Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.282
Filter
1.
BMC Musculoskelet Disord ; 25(1): 700, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227794

ABSTRACT

BACKGROUND: The AGEs levels in tissues of diabetics and elderly tend to be higher than in normal individuals. This study aims to determine the effects of AGEs on Achilles tendon repair. MATERIALS AND METHODS: Thirty-six male eight-week-old Sprague Dawley rats were selected in this study. The rats were randomly divided into two experimental groups and a control group after the transection of the Achilles tendon. During the tendon repair, the experimental groups were injected around the Achilles tendon with 350mmol/L (low dose group) and 1000mmol/L (high dose group) D-ribose 0.2 ml respectively to increase the AGEs level, while in the control group were given the same amount of PBS. The injections were given twice a week for six weeks. Collagen-I, TNF-α, and IL-6 expression in the healed Achilles tendon was assessed. Additionally, macroscopic, pathological, and biomechanical evaluations of Achilles tendon repair were conducted. RESULTS: The repaired Achilles tendons in the high dose group showed severe swelling and distinctive adhesions. The histological score went up with the increase of the AGEs in the Achilles tendon (p<0.001). TNF- α and IL-6 in the Achilles tendon increased (p<0.001, p<0.001), and the production of collagen-I decreased with the accumulation of AGEs in the repaired Achilles tendon (p<0.001). The tensile strength of Achilles tendon in the high dose group was impaired significantly. CONCLUSION: In current study, the compromised tendon repair model induced by AGEs was successfully established in rat. The study demonstrated that AGEs significantly impair Achilles tendon repair.


Subject(s)
Achilles Tendon , Glycation End Products, Advanced , Rats, Sprague-Dawley , Tendon Injuries , Wound Healing , Animals , Male , Achilles Tendon/injuries , Achilles Tendon/pathology , Achilles Tendon/metabolism , Achilles Tendon/surgery , Achilles Tendon/drug effects , Glycation End Products, Advanced/metabolism , Tendon Injuries/metabolism , Tendon Injuries/pathology , Tendon Injuries/physiopathology , Rats , Wound Healing/drug effects , Tumor Necrosis Factor-alpha/metabolism , Collagen Type I/metabolism , Interleukin-6/metabolism , Disease Models, Animal
2.
Jt Dis Relat Surg ; 35(3): 654-661, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39189576

ABSTRACT

OBJECTIVES: This study aimed to evaluate the biomechanical and histological effects of fluoroquinolones on surgically repaired tendon healing. MATERIALS AND METHODS: The Achilles tendons of 40 Wistar rats (mean weight: 213.5 g; range 201 to 242 g) were bilaterally surgically cut and repaired. The rats were randomly divided into four groups: the first and third groups were designated as control groups and did not receive drug therapy, whereas the second and fourth groups received 300 mg/kg ciprofloxacin for a week after the surgical procedure. The first and second groups had both tendons dissected at the end of the first week, while the third and fourth groups were dissected at the end of the third week. The left tendons were examined biomechanically, while the right tendons were examined histologically. RESULTS: Statistical analysis revealed that the mean maximum tensile forces of tendons in the first and second groups were 5.2±1.84 N (range, 2.9 to 8.5 N) and 11.1±2.65 N (range, 7.3 to 13.9 N), respectively, which was found to be statistically significant (p< 0.05). At the end of the third week, mean maximum tensile forces of the third and fourth groups were determined to be 20.7±5.0 N (range, 22.1 to 29.8 N) and 28.7±4.6 N (range, 22.1 to 36.8 N), respectively, which was also statistically significant (p< 0.05). Histologically, our results were compatible. CONCLUSION: This study demonstrated that ciprofloxacin did not exhibit the expected adverse effects on surgically repaired tendon healing in the early stages but likely contributed to healing in the short term by affecting the inflammatory phase.


Subject(s)
Achilles Tendon , Ciprofloxacin , Rats, Wistar , Tendon Injuries , Tensile Strength , Wound Healing , Animals , Wound Healing/drug effects , Achilles Tendon/surgery , Achilles Tendon/injuries , Achilles Tendon/drug effects , Achilles Tendon/pathology , Rats , Ciprofloxacin/adverse effects , Ciprofloxacin/pharmacology , Tensile Strength/drug effects , Tendon Injuries/surgery , Tendon Injuries/drug therapy , Tendon Injuries/pathology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/adverse effects , Biomechanical Phenomena/drug effects , Male , Fluoroquinolones/pharmacology , Fluoroquinolones/adverse effects
3.
PLoS One ; 19(8): e0306678, 2024.
Article in English | MEDLINE | ID: mdl-39190750

ABSTRACT

Tendons are one of the major load-bearing tissues in the body; subjected to enormous peak stresses, and thus vulnerable to injury. Cellular responses to tendon injury are complex, involving inflammatory and repair components, with the latter employing both resident and recruited exogenous cell populations. Gene expression analyses are valuable tools for investigating tendon injury, allowing assessment of repair processes and pathological responses such as fibrosis, and permitting evaluation of therapeutic pharmacological interventions. Quantitative polymerase chain reaction (qPCR) is a commonly used approach for such studies, but data obtained by this method must be normalised to reference genes: genes known to be stably expressed between the experimental conditions investigated. Establishing suitable tendon injury reference genes is thus essential. Accordingly we investigated mRNA expression stability in a rat model of tendon injury, comparing both injured and uninjured tendons, and the effects of rapamycin treatment, at 1 and 3 weeks post injury. We used 11 candidate genes (18S, ACTB, AP3D1, B2M, CSNK2A2, GAPDH, HPRT1, PAK1IP1, RPL13a, SDHA, UBC) and assessed stability via four complementary algorithms (Bestkeeper, deltaCt, geNorm, Normfinder). Our results suggests that ACTB, CSNK2A2, HPRT1 and PAK1IP1 are all stably expressed in tendon, regardless of injury or drug treatment: any three of these would serve as universally suitable reference gene panel for normalizing qPCR expression data in the rat tendon injury model. We also reveal 18S, UBC, GAPDH, and SDHA as consistently poor scoring candidates (with the latter two exhibiting rapamycin- and injury-associated changes, respectively): these genes should be avoided.


Subject(s)
Achilles Tendon , Reference Standards , Tendon Injuries , Animals , Achilles Tendon/injuries , Achilles Tendon/pathology , Achilles Tendon/metabolism , Rats , Tendon Injuries/genetics , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Disease Models, Animal , Gene Expression Profiling/methods , Male , RNA, Messenger/genetics , Sirolimus/pharmacology , Rats, Sprague-Dawley
4.
PeerJ ; 12: e17905, 2024.
Article in English | MEDLINE | ID: mdl-39184386

ABSTRACT

Aim: In our study, we aimed to investigate the Achilles tendon thickness (ATT) and asprosin levels in patients with polycystic ovary syndrome (PCOS) and to evaluate the relationship of these parameters, which may be related to cardio-metabolic diseases. Methods: In our prospective cross-sectional study, 45 female patients with PCOS and 30 female healthy individuals similar in age were included. Serum dehydroepiandrosterone sulfate (DHEAS), total testosterone, anti-Müllerian hormone (AMH) and asprosin levels were measured using appropriate kits and homeostatic model assessment of insulin resistance (HOMA-IR), luteinizing hormone (LH) to follicle-stimulating hormone (FSH) ratio was calculated. ATT measurements were performed by two radiologists using a high-resolution ultrasound doppler system. Results: Serum DHEAS, total testosterone, AMH and asprosin levels, HOMA-IR value, LF/FSH ratio, and ATT values were higher in patients with PCOS compared to healthy controls. Correlation analysis was performed between ATT and other parameters in patients with PCOS. In univariate analysis, parameters associated with ATT were detected as asprosin, DHEAS and AMH. In the linear regression analysis performed with significant parameters, asprosin and DHEAS levels were found to be associated with ATT. Conclusion: ATT values and serum asprosin levels were found to be significantly increased in patients with PCOS, and there is a very close positive relationship between ATT and serum asprosin levels. For this reason, it was thought that ATT measurement could be a cheap, simple and non-invasive monitoring parameter that can be used in the routine cardiometabolic follow-up of patients with PCOS.


Subject(s)
Achilles Tendon , Fibrillin-1 , Insulin Resistance , Polycystic Ovary Syndrome , Testosterone , Humans , Female , Polycystic Ovary Syndrome/blood , Achilles Tendon/diagnostic imaging , Achilles Tendon/pathology , Adult , Cross-Sectional Studies , Fibrillin-1/blood , Prospective Studies , Testosterone/blood , Anti-Mullerian Hormone/blood , Young Adult , Case-Control Studies , Dehydroepiandrosterone Sulfate/blood , Biomarkers/blood , Peptide Fragments/blood , Adipokines
5.
Ann Anat ; 256: 152321, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39186962

ABSTRACT

BACKGROUND: The Achilles tendon is one of the thickest, largest, and strongest tendons in the human body. Biomechanically, the AT represents the conjoint tendon of the triceps surae muscle, placed in series with the plantar fascia (PF) to ensure force transmission from the triceps surae toward the toes during walking, running, and jumping. Commonly encountered in the diagnostic evaluation of heel pain, Achilles tendinopathy (AT) refers to a combination of pathological changes affecting the tendon itself often resulting from excessive repetitive stress and overuse. Nevertheless, increasing evidence demonstrates that structural alterations due to overuse or abnormal patterns of skeletal muscle activity are not necessarily restricted to the muscles or tendons but can also affect the fascial tissue. At the same time, there has been recent discussion regarding the role of the fascial tissue as a potential contributor to the pathophysiological mechanisms of the development of several musculoskeletal disorders including tendinopathies. To the best of our knowledge, ultrasound (US) imaging studies on the fascial structures related to the triceps surae complex, as well as their possible correlation with Achillodynia have never been presented in the current literature. METHODS: In the present study, a comparative US imaging evaluation of textural features of the suro-Achilleo-plantar complex was performed in 14 healthy controls and 14 symptomatic subjects complaining of midportion AT. The thickness of the Achilles tendon, paratenon, intermuscular fascia, and PF has been assessed with US. In addition, both groups underwent the Victorian Institute of Sport Assessment-Achilles (VISA-A), a disease-specific questionnaire that measures the severity of symptoms of AT. Correlations between quantitative ultrasound measures and VISA-A scores were determined through Pearson or Spearman's rho correlations. RESULTS: Our ultrasonographic findings revealed statistically significant differences (p<0.05) in Achilles tendon and paratenon thicknesses between AT patients and controls. No significant differences were observed between groups in PF at the calcaneal insertion as all mean measures were within the expected range of a normal PF on US imaging. In contrast, in tendinopathic subjects, the deep intermuscular fascia between medial gastrocnemius (MG) and soleus (SOL) muscles is significantly (p<0.01) and considerably thickened compared to those of healthy subjects. Moderate correlations exist between tendon and paratenon thicknesses (r= 0.54, p= 0.04) and between MG-SOL fascia and tendon thicknesses (r= 0.58, p= 0.03). Regarding symptom severity and US morphological findings, the Spearman ρ test showed no correlation. CONCLUSIONS: Our data demonstrate that, in symptomatic subjects, US alterations are not restricted to paratenon and intratendinous areas, but also affect upstream structures along the myofascial chain, resulting in thickening of the fascia interposed between MG and SOL muscles. Moreover, positive correlations were found between MG-SOL fascia thickening and abnormalities in AT, paratenon, and symptom severity. Thus, US alterations in the fascial system should be interpreted within the clinical context of patients with AT as they may in turn represent important predictors of subsequent clinical outcomes and could help healthcare professionals and clinicians to refine non-operative treatment strategies and rehabilitation protocols for this disease.


