Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.693
1.
J Orthop Surg Res ; 19(1): 335, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38845012

BACKGROUND: Existing studies have shown that computed tomography (CT) attenuation and skeletal muscle tissue are strongly associated with osteoporosis; however, few studies have examined whether vertebral HU values and the pectoral muscle index (PMI) measured at the level of the 4th thoracic vertebra (T4) are strongly associated with bone mineral density (BMD). In this study, we demonstrate that vertebral HU values and the PMI based on chest CT can be used to opportunistically screen for osteoporosis and reduce fracture risk through prompt treatment. METHODS: We retrospectively evaluated 1000 patients who underwent chest CT and DXA scans from August 2020-2022. The T4 HU value and PMI were obtained using manual chest CT measurements. The participants were classified into normal, osteopenia, and osteoporosis groups based on the results of dual-energy X-ray (DXA) absorptiometry. We compared the clinical baseline data, T4 HU value, and PMI between the three groups of patients and analyzed the correlation between the T4 HU value, PMI, and BMD to further evaluate the diagnostic efficacy of the T4 HU value and PMI for patients with low BMD and osteoporosis. RESULTS: The study ultimately enrolled 469 participants. The T4 HU value and PMI had a high screening capacity for both low BMD and osteoporosis. The combined diagnostic model-incorporating sex, age, BMI, T4 HU value, and PMI-demonstrated the best diagnostic efficacy, with areas under the receiver operating characteristic curve (AUC) of 0.887 and 0.892 for identifying low BMD and osteoporosis, respectively. CONCLUSIONS: The measurement of T4 HU value and PMI on chest CT can be used as an opportunistic screening tool for osteoporosis with excellent diagnostic efficacy. This approach allows the early prevention of osteoporotic fractures via the timely screening of individuals at high risk of osteoporosis without requiring additional radiation.


Absorptiometry, Photon , Bone Density , Osteoporosis , Pectoralis Muscles , Thoracic Vertebrae , Tomography, X-Ray Computed , Humans , Female , Osteoporosis/diagnostic imaging , Male , Thoracic Vertebrae/diagnostic imaging , Retrospective Studies , Middle Aged , Tomography, X-Ray Computed/methods , Aged , Absorptiometry, Photon/methods , Pectoralis Muscles/diagnostic imaging , Mass Screening/methods , Aged, 80 and over , Radiography, Thoracic/methods , Adult
2.
Ter Arkh ; 96(5): 494-499, 2024 Jun 03.
Article Ru | MEDLINE | ID: mdl-38829811

AIM: To study the association of bone mineral density (BMD) with serum biochemical and immunological markers in postmenopausal women with rheumatoid arthritis (RA). MATERIALS AND METHODS: The study included 173 women with RA (age 61.0 [56.0; 66.0] years). A survey, dual-energy X-ray absorptiometry to measure the BMD of the lumbar spine (LI-LIV), femoral neck (FN) and total hip (TH), routine blood chemistry, measurement of C-reactive protein (CRP), rheumatoid factor, cyclic citrullinated peptide antibodies (CCPA), parathyroid hormone (PTH), vitamin D3, myostatin, follistatin, interleukin-6 (IL-6), IL-6 receptors, insulin-like growth factor 1, adiponectin, leptin, fibroblast growth factor 23, and tumor necrosis factor SF12 were performed. RESULTS: PTH (ß=-0.22, -0.35 and -0.30 for LI-LIV, FN and TH, respectively), CRP (ß=-0.18, 0.23 and -0.22 for LI-LIV, FN and TH, respectively) and leptin (ß=0.35, 0.32 and 0.42 for LI-LIV, FN and TH, respectively) were shown a significant association with BMD in all sites of measurement. It was independent of age, body mass index and postmenopause duration. Associations were also found between adiponectin and BMD of LI-LIV and TH (ß=-0.36 and -0.28, respectively), CCPA and BMD of FN and TH (ß=-0.21, -0.24, respectively) and IL-6 and BMD of FN (ß=0.37). CONCLUSION: The study of biochemical and immunological markers in women with RA demonstrated that CRP, CCPA, PTH, IL-6, adiponectin, and leptin influenced BMD.


Arthritis, Rheumatoid , Biomarkers , Bone Density , Humans , Female , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/physiopathology , Bone Density/physiology , Middle Aged , Biomarkers/blood , Absorptiometry, Photon/methods , Aged , Postmenopause/blood , Postmenopause/immunology , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Adiponectin/blood , Osteoporosis, Postmenopausal/blood , Osteoporosis, Postmenopausal/immunology , Osteoporosis, Postmenopausal/physiopathology , Osteoporosis, Postmenopausal/etiology , Leptin/blood
3.
BMC Pediatr ; 24(1): 247, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594697

