Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.173
1.
Sci Rep ; 14(1): 12424, 2024 05 30.
Article En | MEDLINE | ID: mdl-38816435

Plant essential oils contain many secondary metabolites, some of which can effectively inhibit the growth of pathogenic microorganisms, so it is a very promising antibacterial agent. In this study, a qualitative and quantitative method based on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed for the simultaneous determination of three bioactive substances, cinnamaldehyde (CNM), thymol (THY), and eugenol (EUG), in the essential oils of plants. Necessary tests for linearity, limit of quantification, recovery, carryover contamination and precision of the method were carried out. Then, the antibacterial activity of 3 bioactive compounds against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated by minimal inhibitory concentration and the synergistic antimicrobial effect. The results indicated that CNM, THY and EUG had good antibacterial activity. According to the results of fractional inhibitory concentration index (FICI), it is considered that CNM + THY and CNM + THY + EUG has obvious synergistic inhibitory effect on E. coli, and CNM + THY and CNM + EUG has obvious synergistic inhibitory effect on S. aureus. Finally, we analyzed the effect of the bioactive compounds on trace elements in bacteria and found significant changes in magnesium, calcium, copper and iron.


Acrolein , Anti-Bacterial Agents , Escherichia coli , Eugenol , Microbial Sensitivity Tests , Oils, Volatile , Staphylococcus aureus , Tandem Mass Spectrometry , Thymol , Eugenol/pharmacology , Acrolein/analogs & derivatives , Acrolein/pharmacology , Thymol/pharmacology , Thymol/analysis , Anti-Bacterial Agents/pharmacology , Tandem Mass Spectrometry/methods , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731952

Porphyromonas gingivalis (Pg), a Gram-negative oral pathogen, promotes and accelerates periodontitis-associated gut disorders. Intestinal epithelial barrier dysfunction is crucial in the pathogenesis of intestinal and systemic diseases. In this study, we sought to elucidate the protective role of cinnamaldehyde (CNM, an activator of Nrf2) against P. gingivalis (W83) and Pg-derived lipopolysaccharide (Pg-LPS) induced intestinal epithelial barrier dysfunction via antioxidative mechanisms in IEC-6 cells. IEC-6 (ATCC, CRL-1592) cells were pretreated with or without CNM (100 µM), in the presence or absence of P. gingivalis (strain W83, 109 MOI) or Pg-LPS (1, 10, and 100 µg/mL), respectively, between 0-72 h time points by adopting a co-culture method. Intestinal barrier function, cytokine secretion, and intestinal oxidative stress protein markers were analyzed. P. gingivalis or Pg-LPS significantly (p < 0.05) increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels expressing oxidative stress damage. Pg-LPS, as well as Pg alone, induces inflammatory cytokines via TLR-4 signaling. Furthermore, infection reduced Nrf2 and NAD(P)H quinone dehydrogenase 1 (NQO1). Interestingly, inducible nitric oxide synthase (iNOS) protein expression significantly (p < 0.05) increased with Pg-LPS or Pg infection, with elevated levels of nitric oxide (NO). CNM treatment suppressed both Pg- and Pg-LPS-induced intestinal oxidative stress damage by reducing ROS, MDA, and NO production. Furthermore, CNM treatment significantly upregulated the expression of tight junction proteins via increasing the phosphorylation levels of PI3K/Akt/Nrf2 suppressing inflammatory cytokines. CNM protected against Pg infection-induced intestinal epithelial barrier dysfunction by activating the PI3K/Akt-mediated Nrf2 signaling pathway in IEC-6 cells.


Acrolein , Intestinal Mucosa , NF-E2-Related Factor 2 , Nitric Oxide , Phosphatidylinositol 3-Kinases , Porphyromonas gingivalis , Proto-Oncogene Proteins c-akt , Signal Transduction , NF-E2-Related Factor 2/metabolism , Acrolein/analogs & derivatives , Acrolein/pharmacology , Animals , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Porphyromonas gingivalis/pathogenicity , Phosphatidylinositol 3-Kinases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Nitric Oxide/metabolism , Cell Line , Lipopolysaccharides , Oxidative Stress/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Toll-Like Receptor 4/metabolism , Reactive Oxygen Species/metabolism , Cytokines/metabolism
3.
Sci Rep ; 14(1): 10053, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698047

