Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Cad Saude Publica ; 35(7): e00198618, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31411285

ABSTRACT

Benzene is one of the most important substances for assessment, due to its significant use, the environmental contamination resulting from its emission and the effects on human health. It is classified by the International Agency for Research on Cancer (IARC) as a known carcinogen to humans (group 1) and associated with the development of leukemia. In general, the population is exposed to this substance by inhaling contaminated air, which varies according to the location and intensity of its potential sources. The petrochemical industry is one of the most important sources of this compound. The municipality of Duque de Caxias, specifically the Campos Elíseos district, in Rio de Janeiro State, Brazil, houses the Industrial Complex of Campos Elíseos (PICE), a grouping of over 25 industries, which includes the second largest oil refinery in Brazil. Environmental contamination from the PICE has been recognized, but there is a lack of studies concerning its impact on the health of the surrounding population. S-phenylmercapturic acid (S-PMA) concentrations ranging from 0.80 to 8.01µg.g-1 creatinine were observed in the local population, apparently related to hematological changes also observed in exposed population. The quantifiable presence of urinary S-PMA from the benzene metabolism is associated with the fact that 60% of the participants present specific hematological changes, which may be due to the environmental benzene exposure. The allele and genotype frequencies of the CYP2E1 and NQO1 enzymes observed in the study population were similar to those reported in other studies. The presence of the variant allele in the NQO1 genotype may be a risk factor for the observed hematological changes.


Subject(s)
Acetylcysteine/analogs & derivatives , Benzene , Environmental Exposure , Polymorphism, Genetic/genetics , Acetylcysteine/urine , Benzene/adverse effects , Biomarkers/urine , Brazil , Causality , Chemical Industry , Creatinine/urine , Cytochrome P-450 CYP2E1/analysis , Cytochrome P-450 CYP2E1/genetics , Environmental Exposure/adverse effects , Female , Gene Frequency/genetics , Health Surveys/statistics & numerical data , Hematologic Diseases/chemically induced , Humans , Male , NAD(P)H Dehydrogenase (Quinone)/analysis , NAD(P)H Dehydrogenase (Quinone)/genetics , Odds Ratio , Residence Characteristics/statistics & numerical data
2.
Article in English | MEDLINE | ID: mdl-31242656

ABSTRACT

Environmental and occupational exposure to benzene from fuels is a major cause for concern for national and international authorities, as benzene is a known carcinogen in humans and there is no safe limit for exposure to carcinogens. The objective of this study was to evaluate the genotoxic effects of chronic occupational exposure to benzene among two groups of workers: filling station workers (Group I) and security guards working at vehicles entrances (Group II), both on the same busy highway in Rio de Janeiro, Brazil. Sociodemographic data on the workers were evaluated; the concentration of benzene/toluene (B/T) in atmospheric air and individual trans,trans-muconic acid (ttMA) and S-phenylmercapturic acid (S-PMA) were measured; oxidative stress was analyzed by catalase (CAT), glutathione S-transferase (GST), superoxide dismutase (SOD), thiol groups (THIOL) and malondialdehyde (MDA); genotoxicity was measured by metaphases with chromosomal abnormalities (MCA) and nuclear abnormalities, comet assay using the enzyme formamidopyrimidine DNA glycosylase (C-FPG), and methylation of repetitive element LINE-1, CDKN2B and KLF6 genes. Eighty-six workers participated: 51 from Group I and 35 from Group II. The B/T ratio was similar for both groups, but Group I had greater oscillation of benzene concentrations because of their work activities. No differences in ttMA and S-PMA, and no clinical changes were found between both groups, but linearity was observed between leukocyte count and ttMA; and 15% of workers had leukocyte counts less than 4.5 × 109 cells L-1, demanding close worker's attention. No differences were observed between the two groups for THIOL, MDA, MCA, or nuclear abnormalities. A multiple linear relationship was obtained for the biomarkers MCA and C-FPG. A significant correlation was found between length of time in current job and the biomarkers C-FPG, MCA, GST, and MDA. Although both populations had chronic exposure to benzene, the filling station workers were exposed to higher concentrations of benzene during their work activities, indicating an increased risk of DNA damage.