BACKGROUND: Sports practice during adolescence is important to enhance bone development, although it may provide different effects depending on the mechanical impact present in the sport. Besides, resistance training (RT) may also induce bone changes directly (via muscle contractions) and indirectly (via myokines). However, there have been no studies analyzing the longitudinal influence of engaging in sport with and without added mechanical load. Thus, this study aims to analyze the combined effects of sports participation and resistance training on areal bone mineral density (aBMD) accrual in adolescent athletes participating in swimming and impact sports for 12-months. METHODS: This was a 12-month longitudinal study. The sample comprised 91 adolescents (21 females) aged 10 to 18 years, engaged in impact sports (basketball, tennis, track & field, baseball and gymnastics, n = 66) and non-impact sport (swimming, n = 25). The sample was divided according to resistance training participation: impact sports only (n = 45), impact sports + resistance training (n = 21), swimming-only (n = 17) and swimming + resistance training (n = 8). aBMD and soft tissues were measured using dual-energy X-ray absorptiometry. Generalized linear models analysis was used for the resistance training (RT) x type of sport interaction in predicting aBMD changes overtime, adjusting for maturation, sex and baseline aBMD. RESULTS: After 12-months, all groups showed a significant increase in aBMD, except for the swimming groups (regardless of resistant training), which showed a significant loss in spine aBMD (-0.045 [-0.085 to -0.004] g/cm2 in swimming-only and - 0.047 [-0.073 to -0.021] g/cm2 in swimming + RT). In comparisons between groups, only swimming + RT group, compared with swimming-only group presented higher upper limbs aBMD (0.096 g/cm2 [0.074 to 0.118] in swimming + RT vs. 0.046 [0.032 to 0.060] g/cm2 in swimming only; p < 0.05) and whole body less head (WBLH) aBMD (0.039 [0.024 to 0.054] g/cm2 in swimming + RT vs. 0.017 [0.007 to 0.027] g/cm2 swimming-only; p < 0.05). CONCLUSION: Despite the significant gain in aBMD in all groups and body sites after 12-months, except for the spine site of swimmers, the results indicate that participation in RT seems to improve aBMD accrual in swimmers at the upper limbs and WBLH.


Resistance Training , Swimming , Female , Adolescent , Humans , Swimming/physiology , Longitudinal Studies , Bone Density/physiology , Absorptiometry, Photon/methods , Bone Development/physiology
4.
Sci Rep ; 14(1): 8483, 2024 04 11.
Article En | MEDLINE | ID: mdl-38605086

This mediation analysis aimed to investigate the associations among areal bone mineral density, mobility-related brain atrophy, and specific gait patterns. A total of 595 participants from the Taizhou Imaging Study, who underwent both gait and bone mineral density measurements, were included in this cross-sectional analysis. We used a wearable gait tracking device to collect quantitative gait parameters and then summarized them into independent gait domains with factor analysis. Bone mineral density was measured in the lumbar spine, femoral neck, and total hip using dual-energy X-ray absorptiometry. Magnetic resonance images were obtained on a 3.0-Tesla scanner, and the volumes of brain regions related to mobility were computed using FreeSurfer. Lower bone mineral density was found to be associated with higher gait variability, especially at the site of the lumbar spine (ß = 0.174, FDR = 0.001). Besides, higher gait variability was correlated with mobility-related brain atrophy, like the primary motor cortex (ß = 0.147, FDR = 0.006), sensorimotor cortex (ß = 0.153, FDR = 0.006), and entorhinal cortex (ß = 0.106, FDR = 0.043). Bidirectional mediation analysis revealed that regional brain atrophy contributed to higher gait variability through the low lumbar spine bone mineral density (for the primary motor cortex, P = 0.018; for the sensorimotor cortex, P = 0.010) and the low lumbar spine bone mineral density contributed to higher gait variability through the primary motor and sensorimotor cortices (P = 0.026 and 0.010, respectively).


Bone Density , Gait , Humans , Cross-Sectional Studies , Absorptiometry, Photon/methods , Lumbar Vertebrae/diagnostic imaging , Brain/diagnostic imaging
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124193, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38569386

Osteoporosis is a significant health concern. While multiple techniques have been utilized to diagnose this condition, certain limitations still persist. Raman spectroscopy has shown promise in predicting bone strength in animal models, but its application to humans requires further investigation. In this study, we present an in vitro approach for predicting osteoporosis in 10 patients with hip fractures using Raman spectroscopy. Raman spectra were acquired from exposed femoral heads collected during surgery. Employing a leave-one-out cross-validated linear discriminant analysis (LOOCV-LDA), we achieved accurate classification (90 %) between osteoporotic and osteopenia groups. Additionally, a LOOCV partial least squares regression (PLSR) analysis based on the complete Raman spectra demonstrated a significant prediction (r2 = 0.84, p < 0.05) of bone mineral density as measured by dual X-ray absorptiometry (DXA). To the best of our knowledge, this study represents the first successful demonstration of Raman spectroscopy correlating with osteoporotic status in humans.


Hip Fractures , Osteoporosis , Animals , Humans , Spectrum Analysis, Raman , Osteoporosis/diagnosis , Bone Density , Absorptiometry, Photon/methods
6.
Nutrition ; 123: 112415, 2024 Jul.
Article En | MEDLINE | ID: mdl-38599007

OBJECTIVES: This is a cross-sectional study, aimed to develop and cross-validate a fat-free mass (FFM) predictive equation using single-frequency bioelectrical impedance (BIA), considering the predicted age at peak height velocity (PHV) as a variable. Additionally, the study aims to test the FFM-BIA obtained using a previous predictive equation that used skeletal maturity as a variable. METHOD: The participants (n = 169 male adolescent athletes) were randomly divided into two groups: development of a new predictive equation (n = 113), and cross-validation (n = 56). The concordance test between the FFM values obtained by Koury et al. predictive equation and DXA data was determined (n = 169). Bioelectrical data was obtained using a single-frequency analyzer. RESULTS: Among the models tested, the new predictive equation has resistance index (height2/resistance) and predictive age at PHV as variables and presented R2 = 0.918. The frequency of maturity status using skeletal maturity and PHV diagnosis was inadequate (Kappa = 0.4257; 95%CI = 0.298-0.553). Bland-Altman plots and concordance correlation coefficient showed substantial concordance between the FFM-DXA values (48.8 ± 11.2 kg) and the new predictive equation (CCC = 0.960). The results showed that the new equation performed better than the equation developed by Koury et al. (CCC = 0.901). CONCLUSIONS: Our results show that it is feasible to predict FFM in male adolescent athletes using predictive age at PHV, with moderate concordance. The calculation of FFM using more economical and less complex variables is viable and should be further explored.


Athletes , Body Composition , Electric Impedance , Humans , Adolescent , Male , Cross-Sectional Studies , Athletes/statistics & numerical data , Reproducibility of Results , Absorptiometry, Photon/methods , Body Height , Child , Predictive Value of Tests
7.
Nutr Clin Pract ; 39(3): 518-529, 2024 Jun.
Article En | MEDLINE | ID: mdl-38591753

Body composition assessment plays a pivotal role in understanding health, disease risk, and treatment efficacy. This narrative review explores two primary aspects: imaging techniques, namely ultrasound (US) and dual-energy x-ray absorptiometry (DXA), and the emergence of artificial intelligence (AI) and mobile health apps in telehealth for body composition. Although US is valuable for assessing subcutaneous fat and muscle thickness, DXA accurately quantifies bone mineral content, fat mass, and lean mass. Despite their effectiveness, accessibility and cost remain barriers to widespread adoption. The integration of AI-powered image analysis may help explain tissue differentiation, whereas mobile health apps offer real-time metabolic monitoring and personalized feedback. New apps such as MeThreeSixty and Made Health and Fitness offer the advantages of clinic-based imaging techniques from the comfort of home. These innovations hold the potential for individualizing strategies and interventions, optimizing clinical outcomes, and empowering informed decision-making for both healthcare professionals and patients/clients. Navigating the intricacies of these emerging tools, critically assessing their validity and reliability, and ensuring inclusivity across diverse populations and conditions will be crucial in harnessing their full potential. By integrating advancements in body composition assessment, healthcare can move beyond the limitations of traditional methods and deliver truly personalized, data-driven care to optimize well-being.


Absorptiometry, Photon , Body Composition , Mobile Applications , Telemedicine , Ultrasonography , Humans , Telemedicine/methods , Ultrasonography/methods , Absorptiometry, Photon/methods , Artificial Intelligence , Reproducibility of Results
8.
Bone ; 184: 117107, 2024 Jul.
Article En | MEDLINE | ID: mdl-38677502

Osteoporosis is a common condition that can lead to fractures, mobility issues, and death. Although dual-energy X-ray absorptiometry (DXA) is the gold standard for osteoporosis, it is expensive and not widely available. In contrast, kidney-ureter-bladder (KUB) radiographs are inexpensive and frequently ordered in clinical practice. Thus, it is a potential screening tool for osteoporosis. In this study, we explored the possibility of predicting the bone mineral density (BMD) and classifying high-risk patient groups using KUB radiographs. We proposed DeepDXA-KUB, a deep learning model that predicts the BMD values of the left hip and lumbar vertebrae from an input KUB image. The datasets were obtained from Taiwanese medical centers between 2006 and 2019, using 8913 pairs of KUB radiographs and DXA examinations performed within 6 months. The images were randomly divided into training and validation sets in a 4:1 ratio. To evaluate the model's performance, we computed a confusion matrix and evaluated the sensitivity, specificity, accuracy, precision, positive predictive value, negative predictive value, F1 score, and area under the receiver operating curve (AUROC). Moderate correlations were observed between the predicted and DXA-measured BMD values, with a correlation coefficient of 0.858 for the lumbar vertebrae and 0.87 for the left hip. The model demonstrated an osteoporosis detection accuracy, sensitivity, and specificity of 84.7 %, 81.6 %, and 86.6 % for the lumbar vertebrae and 84.2 %, 91.2 %, and 81 % for the left hip, respectively. The AUROC was 0.939 for the lumbar vertebrae and 0.947 for the left hip, indicating a satisfactory performance in osteoporosis screening. The present study is the first to develop a deep learning model based on KUB radiographs to predict lumbar spine and femoral BMD. Our model demonstrated a promising correlation between the predicted and DXA-measured BMD in both the lumbar vertebrae and hip, showing great potential for the opportunistic screening of osteoporosis.


Bone Density , Neural Networks, Computer , Osteoporosis , Humans , Osteoporosis/diagnostic imaging , Female , Male , Middle Aged , Aged , Kidney/diagnostic imaging , Absorptiometry, Photon/methods , Urinary Bladder/diagnostic imaging , Radiography/methods , Deep Learning , Lumbar Vertebrae/diagnostic imaging , Adult , ROC Curve
9.
IEEE J Transl Eng Health Med ; 12: 401-412, 2024.
Article En | MEDLINE | ID: mdl-38606393

Osteoporosis is a prevalent chronic disease worldwide, particularly affecting the aging population. The gold standard diagnostic tool for osteoporosis is Dual-energy X-ray Absorptiometry (DXA). However, the expensive cost of the DXA machine and the need for skilled professionals to operate it restrict its accessibility to the general public. This paper builds upon previous research and proposes a novel approach for rapidly screening bone density. The method involves utilizing near-infrared light to capture local body information within the human body. Deep learning techniques are employed to analyze the obtained data and extract meaningful insights related to bone density. Our initial prediction, utilizing multi-linear regression, demonstrated a strong correlation (r = 0.98, p-value = 0.003**) with the measured Bone Mineral Density (BMD) obtained from Dual-energy X-ray Absorptiometry (DXA). This indicates a highly significant relationship between the predicted values and the actual BMD measurements. A deep learning-based algorithm is applied to analyze the underlying information further to predict bone density at the wrist, hip, and spine. The prediction of bone densities in the hip and spine holds significant importance due to their status as gold-standard sites for assessing an individual's bone density. Our prediction rate had an error margin below 10% for the wrist and below 20% for the hip and spine bone density.


Bone Density , Osteoporosis , Humans , Aged , Osteoporosis/diagnosis , Bone and Bones , Absorptiometry, Photon/methods , Spine
10.
Calcif Tissue Int ; 114(6): 592-602, 2024 Jun.
Article En | MEDLINE | ID: mdl-38678512

Sarcopenia may increase non-alcoholic fatty liver disease (NAFLD) risk, but prevalence likely varies with different diagnostic criteria. This study examined the prevalence of sarcopenia and its defining components in adults with and without NAFLD and whether it varied by the method of muscle mass assessment [bioelectrical impedance (BIA) versus dual-energy X-ray absorptiometry (DXA)] and adjustment (height2 versus BMI). Adults (n = 7266) in the UK Biobank study (45-79 years) with and without NAFLD diagnosed by MRI, were included. Sarcopenia was defined by the 2018 European Working Group on Sarcopenia in Older People definition, with low appendicular skeletal muscle mass (ASM) assessed by BIA and DXA and adjusted for height2 or BMI. Overall, 21% of participants had NAFLD and the sex-specific prevalence of low muscle strength (3.6-7.2%) and sarcopenia (0.1-1.4%) did not differ by NAFLD status. However, NAFLD was associated with 74% (males) and 370% (females) higher prevalence of low ASM when adjusted for BMI but an 82% (males) to 89% (females) lower prevalence when adjusted for height2 (all P < 0.05). The prevalence of impaired physical function was 40% (males, P = 0.08) to 123% (females, P < 0.001) higher in NAFLD. In middle-aged and older adults, NAFLD was not associated with a higher prevalence of low muscle strength or sarcopenia but was associated with an increased risk of impaired physical function and low muscle mass when adjusted for BMI. These findings support the use of adiposity-based adjustments when assessing low muscle mass and the assessment of physical function in NAFLD.


Absorptiometry, Photon , Non-alcoholic Fatty Liver Disease , Sarcopenia , Humans , Sarcopenia/epidemiology , Sarcopenia/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/physiopathology , Male , Female , Middle Aged , United Kingdom/epidemiology , Aged , Prevalence , Absorptiometry, Photon/methods , Biological Specimen Banks , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiopathology , Muscle Strength/physiology , Electric Impedance , Body Mass Index , UK Biobank
11.
Sci Rep ; 14(1): 7005, 2024 03 25.
Article En | MEDLINE | ID: mdl-38523143

Metabolic Syndrome (MetS) and bone mineral density (BMD) have shown a controversial link in some studies. This research aims to study their association in males over 50 and postmenopausal females using National Health and Nutrition Examination Survey (NHANES) data. Postmenopausal females and males over 50 were included in the study. MetS was defined by the National Cholesterol Education Program Adult Treatment Panel III guidelines. BMD values were measured at the thoracic spine, lumbar spine, and pelvis as the primary outcome. Weighted multivariate general linear models have been employed to explore the status of BMD in patients with MetS. Additionally, interaction tests and subgroup analyses were conducted. Utilizing the NHANES database from 2003 to 2006 and 2011-2018, we included 1924 participants, with 1029 males and 895 females. In postmenopausal women, after adjusting for covariates, we found a positive correlation between MetS and pelvic (ß: 0.030 [95%CI 0.003, 0.06]) and thoracic (ß: 0.030 [95%CI 0.01, 0.06]) BMD, though not for lumbar spine BMD (ß: 0.020 [95%CI - 0.01, 0.05]). In males over 50 years old, MetS was positively correlated with BMD in both Model 1 (without adjusting for covariates) and Model 2 (considering age and ethnicity). Specifically, Model 2 revealed a positive correlation between MetS and BMD at the pelvis (ß: 0.046 [95%CI 0.02, 0.07]), thoracic spine (ß: 0.047 [95%CI 0.02, 0.07]), and lumbar spine (ß: 0.040 [95%CI 0.02, 0.06]). Subgroup analysis demonstrated that the relationship between MetS and BMD remained consistent in all strata, underscoring the stability of the findings. In postmenopausal women, after adjusting for all covariates, a significant positive correlation was observed between MetS and BMD in the pelvis and thoracic spine, whereas this correlation was not significant for lumbar spine BMD. Conversely, in males, positive correlations between MetS and BMD at the lumbar spine, thoracic spine, and pelvis were identified in Model 2, which adjusted for age and ethnicity; however, these correlations disappeared after fully adjusting for all covariates. These findings highlight the potential moderating role of gender in the impact of MetS on BMD.


Metabolic Syndrome , Osteoporosis , Adult , Male , Humans , Female , Middle Aged , Bone Density , Metabolic Syndrome/epidemiology , Nutrition Surveys , Postmenopause , Lumbar Vertebrae/diagnostic imaging , Absorptiometry, Photon/methods
12.
Arch Osteoporos ; 19(1): 20, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38520592

We used data from a Fracture Liaison Service to compare the mean T-scores of obese and non-obese patients after a recent fragility fracture. After adjusting for age, sex, and diabetes mellitus, T-score values were significantly higher at all measurement sites in obese patients, with a mean difference of 1 SD. PURPOSE: This study aimed to compare the mean T-scores of obese and non-obese patients after recent fragility fractures. METHODS: Over a period of 5 and a half years, from January 2016 to May 2021, patients from a fracture liaison service were identified and their demographic characteristics, osteoporosis risk factors, BMD T-scores, and fracture sites were compared between obese (BMI ≥ 30 kg/m2) and non-obese (19 kg/m2 < BMI < 30 kg/m2) patients. RESULTS: A total of 712 patients were included (80.1% women; mean age 73.8 ± 11.3 years). Sixteen % had type 2 diabetes mellitus and 80% had a major osteoporotic fracture (MOF). 135 patients were obese and 577 non-obese, with obese patients younger (p < 0.001) and more frequently female (p = 0.03). Obese patients presented with fewer hip fractures (10% vs. 21%, p = 0.003) and more proximal humerus fractures (16% vs. 7%, p < 0.001) than non-obese patients. After adjusting for age, sex, and diabetes mellitus, BMD T-score values were significantly higher at all measurement sites (lumbar spine, total hip, and femoral neck) in obese patients than in non-obese patients for all types of fractures, with a mean difference of 1 standard deviation (p < 0.001 for all comparisons). The same results were observed in the population limited to MOF. CONCLUSIONS: Given the crucial role of BMD T-score in determining the need for anti-osteoporotic medication following fragility fractures, it is reasonable to question the existing T-score thresholds in obese patients.


Diabetes Mellitus, Type 2 , Osteoporotic Fractures , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Male , Bone Density , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Obesity/complications , Obesity/epidemiology , Lumbar Vertebrae , Absorptiometry, Photon/methods
13.
J Bone Miner Res ; 39(3): 260-270, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38477793

Impaired muscle parameters may further compromise the already compromised skeleton in individuals with OI. This cross-sectional study aimed to compare muscle function and body composition in adults with various OI types and healthy controls. Sixty-eight adults with OI (mean age 42.2 yr; 27 men) and 68 healthy age- and sex-matched controls were recruited. Maximal isometric muscle force was assessed by handheld dynamometry (hand grip, hip flexors, shoulder abductors, and ankle dorsiflexors), muscle endurance by posture maintenance tests (shoulder abduction, hip flexion, and wall sit), and functional lower limb strength by 30-s chair rise test. In a sub cohort, dynamic muscle function (peak power and force) was assessed by a ground reaction force plate, and lean and fat mass, muscle and fat cross-sectional area (CSA), and muscle density by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Multiple linear regression models were fitted with group (OI type I, III, IV/V, or controls), country, sex, and age in the fixed effects part. Overall, adults with various types of OI had lower isometric, endurance, and functional muscle strength (mean difference [MD] = OI type I: 19-43%, OI type IV/V: 25-68%, OI type III: 20-72%) compared to controls. Furthermore, adults with OI type I had lower dynamic muscle function (peak force [MD = 25-29%] and power [MD = 18-60%]), lean mass (MD = 10-17%), muscle CSA (MD = 9-21%), and muscle density (MD = 2-3%) but higher adiposity indices (MD = 24-42%) compared to controls. Functional lower limb strength and maximal muscle force were significantly different between OI types, whereas muscle endurance was not. To conclude, adults with OI present with markedly impaired muscle function which may partially be explained by their altered body composition. Our findings emphasize the need for proper assessment of various muscle parameters and (research into) appropriate and safe muscle strengthening approaches in this population.


Osteogenesis Imperfecta , Male , Adult , Humans , Cross-Sectional Studies , Hand Strength , Absorptiometry, Photon/methods , Muscle, Skeletal
14.
Osteoporos Int ; 35(5): 919-927, 2024 May.
Article En | MEDLINE | ID: mdl-38507080

Sheehan's syndrome (SS) is a rare but well-characterized cause of hypopituitarism. Data on skeletal health is limited and on microarchitecture is lacking in SS patients. PURPOSE: We aimed to explore skeletal health in SS with bone mineral density (BMD), turnover, and microarchitecture. METHODS: Thirty-five patients with SS on stable replacement therapy for respective hormone deficiencies and 35 age- and BMI-matched controls were recruited. Hormonal profile and bone turnover markers (BTMs) were measured using electrochemiluminescence assay. Areal BMD and trabecular bone score were evaluated using DXA. Bone microarchitecture was assessed using a second-generation high-resolution peripheral quantitative computed tomography. RESULTS: The mean age of the patients was 45.5 ± 9.3 years with a lag of 8.3 ± 7.2 years prior to diagnosis. Patients were on glucocorticoid (94%), levothyroxine (94%), and estrogen-progestin replacement (58%). None had received prior growth hormone (GH) replacement. BTMs (P1NP and CTX) were not significantly different between patients and controls. Osteoporosis (26% vs. 16%, p = 0.01) and osteopenia (52% vs. 39%, p = 0.007) at the lumbar spine and femoral neck (osteoporosis, 23% vs. 10%, p = 0.001; osteopenia, 58% vs. 29%, p = 0.001) were present in greater proportion in SS patients than matched controls. Bone microarchitecture analysis revealed significantly lower cortical volumetric BMD (vBMD) (p = 0.02) at the tibia, with relative preservation of the other parameters. CONCLUSION: Low areal BMD (aBMD) is highly prevalent in SS as compared to age- and BMI-matched controls. However, there were no significant differences in bone microarchitectural measurements, except for tibial cortical vBMD, which was lower in adequately treated SS patients.


Bone Diseases, Metabolic , Hypopituitarism , Osteoporosis , Female , Humans , Adult , Middle Aged , Bone Density , Osteoporosis/diagnostic imaging , Hypopituitarism/diagnostic imaging , Hypopituitarism/drug therapy , Tomography, X-Ray Computed , Tibia/diagnostic imaging , Radius , Absorptiometry, Photon/methods
15.
Clin Anat ; 37(4): 466-471, 2024 May.
Article En | MEDLINE | ID: mdl-38461466

Osteoporosis onset is relatively asymptomatic, the condition often being identified only once a significant fracture occurs, leading to a potentially serious prognosis. Currently, early identification of osteoporosis is complicated by the difficulty in measuring bone density without using x-ray absorptiometry or quantitative ultrasound, so a simpler method for estimating bone density is needed. Given that bone is reported to have a lower specific heat than other tissues, we investigated the possibility of estimating bone density using this difference in tissue thermal properties. The tibia medial surface (shin) and medial malleolus (ankle) of 68 healthy volunteers were cooled using an ice bag, and skin surface temperatures and heat flow were recorded. These measurements were then used to calculate the heat energy transferred per unit temperature. Bone density was estimated by quantitative ultrasound using the T score OSISD, which is the participant's osteo sono-assessment index (OSI) compared to the average OSI of young adults. The heat energy transfer per unit temperature at the shin, but not the ankle, showed a significant negative correlation with T score OSISD (r = -0.413, p = 0.001). Multiple regression analysis showed that heat energy transfer per unit temperature at the shin was a significant predictor of T score OSISD, along with age and height. These results show that tissue thermal property measurements are useful for estimating bone density.


Fractures, Bone , Osteoporosis , Young Adult , Humans , Bone Density , Hot Temperature , Absorptiometry, Photon/methods
16.
Calcif Tissue Int ; 114(4): 397-408, 2024 Apr.
Article En | MEDLINE | ID: mdl-38483546

PURPOSE: To investigate the difference in vertebral morphology and bone mineral density (BMD) between grade 1 VFs and non-fractured participants in the Chinese population to shed light on the clinical significance of grade 1 VFs from various perspectives. METHODS: This retrospective cohort study included patients who received a chest low-dose computed tomography (LDCT) scan for health examination and visited the First Affiliated Hospital of Zhengzhou University, Henan, China, from October 2019 to August 2022. Data were analyzed from March 2023 to July 2023. The main outcome of this study was the difference in morphological parameters and BMD between grade 1 VFs and non-fractured participants. The prevalence of grade 1 VFs in China populations was calculated. The difference in BMD of three fracture types in the Grade 1 group was also evaluated. RESULTS: A total of 3652 participants (1799 males, 54.85 ± 9.02 years, range, 40-92 years; 1853 females, 56.00 ± 9.08 years, range, 40-93 years) were included. The prevalence of grade 2 and 3 increase with age. The prevalence of grade 1 VFs gradually increases ≤ 50y to 60-69y group, but there is a decrease in the ≥ 70 years male group (6.6%) and a rise in the female group (25.5%). There was no significant statistical difference observed in vertebral shape indices (VSI) and BMD between the Grade 1 group and the no-fractured group aged < 50 years old except the wedge index in male. The biconcavity index did not differ between the non-fractured group and the Grade 1 group in men aged 50-59 years, whereas a significant statistical difference was observed in women. Additionally, the results of BMD were consistent with these findings. For the 40-59 years age group, there were significant differences between the compression deformity group and the other groups. CONCLUSIONS: The grade 1 group had higher VSI and lower BMD than the non-fractured group, suggesting an association between the Grade 1 group and osteoporosis in individuals aged over 50 for women and over 60 for men. Different fracture types have significant variations in BMD among middle-aged people. The prevalence of grade 1 VFs exhibits an age-related increase in both genders, with opposite trends observed between older males and females. We suggested VSI can aid physicians in the diagnosis of grade 1 VFs.


Osteoporosis , Osteoporotic Fractures , Spinal Fractures , Middle Aged , Humans , Female , Male , Adult , Bone Density , Spinal Fractures/epidemiology , Retrospective Studies , Spine , Osteoporosis/epidemiology , Prevalence , Absorptiometry, Photon/methods , Osteoporotic Fractures/epidemiology
17.
Sci Rep ; 14(1): 6650, 2024 03 20.
Article En | MEDLINE | ID: mdl-38503875

Osteopenia is a condition characterized by low bone mineral density (BMD) that increases fracture risk, particularly among postmenopausal women (PMW). This study aimed to determine the effects of Kinect-based VRT on BMD and fracture risk in PMW with osteopenia. The study was a prospective, two-arm, parallel-design, randomized controlled trial. The study enrolled 52 participants, 26 randomly assigned to each group. In the experimental group, Kinect-based VRT was provided thrice weekly for 24 weeks for 45 min/session. Both groups were instructed to engage in a daily 30-min walk outdoors. The fracture risk assessment tool (FRAX) was used to calculate fracture risk, and dual-energy X-ray absorptiometry was used to measure lumbar spine and femur neck BMD. Both variables were assessed at baseline and 24 weeks afterwards. After 24 weeks of Kinect-based VRT, the experimental group showed significant BMD increases in the right and left femoral necks and lumbar spine (p value < 0.001). In the control group, the BMD at the right and left femoral necks showed fewer significant changes (p value < 0.022 and 0.004, respectively). In the control group, lumbar spine BMD did not change (p = 0.57). The experimental group showed significantly lower FRAX scores for hip fracture prediction (HFP) and hip prediction of major osteoporotic (HPMO) at both femoral necks (p value < 0.001) than the control group (p = 0.05 and p = 0.01, respectively), but no significant change at the left femoral neck for HFP (p = 0.66) or HPMO (p = 0.26). These findings indicate that a Kinect-based VRT intervention resulted in significantly increased BMD and a reduced fracture risk, as predicted by HFP and HPMO measurements. These improvements were more pronounced in the experimental group than in the control group. Thus, Kinect-based VRT may be utilized as an effective intervention to improve BMD and reduce fracture risk in postmenopausal women with osteopenia.


Bone Diseases, Metabolic , Hip Fractures , Female , Humans , Bone Density , Postmenopause , Prospective Studies , Bone Diseases, Metabolic/complications , Absorptiometry, Photon/methods , Risk Assessment/methods
18.
Bone ; 182: 117070, 2024 May.
Article En | MEDLINE | ID: mdl-38460828

Bone Health Index (BHI) has been proposed as a useful instrument for assessing bone health in children. However, its relationship with fracture risk remains unknown. We aimed to investigate whether BHI is associated with bone mineral density (BMD) and prevalent fracture odds in children from the Generation R Study. We also implemented genome-wide association study (GWAS) and polygenic score (PGS) approaches to improve our understanding of BHI and its potential. In total, 4150 children (49.4 % boys; aged 9.8 years) with genotyped data and bone assessments were included in this study. BMD was measured across the total body (less head following ISCD guidelines) using a GE-Lunar iDXA densitometer; and BHI was determined from the hand DXA scans using BoneXpert®. Fractures were self-reported collected with home questionnaires. The association of BHI with BMD and fractures was evaluated using linear models corrected for age, sex, ethnicity, height, and weight. We observed a positive correlation between BHI and BMD (ρ = 0.32, p-value<0.0001). Further, every SD decrease in BHI was associated with an 11 % increased risk of prevalent fractures (OR:1.11, 95 % CI 1.00-1.24, p-value = 0.05). Our BHI GWAS identified variants (lead SNP rs1404264-A, p-value = 2.61 × 10-14) mapping to the ING3/CPED1/WNT16 locus. Children in the extreme tails of the BMD PGS presented a difference in BHI values of -0.10 standard deviations (95% CI -0.14 to -0.07; p-value<0.0001). On top of the demonstrated epidemiological association of BHI with both BMD and fracture risk, our results reveal a partially shared biological background between BHI and BMD. These findings highlight the potential value of using BHI to screen children at risk of fracture.


Bone Density , Fractures, Bone , Male , Child , Humans , Female , Bone Density/genetics , Genome-Wide Association Study , Fractures, Bone/epidemiology , Fractures, Bone/genetics , Absorptiometry, Photon/methods , Bone and Bones , Homeodomain Proteins , Tumor Suppressor Proteins
19.
Osteoporos Int ; 35(6): 1019-1027, 2024 Jun.
Article En | MEDLINE | ID: mdl-38448781

Bone mineral density measured at the ultra-distal forearm site was associated with any fracture, as well as distal radius fracture in women from a longitudinal cohort study. PURPOSE: Femoral neck (BMDhip) and lumbar spine (BMDspine) bone mineral density (BMD) are routinely used to assess fracture risk. More data are needed to understand how ultra-distal forearm BMD (BMDUDforearm) may assist fracture prediction. METHODS: Using a Lunar DPX-L, Geelong Osteoporosis Study women (n = 1026), aged 40-90 years, had BMD measured. Incident low-trauma fractures were radiologically verified. Using Cox proportional hazard models, hazard ratios (HR) were calculated for BMDUDforearm as a continuous variable (expressed as a one-unit decrease in T-score) and a categorical variable (normal/osteopenia/osteoporosis). Areas under receiver operating characteristics (AUROC) curves were calculated. Analyses were conducted for any fracture and distal radius fractures. RESULTS: During 14,270 person-years of follow-up, there were 318 fractures (85 distal radius). In adjusted models, continuous BMDUDforearm was associated with any (HR 1.26;95%CI 1.15-1.39) and distal radius fractures (HR 1.59;95%CI 1.38-1.83). AUROCs for continuous BMDUDforearm, 33% forearm(BMD33%forearm), BMDhip, BMDspine, and FRAX without BMD were similar for any fracture (p > 0.05). For distal radius fracture, the AUROC for BMDUDforearm was higher than other sites and FRAX (p < 0.05). In adjusted models, those with osteoporosis had a higher likelihood of any fracture (HR 2.12; 95%CI 1.50-2.98). For distal radius fractures, both osteopenia and osteoporosis had a higher risk (HR 4.31; 95%CI 2.59-7.15 and 4.81; 95%CI 2.70-8.58). AUROCs for any fracture were similar for categorical BMD at all sites but lower for FRAX (p < 0.05). For distal radius fractures, the AUROC for BMDUDforearm, was higher than other sites and FRAX (p < 0.05). CONCLUSION: Ultra-distal forearm BMD may aid risk assessments for any distal radius fractures.


Absorptiometry, Photon , Bone Density , Forearm , Osteoporosis, Postmenopausal , Osteoporotic Fractures , Radius Fractures , Humans , Female , Bone Density/physiology , Aged , Osteoporotic Fractures/physiopathology , Osteoporotic Fractures/epidemiology , Osteoporotic Fractures/etiology , Middle Aged , Radius Fractures/epidemiology , Radius Fractures/physiopathology , Radius Fractures/etiology , Adult , Aged, 80 and over , Forearm/physiopathology , Forearm/physiology , Absorptiometry, Photon/methods , Osteoporosis, Postmenopausal/physiopathology , Osteoporosis, Postmenopausal/complications , Osteoporosis, Postmenopausal/epidemiology , Risk Assessment/methods , Incidence , Femur Neck/physiopathology , Longitudinal Studies
20.
J Neurosurg Spine ; 40(6): 708-716, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38457796

OBJECTIVE: The purpose of this retrospective study was to evaluate the relationship between bone mineral density (BMD), as assessed with dual-energy x-ray absorptiometry (DEXA), and Hounsfield units (HU) measured in volumes of interest (VOIs) and regions of interest (ROIs) on lumbar spine CT. METHODS: A retrospective analysis was performed on data of lumbar vertebrae obtained from patients who underwent both DEXA and lumbar spine CT scan within a 6-month period. Vertebrae with a history of compression fracture, infectious spondylitis, cement reinforcement, or lumbar surgery were excluded. HU measurements were performed in the VOI and ROI (midaxial, midcoronal, and midsagittal sections) with CT, whereas BMD was assessed with DEXA. Statistical analyses, including correlation assessments and receiver operating characteristic (ROC) curve analyses, were performed. RESULTS: This analysis included 712 lumbar vertebrae, with a median patient age of 72.0 years. BMD values and HU measurements in the VOI increased sequentially from L1 to L4, whereas HU values in the ROI did not show a consistent pattern. HU values in the VOI consistently showed a stronger correlation with BMD than those in the ROI. ROC analysis revealed patient-level cutoff values for the diagnosis of osteoporosis at different lumbar vertebral levels with high sensitivity and specificity, as well as an excellent area under the curve. CONCLUSIONS: This is the first study to introduce a novel approach using the HU value in the VOI to assess bone health at the lumbar spine. There is a strong correlation between the HU value in the VOI and BMD, and the HU value in the VOI can be used to predict osteoporosis.


Absorptiometry, Photon , Bone Density , Lumbar Vertebrae , Tomography, X-Ray Computed , Humans , Lumbar Vertebrae/diagnostic imaging , Bone Density/physiology , Male , Female , Absorptiometry, Photon/methods , Retrospective Studies , Aged , Middle Aged , Tomography, X-Ray Computed/methods , Aged, 80 and over , Adult , Osteoporosis/diagnostic imaging , ROC Curve
...