Type 2 diabetes mellitus is a worldwide public health issue. In the globe, Egypt has the ninth-highest incidence of diabetes. Due to its crucial role in preserving cellular homeostasis, the autophagy process has drawn a lot of attention in recent years, Therefore, the purpose of this study was to evaluate the traditional medication metformin with the novel therapeutic effects of cinnamondehyde on adipocyte and hepatic autophagy in a model of high-fat diet/streptozotocin-diabetic rats. The study was conducted on 40 male albino rats, classified into 2 main groups, the control group and the diabetic group, which was subdivided into 4 subgroups (8 rats each): untreated diabetic rats, diabetic rats received oral cinnamaldehyde 40 mg/kg/day, diabetic rats received oral metformin 200 mg/kg/day and diabetic rats received a combination of both cinnamaldehyde and metformin daily for 4 weeks. The outcomes demonstrated that cinnamaldehyde enhanced the lipid profile and glucose homeostasis. Moreover, Cinnamaldehyde had the opposite effects on autophagy in both tissues; by altering the expression of genes that control autophagy, such as miRNA 30a and mammalian target of rapamycin (mTOR), it reduced autophagy in adipocytes and stimulated it in hepatic tissues. It may be inferred that by increasing the treatment efficacy of metformin and lowering its side effects, cinnamaldehyde could be utilized as an adjuvant therapy with metformin for the treatment of type 2 diabetes.


Acrolein , Acrolein/analogs & derivatives , Adipocytes , Autophagy , Diabetes Mellitus, Experimental , Liver , Metformin , Animals , Acrolein/pharmacology , Acrolein/therapeutic use , Autophagy/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Rats , Adipocytes/drug effects , Adipocytes/metabolism , Metformin/pharmacology , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Streptozocin , Blood Glucose/metabolism , TOR Serine-Threonine Kinases/metabolism
4.
ACS Appl Mater Interfaces ; 16(14): 17838-17845, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38556984

Changeable substituent groups of organic molecules can provide an opportunity to clarify the antibacterial mechanism of organic molecules by tuning the electron cloud density of their skeleton. However, understanding the antibacterial mechanism of organic molecules is challenging. Herein, we reported a molecular view strategy for clarifying the antibacterial switch mechanism by tuning electron cloud density of cinnamaldehyde molecule skeleton. The cinnamaldehyde and its derivatives were self-assembled into nanosheets with excellent water solubility, respectively. The experimental results show that α-bromocinnamaldehyde (BCA) nanosheets exhibits unprecedented antibacterial activity, but there is no antibacterial activity for α-methylcinnamaldehyde nanosheets. Therefore, the BCA nanosheets and α-methylcinnamaldehyde nanosheets achieve an antibacterial switch. Theoretical calculations further confirmed that the electron-withdrawing substituent of the bromine atom leads to a lower electron cloud density of the aldehyde group than that of the electron-donor substituent of the methyl group at the α-position of the cinnamaldehyde skeleton, which is a key point in elucidating the antimicrobial switch mechanism. The excellent biocompatibility of BCA nanosheets was confirmed by CCK-8. The mouse wound infection model, H&E staining, and the crawling ability of drosophila larvae show that as-prepared BCA nanosheets are safe and promising for wound healing. This study provides a new strategy for the synthesis of low-cost organic nanomaterials with good biocompatibility. It is expected to expand the application of natural organic small molecule materials in antimicrobial agents.


Acrolein/analogs & derivatives , Nanostructures , Mice , Animals , Anti-Bacterial Agents/pharmacology , Acrolein/pharmacology , Skeleton
5.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38587823

AIM: In this study, it was aimed to examine the antibacterial activity of the essential oil components (EOCs), carvacrol (CAR), cinnamaldehyde (CIN), thymol (TH), alpha pinene (α-PN), eucalyptol (EU), limonene (LIM), and the antibiotics, linezolid (LZD), vancomycin (VAN), gentamicin (GEN), ciprofloxacin (CIP), clindamycin (CLN), and penicillin (PEN) against 50 multidrug resistant Corynebacterium striatum strains, and the synergistic interactions of CAR and CIN with the antibiotics against 10 randomly selected Coryne. striatum strains to explore synergistic interactions to determine if their combined use could enhance antibiotic activity and potentially reduce resistance. METHODS AND RESULTS: The activity of the EOCs and the antibiotics against Coryne. striatum strains isolated from clinical specimens, was examined by broth microdilution method. The synergistic interactions of the EOCs with the antibiotics against 10 randomly selected Coryne. striatum strains were determined by checkerboard method. EOCs, CIN, and CAR and antibiotics, LZD, VAN, GEN, CIP, and CLN were detected to have antibacterial activity against Coryne. striatum strains alone and either synergistic interactions were observed in combinations of the antibiotics with EOCs. CONCLUSIONS: All Coryne. striatum strains were determined to be susceptible to VAN and LZD and resistant to GEN, PEN, CIP, and CLN. Synergistic interactions were observed in all combinations of antibiotics tested with CAR and CIN.


Acrolein , Acrolein/analogs & derivatives , Anti-Bacterial Agents , Corynebacterium , Drug Resistance, Multiple, Bacterial , Drug Synergism , Microbial Sensitivity Tests , Monoterpenes , Oils, Volatile , Anti-Bacterial Agents/pharmacology , Corynebacterium/drug effects , Oils, Volatile/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Acrolein/pharmacology , Monoterpenes/pharmacology , Cymenes/pharmacology , Ciprofloxacin/pharmacology , Gentamicins/pharmacology , Vancomycin/pharmacology , Linezolid/pharmacology , Limonene/pharmacology , Eucalyptol/pharmacology , Thymol/pharmacology , Clindamycin/pharmacology , Humans , Penicillins/pharmacology , Terpenes/pharmacology , Cyclohexenes/pharmacology , Corynebacterium Infections/microbiology
6.
Biomater Adv ; 160: 213863, 2024 Jun.
Article En | MEDLINE | ID: mdl-38642516

To obtain the collaborative antifungal potential of nanocomposites conjugated with graphene oxide (GO), a combination of GO with chitosan (CS/GO) and GO with chitosan (CS) and polyaniline (PANI/CS/GO) was carried out. The synthesized GO-nanocomposites were recognized by several techniques. Vanillin (Van.) and cinnamaldehyde (Cinn.) were loaded on the prepared nanocomposites as antioxidants through a batch adsorption process. In vitro release study of Van. and Cinn. from the nanocomposites was accomplished at pH 7 and 25°C. The antimicrobial activity of GO, CS/GO, and PANI/CS/GO was studied against tomato Fusarium oxysporum (FOL) and Pythium debaryanum (PYD) pathogens. The loaded ternary composite PANI/CS/GO exhibited the best percent of reduction against the two pathogens in vitro studies. The Greenhouse experiment revealed that seedlings' treatment by CS/GO/Van. and PANI/CS/GO/Van significantly lowered both disease index and disease incidence. The loaded CS/GO and PANI/CS/GO nanocomposites had a positive effect on lengthening shoots. Additionally, when CS/GO/Cinn., CS/GO/Van. and PANI/CS/GO/Van. were used, tomato seedlings' photosynthetic pigments dramatically increased as compared to infected control. The results show that these bio-nanocomposites can be an efficient, sustainable, nontoxic, eco-friendly, and residue-free approach for fighting fungal pathogens and improving plant growth.


Acrolein/analogs & derivatives , Antifungal Agents , Benzaldehydes , Chitosan , Fusarium , Graphite , Nanocomposites , Solanum lycopersicum , Graphite/pharmacology , Graphite/chemistry , Solanum lycopersicum/microbiology , Nanocomposites/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fusarium/drug effects , Chitosan/pharmacology , Chitosan/chemistry , Benzaldehydes/pharmacology , Benzaldehydes/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pythium/drug effects , Aniline Compounds/pharmacology , Aniline Compounds/chemistry , Acrolein/pharmacology , Acrolein/chemistry
7.
Food Chem ; 449: 139305, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38615636

The main objective of this study is to investigate the impact and mechanism of soy lecithin incorporation into the gelatin-cinnamaldehyde emulsion, focusing on how it influences emulsion stability during the electrospinning process. In this work, a cinnamaldehyde/gelatin/soy lecithin (CGS) fiber membrane with excellent antibacterial properties was successfully created. The addition of soy lecithin improves the stability of the emulsion and improves the loading performance and fiber morphology of the CGS fiber membrane. Fourier Transform infrared spectroscopy (FTIR) and urea addition confirmed that soy lecithin may strengthen the interface structure of gelatin in the oil and water phases through hydrogen bonds, thus enhancing the stability of the emulsion in electrospinning. The application tests also revealed that the CGS fiber membrane effectively preserved the sensory quality of beef. This study indicates that the vector construction method can extend the utilization of cinnamaldehyde in food industry.


Acrolein , Acrolein/analogs & derivatives , Emulsions , Gelatin , Glycine max , Lecithins , Nanofibers , Acrolein/chemistry , Acrolein/pharmacology , Gelatin/chemistry , Emulsions/chemistry , Lecithins/chemistry , Nanofibers/chemistry , Glycine max/chemistry , Animals , Cattle , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
8.
J Ethnopharmacol ; 330: 118222, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38663778

ETHNOPHARMACOLOGICAL RELEVANCE: Cinnamomum cassia Presl (Cinnamomum cassia) is a common traditional Chinese medicine, which can promote the secretion and digestion of gastric juice, improve the function of gastrointestinal tract. Cinnamaldehyde (CA) is a synthetic food flavoring in the Chinese Pharmacopoeia. AIM OF THE STUDY: This study aimed to search for the active ingredient (CA) of inhibiting H. pylori from Cinnamomum cassia, and elucidate mechanism of action, so as to provide the experimental basis for the treatment of H. pylori infection with Cinnamomum cassia. MATERIALS AND METHODS: It's in vitro and in vivo pharmacological properties were evaluated based on minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and an acute gastric inflammation model in mice infected with H. pylori. Drug safety was evaluated using the CCK8 method and high-dose administration in mice. The advantageous characteristics of CA in inhibiting H. pylori were confirmed using acidic conditions and in combination with the antibiotics. The mechanism underlying the action of CA on H. pylori was explored using scanning electron microscopy (SEM), adhesion experiments, biofilm inhibition tests, ATP and ROS release experiments, and drug affinity responsive target stability (DARTS) screening of target proteins. The protein function and target genes were verified by molecular docking and Real-Time quantitative reverse transcription PCR (qRT-PCR). RESULTS: The results demonstrated that CA was found to be the main active ingredient against H. pylori in Cinnamomum cassia in-vitro tests, with a MIC of 8-16 µg/mL. Moreover, CA effectively inhibited both sensitive and resistant H. pylori strains. The dual therapy of PPI + CA exhibited remarkable in vivo efficacy in the acute gastritis mouse model, superior to the standard triple therapy. DARTS, molecular docking, and qRT-PCR results suggested that the target sites of action were closely associated with GyrA, GyrB, AtpA, and TopA, which made DNA replication and transcription impossible, then leading to inhibition of bacterial adhesion and colonization, suppression of biofilm formation, and inhibition ATP and enhancing ROS. CONCLUSIONS: This study demonstrated the suitability of CA as a promising lead drug against H. pylori, The main mechanisms can target GyrA ect, leading to reduce ATP and produce ROS, which induces the apoptosis of bacterial.


Acrolein , Anti-Bacterial Agents , Cinnamomum aromaticum , Helicobacter Infections , Helicobacter pylori , Microbial Sensitivity Tests , Animals , Acrolein/analogs & derivatives , Acrolein/pharmacology , Helicobacter pylori/drug effects , Cinnamomum aromaticum/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Male , Molecular Docking Simulation , Biofilms/drug effects
9.
Int J Biol Macromol ; 268(Pt 2): 131790, 2024 May.
Article En | MEDLINE | ID: mdl-38677693

The demand for paper-based packaging materials as an alternative to incumbent disposable petroleum-derived polymers for food packaging applications is ever-growing. However, typical paper-based formats are not suitable for use in unconventional applications due to inherent limitations (e.g., excessive hydrophilicity, lack antimicrobial ability), and accordingly, enabling new capabilities is necessity. Herein, a simple and environmentally friendly strategy was proposed to introduce antimicrobial and hydrophobic functions to cellulose paper through successive chemical grafting of 3-aminopropyltriethoxysilane (APS) and cinnamaldehyde (CA). The results revealed that cellulose paper not only showed long-term antibacterial effect on different bacteria, but also inhibited a wide range of fungi. Encouragingly, the modified paper, which is fluorine-free, displays a high contact angle of 119.7°. Thus, even in the wet state, the modified paper can still maintain good mechanical strength. Meanwhile, the multifunctional composite papers have excellent biocompatibility and biodegradability. Compared with ordinary cellulose paper, multifunctional composite paper can effectively prolong the shelf life of strawberries. Therefore, the multifunctional composite paper represents good application potential as a fruit packaging material.


Acrolein , Cellulose , Food Packaging , Fragaria , Hydrophobic and Hydrophilic Interactions , Paper , Cellulose/chemistry , Cellulose/analogs & derivatives , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Fragaria/microbiology , Food Packaging/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Silanes/chemistry , Food Preservation/methods , Propylamines/chemistry , Microbial Sensitivity Tests
10.
Ultrason Sonochem ; 106: 106884, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677267

The purpose of this study was to investigate ferroptosis in Escherichia coli O157:H7 caused by ferrous sulfate (FeSO4) and to examine the synergistic effectiveness of FeSO4 combined with ultrasound-emulsified cinnamaldehyde nanoemulsion (CALNO) on inactivation of E. coli O157:H7 in vitro and in vivo. The results showed that FeSO4 could cause ferroptosis in E. coli O157:H7 via generating reactive oxygen species (ROS) and exacerbating lipid peroxidation. In addition, the results indicated that FeSO4 combined with CALNO had synergistic bactericidal effect against E. coli O157:H7 and the combined treatment could lead considerable nucleic acids and protein to release by damaging the cell membrane of E. coli O157:H7. Besides, FeSO4 combined with CALNO had a strong antibiofilm ability to inhibit E. coli O157:H7 biofilm formation by reducing the expression of genes related on biofilm formation. Finally, FeSO4 combined with CALNO exhibited the significant antibacterial activity against E. coli O157:H7 in hami melon and cherry tomato.


Acrolein , Emulsions , Escherichia coli O157 , Ferroptosis , Ferrous Compounds , Escherichia coli O157/drug effects , Acrolein/analogs & derivatives , Acrolein/pharmacology , Acrolein/chemistry , Ferrous Compounds/pharmacology , Ferrous Compounds/chemistry , Ferroptosis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Ultrasonic Waves , Reactive Oxygen Species/metabolism
11.
Int J Food Microbiol ; 417: 110685, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38579546

Cinnamaldehyde displays strong antifungal activity against fungi such as Aspergillus niger, but its precise molecular mechanisms of antifungal action remain inadequately understood. In this investigation, we applied chemoproteomics and bioinformatic analysis to unveil the target proteins of cinnamaldehyde in Aspergillus niger cells. Additionally, our study encompassed the examination of cinnamaldehyde's effects on cell membranes, mitochondrial malate dehydrogenase activity, and intracellular ATP levels in Aspergillus niger cells. Our findings suggest that malate dehydrogenase could potentially serve as an inhibitory target of cinnamaldehyde in Aspergillus niger cells. By disrupting the activity of malate dehydrogenase, cinnamaldehyde interferes with the mitochondrial tricarboxylic acid (TCA) cycle, leading to a significant decrease in intracellular ATP levels. Following treatment with cinnamaldehyde at a concentration of 1 MIC, the inhibition rate of MDH activity was 74.90 %, accompanied by an 84.5 % decrease in intracellular ATP content. Furthermore, cinnamaldehyde disrupts cell membrane integrity, resulting in the release of cellular contents and subsequent cell demise. This study endeavors to unveil the molecular-level antifungal mechanism of cinnamaldehyde via a chemoproteomics approach, thereby offering valuable insights for further development and utilization of cinnamaldehyde in preventing and mitigating food spoilage.


Acrolein , Acrolein/analogs & derivatives , Antifungal Agents , Aspergillus niger , Fungal Proteins , Malate Dehydrogenase , Acrolein/pharmacology , Aspergillus niger/drug effects , Malate Dehydrogenase/metabolism , Fungal Proteins/metabolism , Antifungal Agents/pharmacology , Adenosine Triphosphate/metabolism , Proteomics , Microbial Sensitivity Tests , Citric Acid Cycle/drug effects
12.
Biomater Adv ; 160: 213840, 2024 Jun.
Article En | MEDLINE | ID: mdl-38579520

Combating antimicrobial resistance is one of the biggest health challenges because of the ineffectiveness of standard biocide treatments. This challenge could be approached using natural products, which have demonstrated powerful therapeutics against multidrug-resistant microbes. In the present work, a nanodevice consisting of mesoporous silica nanoparticles loaded with an essential oil component (cinnamaldehyde) and functionalized with the polypeptide ε-poly-l-lysine is developed and used as an antimicrobial agent. In the presence of the corresponding stimuli (i.e., exogenous proteolytic enzymes from bacteria or fungi), the polypeptide is hydrolyzed, and the cinnamaldehyde delivery is enhanced. The nanodevice's release mechanism and efficacy are evaluated in vitro against the pathogenic microorganisms Escherichia coli, Staphylococcus aureus, and Candida albicans. The results demonstrate that the new device increases the delivery of the cinnamaldehyde via a biocontrolled uncapping mechanism triggered by proteolytic enzymes. Moreover, the nanodevice notably improves the antimicrobial efficacy of cinnamaldehyde when compared to the free compound, ca. 52-fold for E. coli, ca. 60-fold for S. aureus, and ca. 7-fold for C. albicans. The enhancement of the antimicrobial activity of the essential oil component is attributed to the decrease of its volatility due to its encapsulation in the porous silica matrix and the increase of its local concentration when released due to the presence of microorganisms.


Acrolein , Acrolein/analogs & derivatives , Anti-Infective Agents , Candida albicans , Escherichia coli , Nanoparticles , Silicon Dioxide , Staphylococcus aureus , Acrolein/pharmacology , Acrolein/chemistry , Nanoparticles/chemistry , Escherichia coli/drug effects , Candida albicans/drug effects , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Staphylococcus aureus/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/administration & dosage , Porosity , Microbial Sensitivity Tests , Polylysine/chemistry , Polylysine/pharmacology
13.
Int J Biol Macromol ; 267(Pt 1): 131185, 2024 May.
Article En | MEDLINE | ID: mdl-38565360

Sustainable poly(butylene succinate) (PBS) films incorporating lignin nanoparticles (LN) and trans-cinnamaldehyde (CN) have been developed to preserve mango freshness and provide food safety. PBS/LN, PBS/CN, and PBS/LN/CN composite films were produced by blown film melt extrusion. This study investigated the effect of CN-LN on the CN remaining content, thermal, mechanical, and barrier properties, diffusion coefficient, and antifungal activity of PBS films both in vitro and in vivo. Results showed that LN in the PBS/LN/CN composite film contained more CN than in the PBS/CN film. The compatibility of CN-LN with PBS produced homogeneous surfaces with enhanced barrier properties. PBS/LN/CN composite films demonstrated superior antifungal efficacy, inhibiting the growth of Colletotrichum gloeosporioides and preserving mango quality during storage. Results suggested that incorporating LN into PBS composite films prolonged the sustained release of antifungal agents, thereby inhibiting microbial growth and extending the shelf life of mangoes. Development of PBS/LN/CN composite films is a beneficial step toward reducing food waste and enhancing food safety.


Acrolein , Acrolein/analogs & derivatives , Antifungal Agents , Butylene Glycols , Colletotrichum , Food Packaging , Lignin , Mangifera , Nanoparticles , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Acrolein/chemistry , Acrolein/pharmacology , Mangifera/chemistry , Lignin/chemistry , Lignin/pharmacology , Food Packaging/methods , Colletotrichum/drug effects , Nanoparticles/chemistry , Polymers/chemistry
14.
Biomed Pharmacother ; 175: 116666, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677246

Flavored e-liquid use has become popular among e-cigarette users recently, but the effects of such products outside the lung are not well characterized. In this work, acute exposure to the popular flavoring cinnamaldehyde (CIN) was performed on human proximal tubule (HK-2) kidney cells. Cells were exposed to 0-100 µM CIN for 24-48 h and cellular stress responses were assessed. Mitochondrial viability via MTT assay was significantly decreased at 20 µM for 24 and 48 h exposure. Seahorse XFp analysis showed significantly decreased mitochondrial energy output at 20 µM by 24 h exposure, in addition to significantly reduced ATP Synthase expression. Seahorse analysis also revealed significantly decreased glycolytic function at 20 µM by 24 h exposure, suggesting inability of glycolytic processes to compensate for reduced mitochondrial energy output. Cleaved caspase-3 expression, a mediator of apoptosis, was significantly increased at the 24 h mark. C/EBP homologous protein (CHOP) expression, a mediator of ER-induced apoptosis, was induced by 48 h and subsequently lost at the highest concentration of 100 µM. This decrease was accompanied by a simultaneous decrease in its downstream target cleaved caspase-3 at the 48 h mark. The autophagy marker microtubule-associated protein 1 A/1B light chain 3 (LC3B-I and LC3B-II) expression was significantly increased at 100 µM by 24 h. Autophagy-related 7 (ATG7) protein and mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and PARKIN expression were significantly reduced at 24 and 48 h exposure. These results indicate acute exposure to CIN in the kidney HK-2 model induces mitochondrial dysfunction and cellular stress responses.


Acrolein , Apoptosis , Flavoring Agents , Kidney Tubules, Proximal , Mitochondria , Humans , Acrolein/pharmacology , Acrolein/analogs & derivatives , Acrolein/toxicity , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Flavoring Agents/toxicity , Flavoring Agents/pharmacology , Cell Line , Mitochondria/drug effects , Mitochondria/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Stress, Physiological/drug effects , Cell Survival/drug effects , Endoplasmic Reticulum Stress/drug effects , Glycolysis/drug effects , Caspase 3/metabolism
15.
Sci Rep ; 14(1): 6027, 2024 03 12.
Article En | MEDLINE | ID: mdl-38472318

We have previously shown that the pro-oxidative aldehyde acrolein is a critical factor in MS pathology. In this study, we found that the acrolein scavenger hydralazine (HZ), when applied from the day of induction, can suppress acrolein and alleviate motor and sensory deficits in a mouse experimental autoimmune encephalomyelitis (EAE) model. Furthermore, we also demonstrated that HZ can alleviate motor deficits when applied after the emergence of MS symptoms, making potential anti-acrolein treatment a more clinically relevant strategy. In addition, HZ can reduce both acrolein and MPO, suggesting a connection between acrolein and inflammation. We also found that in addition to HZ, phenelzine (PZ), a structurally distinct acrolein scavenger, can mitigate motor deficits in EAE when applied from the day of induction. This suggests that the likely chief factor of neuroprotection offered by these two structurally distinct acrolein scavengers in EAE is their common feature of acrolein neutralization. Finally, up-and-down regulation of the function of aldehyde dehydrogenase 2 (ALDH2) in EAE mice using either a pharmacological or genetic strategy led to correspondent motor and sensory changes. This data indicates a potential key role of ALDH2 in influencing acrolein levels, oxidative stress, inflammation, and behavior in EAE. These findings further consolidate the critical role of aldehydes in the pathology of EAE and its mechanisms of regulation. This is expected to reinforce and expand the possible therapeutic targets of anti-aldehyde treatment to achieve neuroprotection through both endogenous and exogenous manners.


