Mouth Neoplasms/chemically induced , Mouth Neoplasms/prevention & control , Mouth Neoplasms/pathology , Carcinogenesis/chemically induced , Inflammation/chemically induced , Inflammation/drug therapy , Oxidative Stress , Cell Proliferation , Anthracenes , Carcinogens/toxicity
19.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2389-2400, 2024 04.
Article in English | MEDLINE | ID: mdl-37837474

ABSTRACT

BACKGROUND: 7,12-Dimethylbenzanthracene (DMBA) is a member of the polycyclic aromatic hydrocarbon family. It is a member of the polycyclic aromatic hydrocarbon family. It is a mutagenic, carcinogenic, and immunosuppressor agent. Cannabidiol (CBD) is a phytocannabinoid. It has anticonvulsant, anti-inflammatory, anti-anxiety, antioxidant, and anti-cancer properties. The purpose of this study was to investigate the possible protective and therapeutic benefits of CBD oil in DMBA-induced leukemia in rats. METHOD: Experimental animals were divided into six groups of five rats each. Group 1 (normal control) included healthy rats. Group 2 included normal rats that received olive oil. Group 3 included normal rats that received CBD. Group 4 included the DMBA-induced leukemic group. Group 5 (prophylactic group) included rats that received CBD as a prophylaxis before IV injection with DMBA. Group 6 (treated group) included DMBA-induced leukemic rats that received CBD as treatment. Liver functions (total, direct and indirect bilirubin, alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate aminotransferase (AST), albumin, globulin, and albumin globulin ratio) were measured. Superoxide dismutase (SOD) and catalase (CAT) were also measured. Total RNA extraction followed by-real time qRT-PCR gene expression of LC3-II, Beclin, mTOR, and P62 was performed. Histopathological examination of liver and spleen tissues was performed. RESULTS: Administration of CBD in groups 5 and 6 resulted in a significant improvement of the levels of liver functions compared to the leukemic untreated rats. Also, the levels of catalase and SOD significantly increased after treatment with CBD compared to the leukemic group. After treatment with CBD in groups 5 and 6, there were downregulations in the expression of all studied genes compared to leukemic untreated rats. Treatment with CBD was more statistically effective than prophylactic use. CONCLUSION: Administration of CBD resulted in a significant improvement in the biochemical, antioxidant status, morphological, and molecular measures in DMBA-induced leukemia in adult male rats. The therapeutic use was more effective than the prophylactic one.


Subject(s)
Cannabidiol , Globulins , Leukemia, Experimental , Rats , Male , Animals , Antioxidants/pharmacology , Catalase/metabolism , 9,10-Dimethyl-1,2-benzanthracene/metabolism , 9,10-Dimethyl-1,2-benzanthracene/pharmacology , Leukemia, Experimental/drug therapy , Leukemia, Experimental/metabolism , Leukemia, Experimental/pathology , Liver , Globulins/metabolism , Globulins/pharmacology , Superoxide Dismutase/metabolism , Albumins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL