Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 499
Filter
1.
Prog Orthod ; 25(1): 25, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004686

ABSTRACT

BACKGROUND: Osteogenesis imperfecta (OI) is a genetic disorder of connective tissue caused by mutations associated with type I collagen, which results in defective extracellular matrix in temporomandibular joint (TMJ) cartilage and subchondral bone. TMJ is a fibrocartilaginous joint expressing type I collagen both in the cartilage and the subchondral bone. In the present study the effects of alendronate and altered loading of the TMJ was analyzed both in male and female OI mice. MATERIALS AND METHODS: Forty-eight, 10-weeks-old male and female OI mice were divided into 3 groups: (1) Control group: unloaded group, (2) Saline + Loaded: Saline was injected for 2 weeks and then TMJ of mice was loaded for 5 days, (3) alendronate + loaded: alendronate was injected for 2 weeks and then TMJ of mice was loaded for 5 days. Mice in all the groups were euthanized 24-h after the final loading. RESULTS: Alendronate pretreatment led to significant increase in bone volume and tissue density. Histomorphometrically, alendronate treatment led to increase in mineralization, cartilage thickness and proteoglycan distribution. Increased mineralization paralleled decreased osteoclastic activity. Our immunohistochemistry revealed decreased expression of matrix metallopeptidase 13 and ADAM metallopeptidase with thrombospondin type 1 motif 5. CONCLUSION: The findings of this research support that alendronate prevented the detrimental effects of loading on the extracellular matrix of the TMJ cartilage and subchondral bone.


Subject(s)
Alendronate , Bone Density Conservation Agents , Osteogenesis Imperfecta , Temporomandibular Joint , Animals , Alendronate/pharmacology , Alendronate/therapeutic use , Osteogenesis Imperfecta/drug therapy , Osteogenesis Imperfecta/pathology , Mice , Male , Female , Bone Density Conservation Agents/therapeutic use , Bone Density Conservation Agents/pharmacology , Temporomandibular Joint/pathology , Temporomandibular Joint/drug effects , Matrix Metalloproteinase 13/metabolism , ADAMTS5 Protein , Disease Models, Animal , Bone Density/drug effects , Proteoglycans
2.
Cell Biochem Funct ; 42(5): e4091, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973151

ABSTRACT

The intron retention (IR) is a phenomenon utilized by cells to allow diverse fates at the same mRNA, leading to a different pattern of synthesis of the same protein. In this study, we analyzed the modulation of phosphoinositide-specific phospholipase C (PI-PLC) enzymes by Harpagophytum procumbens extract (HPE) in synoviocytes from joins of osteoarthritis (OA) patients. In some samples, the PI-PLC γ1 isoform mature mRNA showed the IR and, in these synoviocytes, the HPE treatment increased the phenomenon. Moreover, we highlighted that as a consequence of IR, a lower amount of PI-PLC γ1 was produced. The decrease of PI-PLC γ1 was associated with the decrease of metalloprotease-3 (MMP-3), and MMP-13, and ADAMTS-5 after HPE treatment. The altered expression of MMPs is a hallmark of the onset and progression of OA, thus substances able to decrease their expression are very desirable. The interesting outcomes of this study are that 35% of analyzed synovial tissues showed the IR phenomenon in the PI-PLC γ1 mRNA and that the HPE treatment increased this phenomenon. For the first time, we found that the decrease of PI-PLC γ1 protein in synoviocytes interferes with MMP production, thus affecting the pathways involved in the MMP expression. This finding was validated by the silencing of PI-PLC γ1 in synoviocytes where the IR phenomenon was not present. Our results shed new light on the biochemical mechanisms involved in the degrading enzyme production in the joint of OA patients, suggesting a new therapeutic target and highlighting the importance of personalized medicine.


Subject(s)
Fibroblasts , Introns , Phospholipase C gamma , RNA, Messenger , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Phospholipase C gamma/metabolism , Phospholipase C gamma/genetics , Cells, Cultured , Osteoarthritis/metabolism , Osteoarthritis/pathology , Synovial Membrane/metabolism , Synovial Membrane/cytology , Synovial Membrane/drug effects , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Synoviocytes/metabolism , Synoviocytes/drug effects , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics
3.
Mol Med Rep ; 30(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38940327

ABSTRACT

Osteoarthritis (OA) is a chronic disease that involves chondrocyte injury. ADAMTS5 has been confirmed to mediate chondrocyte injury and thus regulate OA progression, but its underlying molecular mechanisms remain unclear. In the present study, interleukin­1ß (IL­1ß)­induced chondrocytes were used to mimic OA in vitro. Cell proliferation and apoptosis were assessed by MTT assay, EdU assay and flow cytometry, and protein levels of ADAMTS5, specificity protein 1 (SP1), matrix­related markers and Wnt/ß­catenin pathway­related markers were examined using western blotting. In addition, ELISA was performed to measure the concentrations of inflammation factors, and oxidative stress was evaluated by detecting SOD activity and MDA levels. The mRNA expression levels of ADAMTS5 and SP1 were determined by reverse transcription­quantitative PCR, and the interaction between SP1 and ADAMTS5 was analyzed using a dual­luciferase reporter assay and chromatin immunoprecipitation assay. IL­1ß suppressed proliferation, but promoted apoptosis, extracellular matrix degradation, inflammation and oxidative stress in chondrocytes. ADAMTS5 was upregulated in IL­1ß­induced chondrocytes, and its knockdown alleviated IL­1ß­induced chondrocyte injury. SP1 could bind to the ADAMTS5 promoter region to promote its transcription, and SP1 knockdown relieved IL­1ß­induced chondrocyte injury by reducing ADAMTS5 expression. The SP1/ADAMTS5 axis activated the Wnt/ß­catenin pathway, and the Wnt/ß­catenin pathway agonist, SKL2001, reversed the protective effect of ADAMTS5 knockdown on chondrocyte injury induced by IL­1ß. To the best of our knowledge, the present study was the first to reveal the interaction between SP1 and ADAMTS5 in OA progression and indicated that the SP1/ADAMTS5 axis mediates OA progression by regulating the Wnt/ß­catenin pathway.


Subject(s)
ADAMTS5 Protein , Chondrocytes , Interleukin-1beta , Osteoarthritis , Sp1 Transcription Factor , Wnt Signaling Pathway , Chondrocytes/metabolism , Chondrocytes/pathology , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Interleukin-1beta/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Humans , Cell Proliferation , Apoptosis , Oxidative Stress , beta Catenin/metabolism
4.
Matrix Biol ; 131: 1-16, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38750698

ABSTRACT

Extracellular matrix remodeling mechanisms are understudied in cardiac development and congenital heart defects. We show that matrix-degrading metalloproteases ADAMTS1 and ADAMTS5, are extensively co-expressed during mouse cardiac development. The mouse mutants of each gene have mild cardiac anomalies, however, their combined genetic inactivation to elicit cooperative roles is precluded by tight gene linkage. Therefore, we coupled Adamts1 inactivation with pharmacologic ADAMTS5 blockade to uncover stage-specific cooperative roles and investigated their potential substrates in mouse cardiac development. ADAMTS5 blockade was achieved in Adamts1 null mouse embryos using an activity-blocking monoclonal antibody during distinct developmental windows spanning myocardial compaction or cardiac septation and outflow tract rotation. Synchrotron imaging, RNA in situ hybridization, immunofluorescence microscopy and electron microscopy were used to determine the impact on cardiac development and compared to Gpc6 and ADAMTS-cleavage resistant versican mutants. Mass spectrometry-based N-terminomics was used to seek relevant substrates. Combined inactivation of ADAMTS1 and ADAMTS5 prior to 12.5 days of gestation led to dramatic accumulation of versican-rich cardiac jelly and inhibited formation of compact and trabecular myocardium, which was also observed in mice with ADAMTS cleavage-resistant versican. Combined inactivation after 12.5 days impaired outflow tract development and ventricular septal closure, generating a tetralogy of Fallot-like defect. N-terminomics of combined ADAMTS knockout and control hearts identified a cleaved glypican-6 peptide only in the controls. ADAMTS1 and ADAMTS5 expression in cells was associated with specific glypican-6 cleavages. Paradoxically, combined ADAMTS1 and ADAMTS5 inactivation reduced cardiac glypican-6 and outflow tract Gpc6 transcription. Notably, Gpc6-/- hearts demonstrated similar rotational defects as combined ADAMTS inactivated hearts and both had reduced hedgehog signaling. Thus, versican proteolysis in cardiac jelly at the canonical Glu441-Ala442 site is cooperatively mediated by ADAMTS1 and ADAMTS5 and required for proper ventricular cardiomyogenesis, whereas, reduced glypican-6 after combined ADAMTS inactivation impairs hedgehog signaling, leading to outflow tract malrotation.


Subject(s)
ADAMTS1 Protein , ADAMTS5 Protein , Glypicans , Heart , Proteolysis , Versicans , Animals , Mice , Versicans/metabolism , Versicans/genetics , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , ADAMTS1 Protein/metabolism , ADAMTS1 Protein/genetics , Glypicans/metabolism , Glypicans/genetics , Heart/growth & development , Mice, Knockout , Gene Expression Regulation, Developmental , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology
5.
J Autoimmun ; 147: 103244, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797050

ABSTRACT

The autoantigens LL37 and ADAMTSL5 contribute to induce pathogenetic T-cells responses in a subset of psoriatic patients. Whether the presence of LL37-and/or ADAMTS5-reactive T-cells influences the clinical response to treatment is still unknown. The aim of the study is to evaluate the clinical responses to the anti-IL-23 risankizumab in LL37 and/or ADAMTSL5-reactive patients in comparison with non-reactive ones and to assess whether genetics (HLA-Cw06.02) or BMI influences the response to treatment. Patients were screened at baseline for the presence of circulating LL37 or/and ADAMTSL5-reactive T-cells and were treated as per protocol with risankizumab. Effectiveness data (PASI scores) were collected at weeks 4, 16, 28, 40 and 52. Data were also analyzed based on HLA-Cw06.02 status and BMI. The overall response to treatment of patients with autoreactivity to LL37 or ADAMTSL5 did not differ compared to the non-reactive cohort as measured as PASI75/90/100 at different time points; however, subjects that had autoreactive T-cells to both LL37 and ADAMTS5 demonstrated suboptimal response to treatment starting at week16. HLA-Cw06:02+ patients demonstrated faster response to risankizumab at week 4 compared to HLA-Cw06:02-. Additionally, the response to treatment was influenced by the BMI with slower responses seen in overweight and obese patients at week 4 and week16. In conclusion, while the presence of either LL37-and ADAMTS5-reactive circulating T-cells do not influence the clinical response to risankizumab, the presence of the double reactivity to both LL37 and ADAMTS5 decreases the clinical responses. Moreover, we evidenced that HLA-Cw06+ respond faster to IL-23 inhibition and that BMI, associated to autoreactivity, can influence the speed in response.


Subject(s)
Psoriasis , Humans , Male , Female , Middle Aged , Adult , Treatment Outcome , Psoriasis/drug therapy , Psoriasis/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Autoantigens/immunology , ADAMTS5 Protein/metabolism , Antibodies, Monoclonal/therapeutic use , Interleukin-23 , Body Mass Index , Autoimmunity , ADAMTS Proteins , HLA-C Antigens
6.
PLoS One ; 19(5): e0302906, 2024.
Article in English | MEDLINE | ID: mdl-38718039

ABSTRACT

Osteoarthritis is the most prevalent type of degenerative arthritis. It is characterized by persistent pain, joint dysfunction, and physical disability. Pain relief and inflammation control are prioritised during osteoarthritis treatment Mume Fructus (Omae), a fumigated product of the Prunus mume fruit, is used as a traditional medicine in several Asian countries. However, its therapeutic mechanism of action and effects on osteoarthritis and articular chondrocytes remain unknown. In this study, we analyzed the anti-osteoarthritis and articular regenerative effects of Mume Fructus extract on rat chondrocytes. Mume Fructus treatment reduced the interleukin-1ß-induced expression of matrix metalloproteinase 3, matrix metalloproteinase 13, and a disintegrin and metalloproteinase with thrombospondin type 1 motifs 5. Additionally, it enhanced collagen type II alpha 1 chain and aggrecan accumulation in rat chondrocytes. Furthermore, Mume Fructus treatment regulated the inflammatory cytokine levels, mitogen-activated protein kinase phosphorylation, and nuclear factor-kappa B activation. Overall, our results demonstrated that Mume Fructus inhibits osteoarthritis progression by inhibiting the nuclear factor-kappa B and mitogen-activated protein kinase pathways to reduce the levels of inflammatory cytokines and prevent cartilage degeneration. Therefore, Mume Fructus may be a potential therapeutic option for osteoarthritis.


Subject(s)
Cartilage, Articular , Chondrocytes , Interleukin-1beta , Osteoarthritis , Plant Extracts , Prunus , Animals , Male , Rats , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Aggrecans/metabolism , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cells, Cultured , Chondrocytes/drug effects , Chondrocytes/metabolism , Collagen Type II/metabolism , Down-Regulation/drug effects , Fruit/chemistry , Interleukin-1beta/drug effects , Interleukin-1beta/metabolism , MAP Kinase Signaling System/drug effects , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/drug effects , NF-kappa B/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Plant Extracts/pharmacology , Prunus/chemistry , Rats, Sprague-Dawley
7.
J Cell Physiol ; 239(6): e31271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38595042

ABSTRACT

Type 2 diabetes is linked with increased incidence and severity of osteoarthritis. The purpose of this study was to determine the effect of extracellular glucose within the normal blood glucose and hyperglycemic range on catabolic enzyme production by chondrocytes isolated from osteoarthritic (OA) and macroscopically normal (MN) human cartilage under oxygenated (18.9% oxygen) and hypoxic (1% oxygen) conditions. OA and MN chondrocytes were maintained in 4, 6, 8, or 10 mM glucose for 24 h. Glucose consumption, GLUT1 glucose transporter levels, MMP13 and ADAMTS5 production, and levels of RUNX2, a transcriptional regulator of MMP13, ADAMTS5, and GLUT1, were assessed by enzyme-linked assays, RT-qPCR and/or western blot. Under oxygenated conditions, glucose consumption and GLUT1 protein levels were higher in OA but not MN chondrocytes in 10 mM glucose compared to 4 mM. Both RNA and protein levels of MMP13 and ADAMTS5 were also higher in OA but not MN chondrocytes in 10 mM compared to 4 mM glucose under oxygenated conditions. Expression of RUNX2 was overall lower in MN than OA chondrocytes and there was no consistent effect of extracellular glucose concentration on RUNX2 levels in MN chondrocytes. However, protein (but not RNA) levels of RUNX2 were elevated in OA chondrocytes maintained in 10 mM versus 4 mM glucose under oxygenated conditions. In contrast, neither RUNX2 levels or MMP13 or ADAMTS5 expression were increased in OA chondrocytes maintained in 10 mM compared to 4 mM glucose in hypoxia. Elevated extracellular glucose leads to increased glucose consumption and increased RUNX2 protein levels, promoting production of MMP13 and ADAMTS5 by OA chondrocytes in oxygenated but not hypoxic conditions. These findings suggest that hyperglycaemia may exacerbate chondrocyte-mediated cartilage catabolism in the oxygenated superficial zone of cartilage in vivo in patients with undertreated type 2 diabetes, contributing to increased OA severity.


Subject(s)
ADAMTS5 Protein , Cell Hypoxia , Chondrocytes , Glucose , Matrix Metalloproteinase 13 , Osteoarthritis , Humans , Chondrocytes/metabolism , Chondrocytes/pathology , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Glucose/metabolism , Glucose/pharmacology , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Aged , Female , Oxygen/metabolism , Oxygen/pharmacology , Male , Middle Aged , Cells, Cultured , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics
8.
Biomed Pharmacother ; 174: 116501, 2024 May.
Article in English | MEDLINE | ID: mdl-38554527

ABSTRACT

Osteoarthritis (OA) is a chronic joint disease, characterized by degenerative destruction of articular cartilage. Chondrocytes, the unique cell type in cartilage, mediate the metabolism of extracellular matrix (ECM), which is mainly constituted by aggrecan and type II collagen. A disintegrin and metalloproteinase with thrombospondin 5 (ADAMTS5) is an aggrecanase responsible for the degradation of aggrecan in OA cartilage. CCAAT/enhancer binding protein ß (C/EBPß), a transcription factor in the C/EBP family, has been reported to mediate the expression of ADAMTS5. Our previous study showed that 5,7,3',4'-tetramethoxyflavone (TMF) could activate the Sirt1/FOXO3a signaling in OA chondrocytes. However, whether TMF protected against ECM degradation by down-regulating C/EBPß expression was unknown. In this study, we found that aggrecan expression was down-regulated, and ADAMTS5 expression was up-regulated. Knockdown of C/EBPß could up-regulate aggrecan expression and down-regulate ADAMTS5 expression in IL-1ß-treated C28/I2 cells. TMF could compromise the effects of C/EBPß on OA chondrocytes by activating the Sirt1/FOXO3a signaling. Conclusively, TMF exhibited protective activity against ECM degradation by mediating the Sirt1/FOXO3a/C/EBPß pathway in OA chondrocytes.


Subject(s)
ADAMTS5 Protein , CCAAT-Enhancer-Binding Protein-beta , Chondrocytes , Extracellular Matrix , Osteoarthritis , Signal Transduction , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Humans , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Signal Transduction/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/pathology , Osteoarthritis/metabolism , Osteoarthritis/pathology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Male , Sirtuin 1/metabolism , Aggrecans/metabolism , Flavonoids/pharmacology , Interleukin-1beta/metabolism , Cell Line , Forkhead Box Protein O3/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cartilage, Articular/drug effects , Middle Aged , Aged , Down-Regulation/drug effects
9.
ACS Infect Dis ; 10(4): 1222-1231, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38536197

ABSTRACT

The pathogenesis of neurosyphilis remains unclear. A previous study found a noteworthy up-regulation of a disintegrin and metalloproteinase with thrombospondin type 1 motif 5 (ADAMTS5) gene in human brain microvascular endothelial cells cocultured with Treponema pallidum subspecies pallidum (Tp). To investigate the ADAMTS5 role in Tp invading the central nervous system (CNS), we conducted relevant experiments. Our study revealed that Tp caused an increase in human cortical microvascular endothelial cell/D3 (hCMEC/D3) barrier permeability and significantly enhanced ADAMTS5 expression. The heightened permeability of the hCMEC/D3 barrier was effectively mitigated by inhibiting ADAMTS5. During this process, Tp promoted interleukin-1ß production, which, in turn, facilitated ADAMTS5 expression. Furthermore, Tp significantly reduced the glycocalyx on the surface of hCMEC/D3 cells, which was also ameliorated by inhibiting ADAMTS5. Additionally, ADAMTS5 and endothelial glycocalyx components notably increased in the cerebrospinal fluid of HIV-negative neurosyphilis patients. This research provided the first demonstration of the ADAMTS5 role in Tp invading the CNS and offered new insight into neurosyphilis pathogenesis.


Subject(s)
ADAMTS5 Protein , Neurosyphilis , Treponema pallidum , Humans , Blood-Brain Barrier , Central Nervous System , Endothelial Cells , Permeability , Treponema pallidum/genetics
10.
Osteoarthritis Cartilage ; 32(6): 690-701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38442768

ABSTRACT

OBJECTIVE: To investigate whether tibiofemoral alignment influences early knee osteoarthritis (OA). We hypothesized that varus overload exacerbates early degenerative osteochondral changes, and that valgus underload diminishes early OA. METHOD: Normal, over- and underload were induced by altering alignment via high tibial osteotomy in adult sheep (n = 8 each). Simultaneously, OA was induced by partial medial anterior meniscectomy. At 6 weeks postoperatively, OA was examined in five individual subregions of the medial tibial plateau using Kellgren-Lawrence grading, quantification of macroscopic OA, semiquantitative histopathological OA and immunohistochemical type-II collagen, ADAMTS-5, and MMP-13 scoring, biochemical determination of DNA and proteoglycan contents, and micro-computed tomographic evaluation of the subchondral bone. RESULTS: Multivariate analyses revealed that OA cartilaginous changes had a temporal priority over subchondral bone changes. Underload inhibited early cartilage degeneration in a characteristic topographic pattern (P ≥ 0.0983 vs. normal), in particular below the meniscal damage, avoided alterations of the subarticular spongiosa (P ≥ 0.162 vs. normal), and prevented the disturbance of otherwise normal osteochondral correlations. Overload induced early alterations of the subchondral bone plate microstructure towards osteopenia, including significantly decreased percent bone volume and increased bone surface-to-volume ratio (all P ≤ 0.0359 vs. normal). CONCLUSION: The data provide high-resolution evidence that tibiofemoral alignment modulates early OA induced by a medial meniscus injury in adult sheep. Since underload inhibits early OA, these data also support the clinical value of strategies to reduce the load in an affected knee compartment to possibly decelerate structural OA progression.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Tibia , Animals , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology , Sheep , Tibia/diagnostic imaging , Tibia/pathology , Cartilage, Articular/pathology , Cartilage, Articular/diagnostic imaging , Female , X-Ray Microtomography , Osteotomy , Femur/diagnostic imaging , Femur/pathology , Matrix Metalloproteinase 13/metabolism , Meniscectomy , Collagen Type II/metabolism , Menisci, Tibial/surgery , Menisci, Tibial/diagnostic imaging , Arthritis, Experimental/pathology , Arthritis, Experimental/diagnostic imaging , Disease Models, Animal , ADAMTS5 Protein/metabolism
11.
Theriogenology ; 211: 65-75, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37586163

ABSTRACT

Eif2s3y (eukaryotic translation initiation factor 2, subunit 3, structural gene Y-linked, Eif2s3y) is an essential gene for spermatogenesis. Early studies have shown that Eif2s3y can promote the proliferation of spermatogonial stem cells (SSCs) and can replace the Y chromosome together with sex-determining region Y (Sry) to transform SSCs into round spermatozoa. We injected lentiviral particles into the seminiferous tubules of mouse testes by sterile surgery surgically to establish overexpressing Eif2s3y testes. And then the mice were intraperitoneally injected with LPS to established the model of testis inflammation. Through RNA sequencing, qRT-PCR analysis, Western blot, co-culture etc., we found that Eif2s3y alleviated LPS-induced damage in mouse testes and maintained spermatogenesis. In testes with Eif2s3y overexpression, the seminiferous tubules were more regularly organized after exposure to LPS compared with the control. Eif2s3y performs its function by negatively regulating Adamts5 (a disintegrin and metalloproteinase containing a thrombospondin-1 motif), an extracellular matrix-degrading enzyme. ADAMTS5 shows a disruptive effect when the testis is exposed to LPS. Overexpression of Eif2s3y inhibited the TLR4/NFκB signaling pathway in the testis in response to LPS. Generally, our research shows that Eif2s3y protects the testis from LPS and maintains spermatogenesis by negatively regulating Adamts5.


Subject(s)
Lipopolysaccharides , Testis , Male , Mice , Animals , Testis/metabolism , Lipopolysaccharides/toxicity , Spermatogenesis/physiology , Spermatozoa/metabolism , Seminiferous Tubules , Spermatogonia , ADAMTS5 Protein , Transcription Factors/metabolism
12.
Cell Signal ; 109: 110800, 2023 09.
Article in English | MEDLINE | ID: mdl-37442513

ABSTRACT

Expression of key transcriptional regulators is altered in chondrocytes in osteoarthritis (OA). This contributes to an increase in production of cartilage-catabolizing enzymes such as MMP13 and ADAMTS5. RCOR1 and RCOR2, binding partners for the transcriptional repressor REST, have previously been found to be downregulated in OA chondrocytes although their function in chondrocytes is unclear. HES1 is a known REST/RCOR1 target gene and HES1 has been shown to promote MMP13 and ADAMTS5 expression in murine OA chondrocytes. The purpose of this study was to determine whether reduced REST/RCOR levels leads to increased HES1 expression in human OA chondrocytes and whether HES1 also promotes ADAMTS5 and MMP13 expression in these cells. Chondrocytes were isolated from osteoarthritic and adjacent macroscopically normal cartilage obtained from patients undergoing total knee arthroplasty. RNA and protein levels of REST, RCOR1 and RCOR2 were lower, but levels of HES1 higher, in chondrocytes isolated from osteoarthritic compared to macroscopically normal cartilage. Over-expression of either REST, RCOR1 or RCOR2 resulted in reduced HES1 levels in OA chondrocytes whereas knockdown of REST, RCOR1 or RCOR2 led to increased HES1 expression in chondrocytes from macroscopically normal cartilage. In OA chondrocytes, ADAMTS5 and MMP13 expression were reduced following HES1 knockdown, but further enhanced following HES1 over-expression. Levels of phosphorylated CaMKII were higher in chondrocytes from OA cartilage consistent with previous findings that HES1 only promotes gene transcription in the presence of active CaMKII. These findings identify the REST/RCOR/HES1 pathway as a contributing factor leading to increased ADAMTS5 and MMP13 expression in OA chondrocytes.


Subject(s)
Chondrocytes , Osteoarthritis , Humans , Mice , Animals , Chondrocytes/metabolism , Matrix Metalloproteinase 13/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Osteoarthritis/metabolism , RNA/metabolism , Cells, Cultured , Transcription Factor HES-1/metabolism , ADAMTS5 Protein/genetics , ADAMTS5 Protein/metabolism , Nerve Tissue Proteins/metabolism , Co-Repressor Proteins/metabolism
13.
Exp Biol Med (Maywood) ; 248(13): 1134-1144, 2023 07.
Article in English | MEDLINE | ID: mdl-37354087

ABSTRACT

Degenerative disk disease (DDD) that aggravates structural deterioration of intervertebral disks (IVDs) can be accompanied by painful inflammation and immunopathological progressions. Current surgical or pharmacological therapies cannot repair the structure and function of IVDs. Nucleus pulposus (NP) cells are crucial for the preservation or restoration of IVDs by balancing the anabolic and catabolic factors affecting the extracellular matrix. Imbalanced anabolic and catabolic factors cause increased degradation of aggrecan. Aggrecanases A Disintegrin And Metalloproteinase with ThromboSpondin motifs (ADAMTS)4 and ADAMTS5 are the main degrading enzymes of aggrecan. Previously, we characterized adeno-associated virus (AAV6) as the most suitable serotype with marked NP cellular tropism and demonstrated that ADAMTS4 could be silenced by self-complementary adeno-associated virus grade 6 small helix ribonucleic acid (scAAV6-shRNA) in NP cells of degeneration grade III, which resulted in enrichment of aggrecan. Nonetheless, neither scAAV6-shRNA-mediated inhibition of ADAMTS5 nor joint inhibitions of ADAMTS4 and ADAMTS5 have been investigated, although both enzymes are regulated by analogous proinflammatory cytokines and have the same cleavage sites in aggrecan. Therefore, we attempted scAAV6-shRNA-mediated inhibitions of both enzymes in NP cells of degeneration grade IV to increase efficacies in treatments of DDD. The degeneration grade of IVDs in patients was determined by magnetic resonance imaging (MRI) before surgical operations. After isolation and culturing of NP cells, cells were transduced with scAAV6-shRNAs targeting ADAMTS4 or ADAMTS5. Transduced cells were analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR), fluorescence microscopy, flow cytometry-assisted cell sorting (FACS), MTT assay (3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay), immunoblotting, and enzyme-linked immunosorbent assay (ELISA). Joint transduction of NP cells exhibited high transduction efficacies (98.1%), high transduction units (TU) (1381 TU/Cell), and no effect on cell viability or proliferation. Above all joint treatments resulted in effective knockdown of ADAMTS4 (92.8%) and ADAMTS5 (93.4%) along with additive enrichment of aggrecan (113.9%). Treatment effects were significant for more than 56 days after transduction (P < 0.001). In conclusion, scAAV6-shRNA-mediated combined molecular therapy could be very valuable for more effective, durable, and less immunogenic treatment approaches in DDD.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Humans , Aggrecans/genetics , Aggrecans/metabolism , Nucleus Pulposus/metabolism , ADAMTS4 Protein/genetics , ADAMTS5 Protein/genetics , Intervertebral Disc Degeneration/metabolism , RNA, Small Interfering/genetics
14.
J Med Chem ; 66(5): 3522-3539, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36891740

ABSTRACT

The dysregulation of proteinase activity is a hallmark of osteoarthritis (OA), a disease characterized by progressive degradation of articular cartilage by catabolic proteinases such as a disintegrin and metalloproteinase with thrombospondin type I motifs-5 (ADAMTS-5). The ability to detect such activity sensitively would aid disease diagnosis and the evaluation of targeted therapies. Förster resonance energy transfer (FRET) peptide substrates can detect and monitor disease-related proteinase activity. To date, FRET probes for detecting ADAMTS-5 activity are nonselective and relatively insensitive. We describe the development of rapidly cleaved and highly selective ADAMTS-5 FRET peptide substrates through in silico docking and combinatorial chemistry. The lead substrates 3 and 26 showed higher overall cleavage rates (∼3-4-fold) and catalytic efficiencies (∼1.5-2-fold) compared to the best current ADAMTS-5 substrate ortho-aminobenzoyl(Abz)-TESE↓SRGAIY-N-3-[2,4-dinitrophenyl]-l-2,3-diaminopropionyl(Dpa)-KK-NH2. They exhibited high selectivity for ADAMTS-5 over ADAMTS-4 (∼13-16-fold), MMP-2 (∼8-10-fold), and MMP-9 (∼548-2561-fold) and detected low nanomolar concentrations of ADAMTS-5.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Cartilage, Articular/metabolism , Osteoarthritis/metabolism , Peptides/metabolism , Proteolysis , Endopeptidases/metabolism , ADAMTS4 Protein/metabolism , ADAMTS5 Protein/metabolism
15.
Int J Mol Sci ; 24(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36902425

ABSTRACT

Skeletal muscle, as a regenerative organization, plays a vital role in physiological characteristics and homeostasis. However, the regulation mechanism of skeletal muscle regeneration is not entirely clear. miRNAs, as one of the regulatory factors, exert profound effects on regulating skeletal muscle regeneration and myogenesis. This study aimed to discover the regulatory function of important miRNA miR-200c-5p in skeletal muscle regeneration. In our study, miR-200c-5p increased at the early stage and peaked at first day during mouse skeletal muscle regeneration, which was also highly expressed in skeletal muscle of mouse tissue profile. Further, overexpression of miR-200c-5p promoted migration and inhibited differentiation of C2C12 myoblast, whereas inhibition of miR-200c-5p had the opposite effect. Bioinformatic analysis predicted that Adamts5 has potential binding sites for miR-200c-5p at 3'UTR region. Dual-luciferase and RIP assays further proved that Adamts5 is a target gene of miR-200c-5p. The expression patterns of miR-200c-5p and Adamts5 were opposite during the skeletal muscle regeneration. Moreover, miR-200c-5p can rescue the effects of Adamts5 in the C2C12 myoblast. In conclusion, miR-200c-5p might play a considerable function during skeletal muscle regeneration and myogenesis. These findings will provide a promising gene for promoting muscle health and candidate therapeutic target for skeletal muscle repair.


Subject(s)
ADAMTS5 Protein , MicroRNAs , Myoblasts , Animals , Mice , ADAMTS5 Protein/metabolism , Cell Differentiation , Cell Line , Cell Proliferation/genetics , MicroRNAs/genetics , Muscle Development/genetics , Muscle, Skeletal/metabolism , Myoblasts/metabolism
16.
J Biol Chem ; 299(4): 103048, 2023 04.
Article in English | MEDLINE | ID: mdl-36813235

ABSTRACT

A disintegrin-like and metalloproteinase with thrombospondin type 1 motifs (ADAMTS1) is a protease involved in fertilization, cancer, cardiovascular development, and thoracic aneurysms. Proteoglycans such as versican and aggrecan have been identified as ADAMTS1 substrates, and Adamts1 ablation in mice typically results in versican accumulation; however, previous qualitative studies have suggested that ADAMTS1 proteoglycanase activity is weaker than that of other family members such as ADAMTS4 and ADAMTS5. Here, we investigated the functional determinants of ADAMTS1 proteoglycanase activity. We found that ADAMTS1 versicanase activity is approximately 1000-fold lower than ADAMTS5 and 50-fold lower than ADAMTS4 with a kinetic constant (kcat/Km) of 3.6 × 103 M-1 s-1 against full-length versican. Studies on domain-deletion variants identified the spacer and cysteine-rich domains as major determinants of ADAMTS1 versicanase activity. Additionally, we confirmed that these C-terminal domains are involved in the proteolysis of aggrecan as well as biglycan, a small leucine-rich proteoglycan. Glutamine scanning mutagenesis of exposed positively charged residues on the spacer domain loops and loop substitution with ADAMTS4 identified clusters of substrate-binding residues (exosites) in ß3-ß4 (R756Q/R759Q/R762Q), ß9-ß10 (residues 828-835), and ß6-ß7 (K795Q) loops. This study provides a mechanistic foundation for understanding the interactions between ADAMTS1 and its proteoglycan substrates and paves the way for development of selective exosite modulators of ADAMTS1 proteoglycanase activity.


Subject(s)
ADAMTS1 Protein , Animals , Mice , ADAMTS1 Protein/chemistry , ADAMTS1 Protein/metabolism , ADAMTS4 Protein/metabolism , ADAMTS5 Protein/metabolism , Aggrecans/metabolism , Versicans/metabolism
17.
BMC Musculoskelet Disord ; 24(1): 130, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36803799

ABSTRACT

OBJECTIVE: As one of the most important protein-degrading enzymes, ADAMTS-5 plays an important role in the regulation of cartilage homeostasis, while miRNA-140 is specifically expressed in cartilage, which can inhibit the expression of ADAMTS-5 and delay the progression of OA (osteoarthritis). SMAD3 is a key protein in the TGF-ß signaling pathway, inhibiting the expression of miRNA-140 at the transcriptional and post-transcriptional levels, and studies have confirmed the high expression of SMAD3 in knee cartilage degeneration, but whether SMAD3 can mediate the expression of miRNA-140 to regulate ADAMTS-5 remains unknown. METHODS: Sprague-Dawley (SD) rat chondrocytes were extracted in vitro and treated with a SMAD3 inhibitor (SIS3) and miRNA-140 mimics after IL-1 induction. The expression of ADAMTS-5 was detected at the protein and gene levels at 24 h, 48 h, and 72 h after treatment. The OA model of SD rats was created using the traditional Hulth method in vivo, with SIS3 and lentivirus packaged miRNA-140 mimics injected intra-articularly at 2 weeks, 6 weeks and 12 weeks after surgery. The expression of miRNA-140 and ADAMTS-5 in the knee cartilage tissue was observed at the protein and gene levels. Concurrently, knee joint specimens were fixed, decalcified, and embedded in paraffin prior to immunohistochemical, Safranin O/Fast Green staining, and HE staining analyses for ADAMTS-5 and SMAD3. RESULTS: In vitro, the expression of ADAMTS-5 protein and mRNA in the SIS3 group decreased to different degrees at each time point. Meanwhile, the expression of miRNA-140 in the SIS3 group was significantly increased, and the expression of ADAMTS-5 in the miRNA-140 mimics group was also significantly downregulated (P < 0.05). In vivo, it was found that ADAMTS-5 protein and gene were downregulated to varying degrees in the SIS3 and miRNA-140 mimic groups at three time points, with the most significant decrease at the early stage (2 weeks) (P < 0.05), and the expression of miRNA-140 in the SIS3 group was significantly upregulated, similar to the changes detected in vitro. Immunohistochemical results showed that the expression of ADAMTS-5 protein in the SIS3 and miRNA-140 groups was significantly downregulated compared to that in the blank group. The results of hematoxylin and eosin staining showed that in the early stage, there was no obvious change in cartilage structure in the SIS3 and miRNA-140 mock groups. The same was observed in the results of Safranin O/Fast Green staining; the number of chondrocytes was not significantly reduced, and the tide line was complete. CONCLUSION: The results of in vitro and in vivo experiments preliminarily showed that the inhibition of SMAD3 significantly reduced the expression of ADAMTS-5 in early OA cartilage, and this regulation might be accomplished indirectly through miRNA-140.


Subject(s)
Cartilage, Articular , MicroRNAs , Osteoarthritis , Rats , Animals , ADAMTS5 Protein/genetics , ADAMTS5 Protein/metabolism , Rats, Sprague-Dawley , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Osteoarthritis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cartilage, Articular/metabolism
18.
Mol Cell Biochem ; 478(2): 291-303, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35794289

ABSTRACT

A previous study indicated that long non-coding RNA X-inactive-specific transcript (XIST) promoted ethanol-induced HSCs autophagy and activation. Considering the critical role of HSC activation in hepatic fibrosis, the aim of the present study was to reveal the exact role of XIST in liver fibrosis and its underlying mechanism. The expression of XIST in the liver from CCL4-induced mice and control mice as well as human fibrotic liver tissue and healthy liver tissue was examined. The mitochondrial reactive oxygen species (mtROS), mitochondrial membrane potential (MMP), and mitochondrial morphology were measured to assess the mitochondrial damage. The relationship between XIST and miR-539-3p as well as between miR-539-3p and ADAMTS5 was verified by a dual-luciferase reporter assay. The expression levels of HSCs activation markers were examined by Western blot. The results showed that the XIST was upregulated in fibrotic liver tissue, and overexpression of XIST induced mitochondrial dysfunction in hepatocytes. miR-539-3p directly targeted XIST, and ADAMTS5 mRNA was a downstream target of miR-539-3p. Knockdown of miR-539-3p led to an increased mitochondrial damage in hepatocytes in terms of reduced mitochondrial length, decreased MMP, and increased ROS production. However, the depletion of ADAMTS5 reversed the regulatory effect of XIST on mitochondrial damage in hepatocytes and the activation of HSCs. Our study revealed the critical role of the XIST/miR-539-3p/ADAMTS5 axis in regulating mitochondrial damage in hepatocytes and the activation of HSCs. This study may provide a potential therapeutic strategy for the treatment of liver fibrosis.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Hepatocytes/metabolism , Liver Cirrhosis/genetics , Cell Proliferation/genetics , ADAMTS5 Protein
19.
Connect Tissue Res ; 64(1): 93-104, 2023 01.
Article in English | MEDLINE | ID: mdl-35913086

ABSTRACT

OBJECTIVE: To determine the impact of increased load on the temporomandibular joint (TMJ) from mice deficient in the extracellular matrix protease ADAMTS5. MATERIALS AND METHODS: Wire springs exerting 0.5 N for 1 h/day for 5 days (Adamts5+/+ -n = 18; Adamts5-/- n = 19) or 0.8 N for 1 h/day for 10 days (Adamts5+/+-n = 18; Adamts5-/- n = 17) were used to increase murine TMJ load. Safranin O-staining was used to determine mandibular condylar cartilage (MCC) morphology. Chondrogenic factors Sox9 and aggrecan were immunolocalized. Microcomputed topography was employed to evaluate mineralized tissues, and Tartrate-Resistant Acid Phosphatase staining was used to quantify osteoclasts. RESULTS: Increased load on the mandibular condyle of Adamts5-/- mice resulted in an increase in the hypertrophic zone of mandibular condylar cartilage (MCC) compared to normal load (NL) (P < 0.01). In the trabecular bone of the mandibular condyle, the total volume (TV), bone volume (BV), trabecular thickness (TbTh), and trabecular separation (TbSp) of the mandibular condyles in Adamts5-/- mice (n = 27) did not change significantly with increased load, compared to Adamts5+/+ (n = 38) that exhibited significant responses (TV-P < 0.05; BV-P < 0.001; TbTh-P < 0.01; TbSp-P < 0.01). The bone volume fraction (BV/TV) was significantly reduced in response to increased load in both Adamts5-/- (P < 0.05) and Adamts5+/+ mandibular condyles (P < 0.001) compared to NL. Increased load in Adamts5-/- mandibular condyles also resulted in a dramatic increase in osteoclasts compared to Adamts5-/- NL (P < 0.001) and to Adamts5+/+ with increased load (P < 01). CONCLUSION: The trabeculated bone of the Adamts5-/- mandibular condyle was significantly less responsive to the increased load compared to Adamts5+/+. ADAMTS5 may be required for mechanotransduction in the trabeculated bone of the mandibular condyle.


Subject(s)
Mandibular Condyle , Mechanotransduction, Cellular , Mice , Animals , Temporomandibular Joint , Cartilage , Extracellular Matrix , ADAMTS5 Protein
20.
J Med Chem ; 65(20): 13505-13532, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36250680

ABSTRACT

Osteoarthritis (OA) is the most common degenerative joint disease. In 1999, two members of the A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) family of metalloproteinases, ADAMTS4 and ADAMTS5, or aggrecanases, were identified as the enzymes responsible for aggrecan degradation in cartilage. The first aggrecanase inhibitors targeted the active site by chelation of the catalytic zinc ion. Due to the generally disappointing performance of zinc-chelating inhibitors in preclinical and clinical studies, inhibition strategies tried to move away from the active-site zinc in order to improve selectivity. Exosite inhibitors bind to proteoglycan-binding residues present on the aggrecanase ancillary domains (called exosites). While exosite inhibitors are generally more selective than zinc-chelating inhibitors, they are still far from fulfilling their potential, partly due to a lack of structural and functional data on aggrecanase exosites. Filling this gap will inform the design of novel potent, selective aggrecanase inhibitors.


Subject(s)
Osteoarthritis , Procollagen N-Endopeptidase , Humans , Procollagen N-Endopeptidase/metabolism , Aggrecans/metabolism , ADAMTS5 Protein , ADAMTS4 Protein , Zinc , Disintegrins , Osteoarthritis/metabolism , ADAM Proteins/metabolism , Thrombospondins
SELECTION OF CITATIONS
SEARCH DETAIL
...