Subject(s)
Achilles Tendon , Fascia , Muscle, Skeletal , Tendinopathy , Ultrasonography , Humans , Achilles Tendon/diagnostic imaging , Achilles Tendon/pathology , Tendinopathy/diagnostic imaging , Tendinopathy/pathology , Female , Case-Control Studies , Adult , Fascia/diagnostic imaging , Fascia/pathology , Fascia/anatomy & histology , Male , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscle, Skeletal/anatomy & histology , Middle Aged
6.
Sci Rep ; 14(1): 15304, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961188

ABSTRACT

Inflammation, corticosteroids, and loading all affect tendon healing, with an interaction between them. However, underlying mechanisms behind the effect of corticosteroids and the interaction with loading remain unclear. The aim of this study was to investigate the role of dexamethasone during tendon healing, including specific effects on tendon cells. Rats (n = 36) were randomized to heavy loading or mild loading, the Achilles tendon was transected, and animals were treated with dexamethasone or saline. Gene and protein analyses of the healing tendon were performed for extracellular matrix-, inflammation-, and tendon cell markers. We further tested specific effects of dexamethasone on tendon cells in vitro. Dexamethasone increased mRNA levels of S100A4 and decreased levels of ACTA2/α-SMA, irrespective of load level. Heavy loading + dexamethasone reduced mRNA levels of FN1 and TenC (p < 0.05), while resolution-related genes were unaltered (p > 0.05). In contrast, mild loading + dexamethasone increased mRNA levels of resolution-related genes ANXA1, MRC1, PDPN, and PTGES (p < 0.03). Altered protein levels were confirmed in tendons with mild loading. Dexamethasone treatment in vitro prevented tendon construct formation, increased mRNA levels of S100A4 and decreased levels of SCX and collagens. Dexamethasone during tendon healing appears to act through immunomodulation by promoting resolution, but also through an effect on tendon cells.


Subject(s)
Achilles Tendon , Dexamethasone , Tendon Injuries , Wound Healing , Dexamethasone/pharmacology , Animals , Rats , Wound Healing/drug effects , Tendon Injuries/drug therapy , Tendon Injuries/metabolism , Achilles Tendon/drug effects , Achilles Tendon/metabolism , Achilles Tendon/injuries , Achilles Tendon/pathology , S100 Calcium-Binding Protein A4/metabolism , S100 Calcium-Binding Protein A4/genetics , Male , Annexin A1/metabolism , Annexin A1/genetics , Actins/metabolism , Actins/genetics , Collagen/metabolism , Rats, Sprague-Dawley , Tendons/drug effects , Tendons/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , RNA, Messenger/metabolism , RNA, Messenger/genetics , Basic Helix-Loop-Helix Transcription Factors
7.
BMC Musculoskelet Disord ; 25(1): 556, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020358

ABSTRACT

PURPOSE: In this study, we aimed to investigate the effects of hyperbaric oxygen therapy and enoxaparin sodium, which are known to accelerate bone tissue healing as well as tendon and soft tissue healing, on the healing of Achilles tendon rupture. METHODS: Thirty-six rats were used in the present study. All rats were divided into groups of nine. The groups were the enoxaparin sodium group, enoxaparin sodium and hyperbaric oxygen group, hyperbaric oxygen group and control group. After 21 days, the process was completed, and the rats were sacrificed. Achilles tendon samples were evaluated histopathologically. RESULTS: The groups were compared according to the results of statistical analysis based on the histopathological data. There was no significant difference between the groups in terms of acute inflammation (p = 0.785) or chronic inflammation (p = 0.827) scores, but there were significant differences in neovascularization (p = 0.009), proliferation (p < 0.001) and fibrosis (p = 0.006) scores. CONCLUSION: Our study showed that the use of enoxaparin sodium and hyperbaric oxygen had a positive effect on the healing of the Achilles tendon. Based on these results, we believe that the use of enoxaparin sodium and hyperbaric oxygen therapy after Achilles tendon rupture will be beneficial for healing and preventing complications.


Subject(s)
Achilles Tendon , Enoxaparin , Hyperbaric Oxygenation , Tendon Injuries , Wound Healing , Animals , Hyperbaric Oxygenation/methods , Achilles Tendon/injuries , Achilles Tendon/pathology , Achilles Tendon/drug effects , Rats , Tendon Injuries/therapy , Wound Healing/drug effects , Rupture , Enoxaparin/therapeutic use , Enoxaparin/pharmacology , Male , Disease Models, Animal , Recovery of Function/drug effects , Rats, Wistar , Rats, Sprague-Dawley
8.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000426

ABSTRACT

Achilles tendinopathy (TP) is characterized as the third most common disease of the musculoskeletal system, and occurs in three phases. There is currently no evidence of effective treatment for this medical condition. In this study, the modulatory effects of the minimally invasive technique intratissue percutaneous electrolysis (EPI) and combinations of EPI with four nutritional factors included in the diet, hydroxytyrosol (HT), maslinic acid (MA), glycine, and aspartate (AA), on hepatic intermediary metabolism was examined in Wistar rats with induced tendinopathy at various stages of TP. Results obtained showed that induced tendinopathy produced alterations in the liver intermediary metabolisms of the rats. Regarding carbohydrate metabolism, a reduction in the activity of pro-inflammatory enzymes in the later stages of TP was observed following treatment with EPI alone. Among the combined treatments using nutritional factors with EPI, HT+EPI and AA+EPI had the greatest effect on reducing inflammation in the late stages of TP. In terms of lipid metabolism, the HT+EPI and AA+EPI groups showed a decrease in lipogenesis. In protein metabolism, the HT+EPI group more effectively reduced the inflammatory effects of induced TP. Treatment with EPI combined with nutritional factors might help regulate intermediary metabolism in TP disease and reduce the inflammation process.


Subject(s)
Electrolysis , Liver , Rats, Wistar , Tendinopathy , Animals , Electrolysis/methods , Rats , Tendinopathy/metabolism , Tendinopathy/therapy , Tendinopathy/etiology , Tendinopathy/pathology , Liver/metabolism , Liver/pathology , Male , Lipid Metabolism , Achilles Tendon/metabolism , Achilles Tendon/pathology , Disease Models, Animal
9.
J Med Case Rep ; 18(1): 334, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987800

ABSTRACT

BACKGROUND: Cerebrotendinous xanthomatosis (CTX, OMIM #213700) is a rare inherited metabolic disease caused by the mutation in the CYP27A1 gene. Spinal CTX is a rare clinical subgroup of CTX which lacks typical symptoms seen in classical CTX. Here we report a spinal CTX case revealed double mutation of CYP27A1 gene. CASE PRESENTATION: A 42-year-old Asian man visited our hospital with spastic gait started at 35. Physical examination showed bilateral masses on his Achilles tendons and were identified as xanthoma on ankle magnetic resonance imaging (MRI). Brain and spinal cord MRI revealed high signal lesions in bilateral cerebellar dentate nuclei and long tract lesions involving lateral corticospinal and gracile tracts. Gene analysis revealed double heterozygous mutation, c.223C > T (p. Gln75Ter) and c.1214G > A (p. Arg405Gln). CONCLUSIONS: We believe that novel mutation detected in our case might have a role in the pathomechanism in CTX. Moreover, spinal CTX should be considered in the patients only presenting with pyramidal symptoms, as CTX shows good prognosis in early treatment with chenodeoxycholic acid.


Subject(s)
Cholestanetriol 26-Monooxygenase , Magnetic Resonance Imaging , Mutation , Xanthomatosis, Cerebrotendinous , Humans , Male , Xanthomatosis, Cerebrotendinous/genetics , Xanthomatosis, Cerebrotendinous/drug therapy , Xanthomatosis, Cerebrotendinous/diagnosis , Xanthomatosis, Cerebrotendinous/physiopathology , Xanthomatosis, Cerebrotendinous/complications , Cholestanetriol 26-Monooxygenase/genetics , Adult , Achilles Tendon/diagnostic imaging , Achilles Tendon/pathology , Spinal Cord/pathology , Spinal Cord/diagnostic imaging , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/genetics
10.
Sci Rep ; 14(1): 16965, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043881

ABSTRACT

Knee osteoarthritis (OA) significantly impacts the quality of life of individuals globally. However, the interconnections between Achilles tendon thickness, knee symptoms/functions, and foot alignment remain understudied in knee OA patients. This study determines the relationships between Achilles tendon thickness (ATT), knee symptoms/functions, and foot alignment in knee OA patients, considering their interconnected biomechanical nature. In a cross-sectional analysis involving 122 knee OA patients, Knee injury and Osteoarthritis Outcome Score (KOOS) assessed knee function and symptoms. Forefoot, midfoot, and rearfoot alignment were measured using hallux valgus angle, navicular/foot ratio, and rearfoot angle. The navicular/foot ratio represented the ratio of navicular height to total foot length. ATT was measured using a digital calliper. Pearson correlations and stepwise multiple linear regression models were employed to explore relationships and determinants. Out of 122 participants, 88 (72.1%) were females. ATT correlated significantly with ankle range of motion, forefoot alignment, and midfoot alignment. In stepwise multivariable regression, ankle range of motion, navicular/foot ratio, and age were significantly associated with ATT (adjusted R2 = 0.44). Similarly, KOOS-Symptoms scores were linked to the OA severity, navicular/foot ratio, ankle range of motion, gastrocnemius strength, and age (adjusted R2 = 0.22). KOOS-Function scores were significantly associated with knee OA severity, gastrocnemius strength, ankle range of motion, and age (adjusted R2 = 0.19). Midfoot alignment was significantly associated with ATT and knee symptoms in patients with Knee OA. This suggests potential benefits of interventions targeting both Achilles tendon properties and foot alignment for improved knee OA outcomes.


Subject(s)
Achilles Tendon , Osteoarthritis, Knee , Humans , Female , Achilles Tendon/physiopathology , Achilles Tendon/pathology , Male , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/pathology , Middle Aged , Aged , Cross-Sectional Studies , Range of Motion, Articular , Knee Joint/physiopathology , Knee Joint/pathology , Foot/physiopathology , Biomechanical Phenomena
11.
Intern Med ; 63(15): 2137-2142, 2024.
Article in English | MEDLINE | ID: mdl-39085092

ABSTRACT

The patient was a 54-year-old woman with familial hypercholesterolemia and remarkable Achilles tendon thickening. At 20 years old, the patient had a total cholesterol level of approximately 300 mg/dL. She started receiving rosuvastatin (5 mg/day) for low-density lipoprotein cholesterol (LDL-C) 235 mg/dL at 42 years old, which was increased to 10 mg/day at 54 years old, decreasing her serum LDL-C level to approximately 90 mg/dL. The serum Lp (a) level was 9 mg/dL. A computed tomography coronary angiogram showed no significant stenosis. Next-generation sequencing revealed a frameshift variant in LDL receptor (LDLR) (heterozygous) and a missense variant in proprotein convertase subtilisin/kaxin type 9 (PCSK9) (heterozygous). Continued statin therapy, in addition to low Lp (a) and female sex, can help prevent cardiovascular disease.


Subject(s)
Achilles Tendon , Hyperlipoproteinemia Type II , Proprotein Convertase 9 , Receptors, LDL , Humans , Achilles Tendon/diagnostic imaging , Achilles Tendon/pathology , Female , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/drug therapy , Hyperlipoproteinemia Type II/blood , Hyperlipoproteinemia Type II/complications , Hyperlipoproteinemia Type II/diagnosis , Receptors, LDL/genetics , Middle Aged , Proprotein Convertase 9/genetics , Rosuvastatin Calcium/therapeutic use , Atherosclerosis/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Cholesterol, LDL/blood , Mutation, Missense , Japan , East Asian People
12.
ACS Biomater Sci Eng ; 10(8): 4938-4946, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39042709

ABSTRACT

Heterotopic ossification (HO) in tendons can lead to increased pain and poor tendon function. Although it is believed to share some characteristics with bone, the structural and elemental compositions of HO deposits have not been fully elucidated. This study utilizes a multimodal and multiscale approach for structural and elemental characterization of HO deposits in healing rat Achilles tendons at 3, 6, 12, 16, and 20 weeks post transection. The microscale tomography and scanning electron microscopy results indicate increased mineral density and Ca/P ratio in the maturing HO deposits (12 and 20 weeks), when compared to the early time points (3 weeks). Visually, the mature HO deposits present microstructures similar to calcaneal bone. Through synchrotron-based X-ray scattering and fluorescence, the hydroxyapatite (HA) crystallites are shorter along the c-axis and become larger in the ab-plane with increasing healing time, while the HA crystal thickness remains within the reference values for bone. At the mineralization boundary, the overlap between high levels of calcium and prominent crystallite formation was outlined by the presence of zinc and iron. In the mature HO deposits, the calcium content was highest, and zinc was more present internally, which could be indicative of HO deposit remodeling. This study emphasizes the structural and elemental similarities between the calcaneal bone and HO deposits.


Subject(s)
Achilles Tendon , Ossification, Heterotopic , Ossification, Heterotopic/pathology , Ossification, Heterotopic/metabolism , Animals , Achilles Tendon/pathology , Achilles Tendon/chemistry , Rats , Wound Healing , Rats, Sprague-Dawley , Durapatite/chemistry , Durapatite/metabolism , Male , Calcium/metabolism
13.
Jt Dis Relat Surg ; 35(2): 368-376, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727117

ABSTRACT

OBJECTIVES: The study aimed to examine the histopathological and biomechanical effects of papaverine administered intraperitoneally and locally on Achilles tendon healing in a rat model. MATERIALS AND METHODS: Forty-eight adult male Sprague-Dawley rats (range, 300 to 400 g) were used in this study conducted between October and November 2022. The rats were divided into three groups, with each group further subdivided into two for sacrifice on either the 15th (early period) or 30th (late period) day after surgery. The first (control) group received no treatment following Achilles tendon repair, while papaverine was intraperitoneally administered every other day for 10 days in the second group and locally in the third group after surgery. On the 15th and 30th days, the rats were sacrificed, and their Achilles tendons were subjected to biomechanical testing and histopathological evaluation. RESULTS: Histopathologically, there were no significant differences among the groups on the 15th day. However, on the 30th day, the locally applied papaverine group exhibited superior histopathological outcomes compared to the control group (p<0.05). Concerning the highest tensile strength values before rupture, the biomechanical assessment showed that the group receiving local papaverine treatment in the early period and both the group with systemic papaverine treatment and the one with local papaverine treatment in the late period displayed a statistically significant advantage compared to the control group (p<0.05). CONCLUSION: Locally administered papaverine has positive biomechanical effects in the early period and exhibits a positive correlation both histopathologically and biomechanically in the late period. Novel therapeutic options may be provided for patients through these findings.


Subject(s)
Achilles Tendon , Papaverine , Rats, Sprague-Dawley , Tendon Injuries , Wound Healing , Animals , Achilles Tendon/injuries , Achilles Tendon/drug effects , Achilles Tendon/pathology , Achilles Tendon/surgery , Papaverine/pharmacology , Papaverine/administration & dosage , Papaverine/therapeutic use , Male , Tissue Adhesions/drug therapy , Tissue Adhesions/pathology , Wound Healing/drug effects , Tendon Injuries/drug therapy , Tendon Injuries/pathology , Tendon Injuries/surgery , Rats , Tensile Strength/drug effects , Injections, Intraperitoneal , Biomechanical Phenomena/drug effects , Disease Models, Animal
14.
Connect Tissue Res ; 65(3): 226-236, 2024 May.
Article in English | MEDLINE | ID: mdl-38722149

ABSTRACT

PURPOSE: This study aimed to evaluate whether cilostazol (phosphodiesterase III inhibitor) could enhance the healing of Achilles tendon ruptures in rats. MATERIALS AND METHODS: The Achilles tendons of 24 healthy male adult rats were incised and repaired. The rats were randomly allocated to cilostazol and control groups. The cilostazol group received daily intragastric administration of 50 mg/kg cilostazol for 28 days, while the control group did not receive any medication. The rats were sacrificed on the 30th day, and the Achilles tendon was evaluated for biomechanical properties, histopathological characteristics, and immunohistochemical analysis. RESULTS: All rats completed the experiment. The Movin sum score of the control group was significantly higher (p = 0.008) than that of the cilostazol group, with means of 11 ± 0.63 and 7.50 ± 1.15, respectively. Similarly, the mean Bonar score was significantly higher (p = 0.026) in the control group compared to the cilostazol group (8.33 ± 1.50 vs. 5.5 ± 0.54, respectively). Moreover, the Type I/Type III Collagen ratio was notably higher (p = 0.016) in the cilostazol group (52.2 ± 8.4) than in the control group (34.6 ± 10.2). The load to failure was substantially higher in the cilostazol group than in the control group (p = 0.034), suggesting that the tendons in the cilostazol group were stronger and exhibited greater resistance to failure. CONCLUSIONS: The results of this study suggest that cilostazol treatment significantly improves the biomechanical and histopathological parameters of the healing Achilles tendon in rats. Cilostazol might be a valuable supplementary therapy in treating Achilles tendon ruptures in humans. Additional clinical studies are, however, required to verify these outcomes.


Subject(s)
Achilles Tendon , Cilostazol , Wound Healing , Animals , Cilostazol/pharmacology , Achilles Tendon/pathology , Achilles Tendon/injuries , Achilles Tendon/drug effects , Male , Wound Healing/drug effects , Rupture/drug therapy , Rupture/pathology , Rats , Tendon Injuries/drug therapy , Tendon Injuries/pathology , Rats, Sprague-Dawley , Biomechanical Phenomena/drug effects , Tetrazoles/pharmacology
15.
Sci Rep ; 14(1): 11421, 2024 05 19.
Article in English | MEDLINE | ID: mdl-38763976

ABSTRACT

Achilles tendinopathy is a disabling condition that affects more than 50% of runners. Pre-clinical studies in a large animal model of naturally-occurring tendinopathy similar to human Achilles tendinopathy has shown benefits of autologous bone marrow-derived mesenchymal stem cell (MSC) implantation. However, MSCs are advanced therapies medicinal products (ATMPs), with strict regulatory requirements. Guided by the regulator we carried out a first in man study to assess the safety and efficacy of autologous MSC injection in human patients with non-insertional Achilles tendinopathy. Ten patients, mean age 47 with mid-portion Achilles tendon pain and swelling for more than 6 months, underwent autologous cultured cell injections (median 12.2 × 106, range 5-19 × 106 cells) into their Achilles tendon. At 24 weeks follow-up, no serious adverse reactions or important medical events were observed. MOXFQ, EQ-5D-5L, and VISA-A scores improved clinically at 12 and 24 weeks. VAS pain improved increasingly at 6, 12 and 24 weeks. MOXFQ Pain and VISA-A Scores improved > 12 points from baseline to 24 weeks in 8 patients. Maximum anteroposterior tendon thickness as measured by greyscale US decreased by mean 0.8 mm at 24 weeks. This phase IIa study demonstrated the safety of autologous MSC injection for non-insertional Achilles tendinopathy and provides proof-of-concept of the technique in patients, all of whom had previously failed conservative treatments for chronic disease and leads the way for a larger randomised controlled trial.


Subject(s)
Achilles Tendon , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Tendinopathy , Transplantation, Autologous , Humans , Tendinopathy/therapy , Tendinopathy/pathology , Achilles Tendon/pathology , Male , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/adverse effects , Middle Aged , Female , Adult , Mesenchymal Stem Cells/cytology , Treatment Outcome
16.
Scand J Med Sci Sports ; 34(5): e14665, 2024 May.
Article in English | MEDLINE | ID: mdl-38773808

ABSTRACT

The objective of the study was to obtain adjusted ultrasonographic reference values of the Achilles tendon thickness (maximum anterior-posterior distance) in adults without (previous) Achilles tendinopathy (AT) and to compare these reference values with AT patients. Six hundred participants were consecutively included, comprising 500 asymptomatic individuals and 100 patients with clinically diagnosed chronic AT. The maximum tendon thickness was assessed using Ultrasound Tissue Characterization. A multiple quantile regression model was developed, incorporating covariates (personal characteristics) that were found to have a significant impact on the maximum anterior-posterior distance of the Achilles tendon. A 95% reference interval (RI) was derived (50th, 2.5th-97.5th percentile). In asymptomatic participants median (95% RI) tendon thickness was 4.9 (3.8-6.9) mm for the midportion region and 3.7 (2.8-4.8) mm for the insertional region. Age, height, body mass index, and sex had a significant correlation with maximum tendon thickness. Median tendon thickness for the midportion region was calculated with the normative equation -2.1 + AGE × 0.021 + HEIGHT × 0.032+ BMI × 0.028 + SEX × 0.05. For the insertional region, the normative equation was -0.34 + AGE × 0.010+ HEIGHT × 0.018 + BMI × 0.022 + SEX × -0.05. In the equations, SEX is defined as 0 for males and 1 for females. Mean (95% CI) difference in tendon thickness compared to AT patients was 2.7 mm (2.3-3.2, p < 0.001) for the midportion and 1.4 mm (1.1-1.7, p < 0.001) for the insertional region. Compared to the asymptomatic population 73/100 (73%) AT patients exhibited increased tendon thickening, with values exceeding the 95% RI. This study presents novel reference values for the thickness of midportion and insertional region of the Achilles tendon, which were adjusted for personal characteristics. Our novel web-based openly accessible calculator for determining normative Achilles tendon thickness (www.achillestendontool.com) will be a useful resource in the diagnostic process. Trial registration number: This trial is registered in the Netherlands Trial Register (NL9010).


Subject(s)
Achilles Tendon , Tendinopathy , Ultrasonography , Humans , Achilles Tendon/diagnostic imaging , Achilles Tendon/anatomy & histology , Achilles Tendon/pathology , Male , Female , Tendinopathy/diagnostic imaging , Tendinopathy/pathology , Cross-Sectional Studies , Adult , Middle Aged , Reference Values , Aged , Body Mass Index , Young Adult , Sex Factors
18.
J Cell Mol Med ; 28(9): e18349, 2024 May.
Article in English | MEDLINE | ID: mdl-38686493

ABSTRACT

The pathogenesis of trauma-induced heterotopic ossification (HO) in the tendon remains unclear, posing a challenging hurdle in treatment. Recognizing inflammation as the root cause of HO, anti-inflammatory agents hold promise for its management. Malvidin (MA), possessing anti-inflammatory properties, emerges as a potential agent to impede HO progression. This study aimed to investigate the effect of MA in treating trauma-induced HO and unravel its underlying mechanisms. Herein, the effectiveness of MA in preventing HO formation was assessed through local injection in a rat model. The potential mechanism underlying MA's treatment was investigated in the tendon-resident progenitor cells of tendon-derived stem cells (TDSCs), exploring its pathway in HO formation. The findings demonstrated that MA effectively hindered the osteogenic differentiation of TDSCs by inhibiting the mTORC1 signalling pathway, consequently impeding the progression of trauma-induced HO of Achilles tendon in rats. Specifically, MA facilitated the degradation of Rheb through the K48-linked ubiquitination-proteasome pathway by modulating USP4 and intercepted the interaction between Rheb and the mTORC1 complex, thus inhibiting the mTORC1 signalling pathway. Hence, MA presents itself as a promising candidate for treating trauma-induced HO in the Achilles tendon, acting by targeting Rheb for degradation through the ubiquitin-proteasome pathway.


Subject(s)
Ossification, Heterotopic , Proteasome Endopeptidase Complex , Ras Homolog Enriched in Brain Protein , Signal Transduction , Ubiquitin , Animals , Rats , Proteasome Endopeptidase Complex/metabolism , Ossification, Heterotopic/metabolism , Ossification, Heterotopic/etiology , Ossification, Heterotopic/pathology , Signal Transduction/drug effects , Ras Homolog Enriched in Brain Protein/metabolism , Ubiquitin/metabolism , Male , Osteogenesis/drug effects , Tendons/metabolism , Tendons/pathology , Rats, Sprague-Dawley , Tendon Injuries/metabolism , Tendon Injuries/pathology , Tendon Injuries/complications , Proteolysis/drug effects , Cell Differentiation/drug effects , Achilles Tendon/metabolism , Achilles Tendon/pathology , Achilles Tendon/injuries , Disease Models, Animal , Ubiquitination , Mechanistic Target of Rapamycin Complex 1/metabolism , Stem Cells/metabolism , Stem Cells/drug effects
19.
J Vet Sci ; 25(2): e22, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38568824

ABSTRACT

BACKGROUND: Achilles tendon is composed of dense connective tissue and is one of the largest tendons in the body. In veterinary medicine, acute ruptures are associated with impact injury or sharp trauma. Healing of the ruptured tendon is challenging because of poor blood and nerve supply as well as the residual cell population. Platelet-rich plasma (PRP) contains numerous bioactive agents and growth factors and has been utilized to promote healing in bone, soft tissue, and tendons. OBJECTIVE: The purpose of this study was to evaluate the healing effect of PRP injected into the surrounding fascia of the Achilles tendon after allograft in rabbits. METHODS: Donor rabbits (n = 8) were anesthetized and 16 lateral gastrocnemius tendons were fully transected bilaterally. Transected tendons were decellularized and stored at -80°C prior to allograft. The allograft was placed on the partially transected medial gastrocnemius tendon in the left hindlimb of 16 rabbits. The allograft PRP group (n = 8) had 0.3 mL of PRP administered in the tendon and the allograft control group (n = 8) did not receive any treatment. After 8 weeks, rabbits were euthanatized and allograft tendons were transected for macroscopic, biomechanical, and histological assessment. RESULTS: The allograft PRP group exhibited superior macroscopic assessment scores, greater tensile strength, and a histologically enhanced healing process compared to those in the allograft control group. CONCLUSIONS: Our results suggest administration of PRP on an allograft tendon has a positive effect on the healing process in a ruptured Achilles tendon.


Subject(s)
Achilles Tendon , Platelet-Rich Plasma , Tendon Injuries , Rabbits , Animals , Achilles Tendon/surgery , Achilles Tendon/injuries , Achilles Tendon/pathology , Tendon Injuries/therapy , Tendon Injuries/veterinary , Tendon Injuries/pathology , Wound Healing , Allografts/pathology
20.
Clin Orthop Relat Res ; 482(6): 1074-1086, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38427791

ABSTRACT

BACKGROUND: Peracetic acid and irradiation are common sterilization methods for allograft tendons; however, under some conditions, both methods adversely affect the fiber arrangement and ultimate load of the tendon. An in vitro study showed that low-dose peracetic acid combined with irradiation may be less detrimental to allograft tendon structure and properties, possibly because the breakdown of peracetic acid can lead to an enlargement of the interstitial spaces and an increase in porosity. QUESTIONS/PURPOSES: Using a rabbit Achilles tendon model, we asked: What is the effect of peracetic acid-ethanol combined irradiation on (1) the histopathology and fiber diameter of the allograft tendon, (2) tensile creep and load-to-failure biomechanical properties of allograft tendons, and (3) healing of the treated tendon in vivo compared with fresh-frozen allograft and peracetic acid-ethanol sterilization at 4 and 8 weeks? METHODS: The Achilles tendons used in this study were sourced from euthanized 10-week-old male New Zealand White rabbits previously used for ophthalmic experiments. All allografts were divided into three groups: fresh-frozen group (control group, n = 20), peracetic acid-ethanol sterilization group (n =20), and peracetic acid-ethanol combined irradiation group (n = 20). The sterilization protocols were performed per a predetermined plan. In the peracetic acid-ethanol sterilization group, the tendon tissues were covered with the peracetic acid-ethanol sterilization solution (1% peracetic acid for 30 minutes). In the peracetic acid-ethanol combined irradiation group, the tendon tissues were covered with the peracetic acid-ethanol sterilization solution (0.2% peracetic acid for 30 minutes) and were subjected to 15 kGy gamma irradiation. Thirty 10-week-old male New Zealand White rabbits received bilateral Achilles tendon allografts surgically. Tendon samples from each group were harvested at 4 weeks (n = 30) and 8 weeks (n = 30) postoperatively. For each timepoint, eight tissues were used for histologic staining and electron microscopy, 15 tissues were used for biomechanical testing, and seven tissues were used for hydroxyproline assay and quantitative polymerase chain reaction. Histopathology was determined qualitatively by hematoxylin and eosin and Masson staining, while fiber diameter was measured quantitatively by transmission electron microscopy. Biomechanical properties were measured using cyclic loading tests and load-to-failure tests. The healing outcome was quantitatively judged through healing-related genes and proteins. RESULTS: At 4 weeks and 8 weeks postoperatively, the peracetic acid-ethanol combined irradiation group visually demonstrated the best continuity and minimal peripheral adhesions. Histologic staining showed that tendon fibers in the peracetic acid-ethanol combined irradiation group maintained consistent alignment without notable disruptions or discontinuities, and there was a qualitatively observed increase in the number of infiltrating cells compared with the control group at the 4-week timepoint (444 ± 49 /mm 2 versus 256 ± 43 /mm 2 , mean difference 188 /mm 2 [95% confidence interval 96 to 281]; p < 0.001). At 8 weeks postoperatively, the tendon fiber diameter in the peracetic acid-ethanol combined irradiation groups was similar to that of the control group (0.23 ± 0.04 µm versus 0.21 ± 0.03 µm, mean difference 0.02 µm [95% CI -0.04 to 0.08]; p = 0.56). At 8 weeks postoperatively, the peracetic acid-ethanol combined irradiation group exhibited better properties in terms of both ultimate load (129 ± 15 N versus 89 ± 20 N, mean difference 40 N [95% CI 7 to 73]; p = 0.02) and energy absorption density (17 ± 6 kJ/m 2 versus 8 ± 4 kJ/m 2 , mean difference 8 kJ/m 2 [95% CI 0.7 to 16]; p = 0.004) compared with the control group. Gene expression analysis revealed higher expression levels of COL1A1 (2.1 ± 0.8 versus 1.0 ± 0, mean difference 1.1 [95% CI 0.1 to 2.1]; p = 0.003) and MMP13 (2.0 ± 0.8 versus 1.0 ± 0, mean difference 1.0 [95% CI 0.4 to 1.6]; p = 0.03) in the peracetic acid-ethanol combined irradiation group than in the control group. There was a higher amount of collagen Type I in tendons treated with peracetic acid-ethanol combined irradiation than in the control group (0.36 ± 0.03 versus 0.31 ± 0.04, mean difference 0.05 [95% CI 0.01 to 0.09]; p = 0.02). CONCLUSION: Treatment with peracetic acid-ethanol combined irradiation did not have any discernible adverse effect on the histology, fiber diameter, enzymatic resistance, collagen content, or biomechanical strength of the allograft tendons compared with the control group. Peracetic acid-ethanol combined irradiation treatment had a positive impact on remodeling of the extracellular matrix and realignment of collagen fibers. CLINICAL RELEVANCE: This sterilization method could be helpful to expand the scope and frequency with which allogeneic materials are applied. The long-term healing effect and strength of allograft tendons must be tested before clinical use, and it is necessary to conduct comparative studies on autografts and synthetic materials that are currently widely used clinically.


Subject(s)
Achilles Tendon , Allografts , Ethanol , Peracetic Acid , Sterilization , Wound Healing , Animals , Rabbits , Male , Wound Healing/radiation effects , Wound Healing/drug effects , Peracetic Acid/pharmacology , Ethanol/pharmacology , Sterilization/methods , Achilles Tendon/surgery , Achilles Tendon/radiation effects , Achilles Tendon/pathology , Tensile Strength , Biomechanical Phenomena , Time Factors , Tendon Injuries/surgery
SELECTION OF CITATIONS
SEARCH DETAIL