Subject(s)
Air Pollutants, Occupational/toxicity , Benzene/toxicity , Carcinogens/toxicity , Occupational Exposure/adverse effects , Acetylcysteine/analogs & derivatives , Acetylcysteine/urine , Adolescent , Adult , Air Pollutants, Occupational/analysis , Benzene/analysis , Biomarkers/blood , Biomarkers/urine , Brazil , Carcinogens/analysis , Chromosome Aberrations , Comet Assay , DNA Damage , Environmental Monitoring , Female , Glutathione Transferase/blood , Humans , Male , Malondialdehyde/blood , Middle Aged , Occupational Exposure/analysis , Oxidative Stress/drug effects , Toluene/analysis , Young Adult
3.
Cad. Saúde Pública (Online) ; 35(7): e00198618, 2019. tab
Article in English | LILACS | ID: biblio-1011709

ABSTRACT

Benzene is one of the most important substances for assessment, due to its significant use, the environmental contamination resulting from its emission and the effects on human health. It is classified by the International Agency for Research on Cancer (IARC) as a known carcinogen to humans (group 1) and associated with the development of leukemia. In general, the population is exposed to this substance by inhaling contaminated air, which varies according to the location and intensity of its potential sources. The petrochemical industry is one of the most important sources of this compound. The municipality of Duque de Caxias, specifically the Campos Elíseos district, in Rio de Janeiro State, Brazil, houses the Industrial Complex of Campos Elíseos (PICE), a grouping of over 25 industries, which includes the second largest oil refinery in Brazil. Environmental contamination from the PICE has been recognized, but there is a lack of studies concerning its impact on the health of the surrounding population. S-phenylmercapturic acid (S-PMA) concentrations ranging from 0.80 to 8.01μg.g-1 creatinine were observed in the local population, apparently related to hematological changes also observed in exposed population. The quantifiable presence of urinary S-PMA from the benzene metabolism is associated with the fact that 60% of the participants present specific hematological changes, which may be due to the environmental benzene exposure. The allele and genotype frequencies of the CYP2E1 and NQO1 enzymes observed in the study population were similar to those reported in other studies. The presence of the variant allele in the NQO1 genotype may be a risk factor for the observed hematological changes.


O benzeno é uma das substâncias mais importantes para a biomonitorização, em função do uso disseminado, da contaminação ambiental que resulta da emissão e dos efeitos sobre a saúde humana. O benzeno é classificado pela Agência Internacional de Pesquisa em Câncer (IARC) como carcinógeno conhecido em seres humanos (grupo 1) e está associado ao desenvolvimento de leucemias. Em geral, a população fica exposta a essa substância através da inalação do ar contaminado, que varia de acordo com a localização e a intensidade das fontes potenciais. A indústria petroquímica é uma das fontes mais importantes desse composto. O Município de Duque de Caxias, especificamente o Distrito de Campos Elíseos, no Estado do Rio de Janeiro, Brasil, é sede do Polo Industrial de Campos Elíseos (PICE), um conjunto de mais de 25 indústrias que inclui a segunda maior refinaria de petróleo no Brasil. A contaminação ambiental produzida pelo PICE já é conhecida, mas faltam estudos sobre o impacto na saúde da população local. Foram observadas concentrações de ácido S-fenilmercaptúrico (S-PMA) entre 0,80 e 8,01μg.g-1 creatinina na população local, aparentemente implicadas nas alterações hematológicas também observadas na população exposta. A presença quantificável do S-PMA urinário do metabolismo do benzeno está associada ao fato de 60% dos participantes apresentarem alterações hematológicas específicas, o que pode ser devido à exposição ambiental ao benzeno. As frequências alélicas e genotípicas das enzimas CYP2E1 e NQO1, observadas na população do estudo, foram semelhantes àquelas relatadas em outros estudos. A presença da variante alélica do genótipo NQO1 pode ser um fator de risco para as alterações hematológicas observadas.