Acrolein , Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Acrolein/pharmacology , Encephalomyelitis, Autoimmune, Experimental/pathology , Neuroprotection , Phenelzine/pharmacology , Aldehydes , Inflammation/pathology , Mice, Inbred C57BL
16.
Int J Biol Macromol ; 266(Pt 1): 131181, 2024 May.
Article En | MEDLINE | ID: mdl-38552702

Pickering emulsions were prepared by using zein/chitosan nanoparticles as stabilizer and then incorporated into chitosan coatings. To improve the stability and performances, tea polyphenol and cinnamaldehyde (CA) were used to modulate the formation and functionalities of Pickering emulsions. The oil phase in Pickering emulsions were set at 5 % and 20 % to alter the hydrophobicity of chitosan coatings. Physical, structural, antioxidant and antibacterial activities of chitosan coatings with Pickering emulsions were characterized. Tea polyphenol significantly enhanced antioxidant capacity of chitosan coatings from 2.09 % to 57.61 % of DPPH value and from 2.63 % to 38.85 % of ABTS value. CA effectively increased the antibacterial activity of chitosan coatings against S. aureus and E. coli. Under 20 % oil content, the inhibition zones on S. aureus and E. coli increased from 3.03 ± 0.23 mm to 18.39 ± 1.22 mm and 7.66 ± 1.61 mm to 15.70 ± 1.75 mm, respectively. The preservative effect of chitosan coatings on fresh pork was further confirmed that the shelf-life of fresh pork could be extended by >4 days. These results suggested a great potential application of Pickering emulsion-incorporated chitosan coatings in the preservation of fresh pork.


Acrolein , Acrolein/analogs & derivatives , Anti-Bacterial Agents , Antioxidants , Chitosan , Emulsions , Escherichia coli , Nanoparticles , Polyphenols , Tea , Zein , Chitosan/chemistry , Acrolein/chemistry , Acrolein/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyphenols/chemistry , Zein/chemistry , Nanoparticles/chemistry , Tea/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Animals , Microbial Sensitivity Tests
17.
Poult Sci ; 103(5): 103625, 2024 May.
Article En | MEDLINE | ID: mdl-38507831

Essential oils (EOs) have been considered as an alternative to antibiotics for animal production. In the current study, 4 trials were conducted on a commercial broiler farm to investigate the effects of dietary supplementation of an encapsulated cinnamon EO product (NE-OFF) on the bird growth performance, gut health, and gene expression in the ileum, spleen, and liver relating to the host response to heat and other stresses, including potential NE challenge. In each trial, approximately 30,000 Cobb or Ross broilers were randomly allocated to 4 treatments: a raised without antibiotics (RWA) commercial diet as positive control, an adjusted RWA commercial diet as negative control, and the negative control diet supplemented with 2 different dosages of NE-OFF, which was added during feed pelleting. Although the final average body weight did not differ significantly among treatment groups, birds fed NE-OFF had an increased ratio of villus height and crypt depth in the jejunum, and reduced fecal oocyst counts. Trial 2 was conducted in the summer and had a necrotic enteritis (NE) outbreak. The supplementation of NE-OFF reduced the NE incidence and bird mortality. The samples from Trial 2 were hence selected for the analyses of Clostridium perfringens and NetB toxin gene abundance in the ileum, and host responses. The C. perfringens population appeared to be positively correlated with the NetB gene abundance. The gene expression analysis suggested that NE-OFF supplementation improved nutrient absorption and transportation as well as antioxidant activities to help the birds against stress. These on-farm trial results support the hypothesis that the use of NE-OFF as a feed additive can improve bird gut health and performance in commercial broiler production, especially for preventing NE outbreaks when birds are under stress.


Acrolein , Acrolein/analogs & derivatives , Animal Feed , Chickens , Diet , Dietary Supplements , Poultry Diseases , Animals , Chickens/growth & development , Chickens/physiology , Animal Feed/analysis , Acrolein/administration & dosage , Acrolein/pharmacology , Dietary Supplements/analysis , Diet/veterinary , Poultry Diseases/prevention & control , Poultry Diseases/parasitology , Random Allocation , Clostridium Infections/veterinary , Clostridium Infections/prevention & control , Clostridium perfringens/physiology , Male
18.
Int J Biol Macromol ; 262(Pt 2): 130108, 2024 Mar.
Article En | MEDLINE | ID: mdl-38346620

Active food packaging with controlled release behavior of volatile antimicrobials is highly desirable for enhancing the quality of fresh produce. In this study, humidity-responsive antimicrobial aerogels were developed using chitosan and dialdehyde nanocellulose, loading with cyclodextrin-cinnamaldehyde inclusion complexes (ICs) for achieving humidity-triggered release of the encapsulated antimicrobial agent. Results showed that the prepared aerogels had capable water absorption ability, which could be served as absorbent pads to take in excessive exudate from packaged fresh produce. More importantly, the accumulative release rate of cinnamaldehyde from the antimicrobial aerogels was significantly improved at RH 98 % compared to that at RH 70 %, which accordingly inactivated all the inoculated Escherichia coli, Staphylococcus aureus and Botrytis cinerea. Additionally, strawberries packaged with the antimicrobial aerogels remained in good conditions after 5 d of storage at 22 ± 1 °C. The prepared composite aerogels had the potential to extend the shelf life of fresh strawberries.


Acrolein/analogs & derivatives , Anti-Infective Agents , Fragaria , Humidity , Anti-Infective Agents/pharmacology , Acrolein/pharmacology , Food Packaging/methods , Escherichia coli
19.
Chem Biol Drug Des ; 103(2): e14489, 2024 02.
Article En | MEDLINE | ID: mdl-38404216

Rapid restoration of perfusion in ischemic myocardium is the most direct and effective treatment for coronary heart disease but may cause myocardial ischemia/reperfusion injury (MIRI). Cinnamaldehyde (CA, C9H8O), a key component in the well-known Chinese medicine cinnamomum cassia, has cardioprotective effects against MIRI. This study aimed to observe the therapeutic effect of CA on MIRI and to elucidate its potential mechanism. H9C2 rat cardiomyocytes were pretreated with CA solution at 0, 10, and 100 µM, respectively and subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Then the cell viability, the NF-κB and caspase3 gene levels, the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, superoxide dismutase (SOD) level, reactive oxygen species (ROS) generation, 4-hydroxynonenal (4-HNE), and malondialdehyde (MDA) were detected. The severity of DNA damage was assessed by tail moment (TM) values using alkaline comet assay. Besides, the DNA damage-related proteins and the key proteins of the Nrf2 pathway were detected by western blot. CA treatment increased the cell viability, GHS/GSSG ratio, SOD level, PARP1, Nrf2, PPAR-γ, and HO-1 protein levels of H9C2 cardiomyocytes, while reducing NF-κB, caspase3, ROS level, 4-HNE and MDA content, γ-H2AX protein level, and TM values. Inhibition of the Nrf2 pathway reversed the effect of CA on cell viability and apoptosis of OGD/R induced H9C2 cardiomyocytes. Besides, 100 µM CA was more effective than 10 µM CA. In the OGD/R-induced H9C2 cardiomyocyte model, CA can protect cardiomyocytes from MIRI by attenuating lipid peroxidation and repairing DNA damage. The mechanism may be related to the activation of the Nrf2 pathway.


Acrolein , Myocytes, Cardiac , NF-E2-Related Factor 2 , Oxygen , Animals , Rats , Acrolein/analogs & derivatives , Acrolein/pharmacology , Apoptosis , DNA Damage , Glucose/pharmacology , Glutathione Disulfide/genetics , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Lipid Peroxidation , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , NF-E2-Related Factor 2/drug effects , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
20.
Adv Healthc Mater ; 13(14): e2303374, 2024 Jun.
Article En | MEDLINE | ID: mdl-38366905

Orthopedic prostheses are the ultimate therapeutic solution for various end-stage orthopedic conditions. However, aseptic loosening and pyogenic infections remain as primary complications associated with these devices. In this study, a hierarchical titanium dioxide (TiO2) nanotube drug delivery system loaded with cinnamaldehyde for the surface modification of titanium implants, is constructed. These specially designed dual-layer TiO2 nanotubes enhance material reactivity and provide an extensive drug-loading platform within a short time. The introduction of cinnamaldehyde enhances the bone integration performance of the scaffold (simultaneously promoting bone formation and inhibiting bone resorption), anti-inflammatory capacity, and antibacterial properties. In vitro experiments have demonstrated that this system promoted osteogenesis by upregulating both Wnt/ß-catenin and MAPK signaling pathways. Furthermore, it inhibits osteoclast formation, suppresses macrophage-mediated inflammatory responses, and impedes the proliferation of Staphylococcus aureus and Escherichia coli. In vivo experiments shows that this material enhances bone integration in a rat model of femoral defects. In addition, it effectively enhances the antibacterial and anti-inflammatory properties in a subcutaneous implant in a rat model. This study provides a straightforward and highly effective surface modification strategy for orthopedic Ti implants.


Acrolein , Anti-Bacterial Agents , Nanotubes , Prostheses and Implants , Rats, Sprague-Dawley , Staphylococcus aureus , Titanium , Titanium/chemistry , Nanotubes/chemistry , Animals , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Rats , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Mice , Escherichia coli/drug effects , Osteogenesis/drug effects , Surface Properties , Male , RAW 264.7 Cells
...