El benceno es una de las sustancias más importantes susceptibles de estudio, debido a su uso significativo, la contaminación ambiental resultante de sus emisiones y sus efectos sobre la salud humana. Está clasificado por el Centro Internacional de Investigaciones sobre el Cáncer (IARC) como un conocido carcinógeno para los humanos (grupo 1) y está asociado con el desarrollo de leucemias. En general, la población está expuesta a esta sustancia por inhalación de aire contaminado, que varía según el lugar y la intensidad de las emisiones. La industria petroquímica es un de las fuentes emisoras más importantes de este compuesto. La municipalidad de Duque de Caxias, específicamente el distrito de Campos Elíseos, en Río de Janeiro, Brasil, alberga el Complejo Industrial de Campos Elíseos (PICE), un conglomerado de más de 25 industrias, que incluye la segunda mayor refinería de petróleo en Brasil. La contaminación ambiental procedente del PICE ya ha sido reconocida, pero es notable la falta de estudios respecto a su impacto en la salud de la población circundante. Se observaron en la población local concentraciones de ácido s-fenilmercaptúrico (SPMA por sus siglas en inglés) que oscilan entre los 0,80 a 8,01μg.g-1 creatinina, aparentemente relacionadas con cambios hematológicos también hallados en la población expuesta. La presencia cuantificable de SPMA en la orina, procedente del metabolismo del benceno, está asociada con el hecho de que un 60% de los participantes presenta cambios específicos hematológicos, los cuales tal vez se deben a la exposición ambiental al benceno. Las frecuencias alélicas y genotípicas del CYP2E1 y enzimas NQO1 observadas en el estudio fueron similares a las reportadas en otros estudios. La presencia de la variante alélica en el genotipo NQO1 podría ser un factor de riesgo para los cambios hematológicos observados.


Subject(s)
Humans , Male , Female , Polymorphism, Genetic/genetics , Acetylcysteine/analogs & derivatives , Benzene/adverse effects , Environmental Exposure/adverse effects , Acetylcysteine/urine , Brazil , Biomarkers/urine , Odds Ratio , Chemical Industry , Residence Characteristics/statistics & numerical data , Causality , Health Surveys/statistics & numerical data , NAD(P)H Dehydrogenase (Quinone)/analysis , NAD(P)H Dehydrogenase (Quinone)/genetics , Cytochrome P-450 CYP2E1/analysis , Cytochrome P-450 CYP2E1/genetics , Creatinine/urine , Gene Frequency/genetics , Hematologic Diseases/chemically induced
4.
J Sep Sci ; 40(2): 550-557, 2017 01.
Article in English | MEDLINE | ID: mdl-27860299

ABSTRACT

A new highly sensitive and environmentally friendly analytical method, using low-temperature partition extraction and ultra-high-performance liquid chromatography with tandem mass spectrometry, without the use of a labeled analyte, was developed and validated to determine and quantify urinary S-phenylmercapturic acid in urine samples. The World Health Organization, in its guidelines for air quality in Europe, recognizes that benzene is carcinogenic to humans and there is no safe level of exposure. Urinary S-phenylmercapturic acid is a sensitive and specific biological marker of exposure to benzene. The new analytical method, extraction, and analysis, were linear in the working range between 0.1 and 200.0 µg/L, precise (relative standard deviation lower than 6.0%), accurate (97.0-105.0%), and sensitive. The method's limits of detection and quantification were 0.02 and 0.084 µg/L, respectively. The recovery with the low-temperature partition extraction was 96.1%, with relative standard deviation less than 3.8%. The method is simple, accurate, and reproducible, and has been successfully applied in the evaluation of nonoccupational exposure to benzene, by urinary S-phenylmercapturic acid in urine samples.


Subject(s)
Acetylcysteine/analogs & derivatives , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Urinalysis/methods , Acetylcysteine/urine , Humans , Limit of Detection , Reproducibility of Results , Temperature , Urinalysis/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL