Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Food Res Int ; 190: 114585, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945605

ABSTRACT

Haff disease typically develops after eating contaminated marine or freshwater species, especially fish. Despite still having an unknown etiology, recent reports have suggested its possible correlation with palytoxins. Therefore, the present work aimed to optimize and perform a validation of a sensitive method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for the analysis of palytoxin and some of its analogs, with the main purpose of investigating their presence in marine and freshwater food samples associated with Haff disease in Brazil. The method optimization was performed using a central composite rotatable design and fish samples fortified with the palytoxin standard. Then, the optimized method was validated for different food matrices, including freshwater and marine fish, mollusks, and crustaceans. The sample preparation involved a solid-liquid extraction using methanol and water, solid-phase extraction using Strata-X cartridges, and on-column palytoxin oxidation. The detection of the main oxidized fragments (amino and amide aldehydes) was achieved by LC-MS/MS with electrospray ionization in positive mode, using a C18 column, as well as acetonitrile and water as mobile phases, both acidified with 0.1 % of formic acid. After optimization and validation, the etiological investigation involved the analysis of 16 Brazilian Haff disease-related food samples (in natura and leftover meals) from 2022. The method was demonstrated to be appropriate for quantitative analysis of freshwater and marine species. So far, it has proven to be one of the most sensitive methods related to palytoxin detection (LOD 10 µg/kg), being able to work in a range that includes the provisional ingestion limit (30 µg/kg). Regarding the Haff disease-related samples analysis, there is a strong indication of palytoxin contamination since the amino aldehyde (common fragment for all palytoxins) was detected in 15 of the 16 samples. Selected results were confirmed using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS).


Subject(s)
Acrylamides , Cnidarian Venoms , Food Contamination , Fresh Water , Seafood , Animals , Acrylamides/analysis , Brazil , Fishes , Food Contamination/analysis , Fresh Water/chemistry , Limit of Detection , Liquid Chromatography-Mass Spectrometry/methods , Polyether Toxins , Reproducibility of Results , Seafood/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods
2.
Crit Rev Food Sci Nutr ; 63(22): 5608-5619, 2023.
Article in English | MEDLINE | ID: mdl-35139711

ABSTRACT

Wheat is one of the main cereals grown around the world and is the basis for several foods such as bread, cakes and pasta. The consumption of these foods raises a concern with food safety, as toxic substances such as acrylamide, 5-hydroxymethylfurfural and polycyclic aromatic hydrocarbons are formed during their processing. To assess the occurrence of processing contaminants in wheat-based foods, a systematic search was carried out in four databases: PubMed, Embase, Web of Science and Scopus. Of the 1479 results, 28 were included for a meta-analysis. Most studies (69.7%) evaluated acrylamide in bread, cookies, and pasta, while PAHs (26.2%) were determined mainly in wheat grains and pasta. HMF was the least determined contaminant (4.1%), with only four studies on cookies included in the meta-analysis. The highest concentration was for acrylamide (136.29 µg·kg-1) followed by HMF (70.59 µg·kg-1) and PAHs (0.11 µg·kg-1). Acrylamide is the main processing contaminant researched, and no studies on the subject have been found in commercial samples in some regions of the world. This result shows a gap in the dates available about process contaminants in wheat-based foods and how the levels can change depending on the process parameters and the ingredients used.


Subject(s)
Food Safety , Triticum , Bread , Bibliometrics , Acrylamides/analysis , Acrylamide , Food Contamination/analysis
3.
Toxicon ; 167: 117-122, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31211958

ABSTRACT

Marine isolates such as palytoxin (PTX) are of concern within the Caribbean region due to their toxicity. PTX for example has been described as a one of the most known potent marine toxins, known to prevent predation from larger species (e.g. vertebrates) as well as the prevention of being overgrown from other coral species. PTX is a polyhydroxylated polyether toxin with a very large and complex chemical structure that possesses both hydrophilic and lipophilic properties. Previous acute toxicity tests using brine shrimp (Artemia salina) and PTX extract had shown it to be moderately toxic. In humans, PTX has been credited to be responsible for extreme symptoms such anaphylactic shock, rapid cardiac failure and eventual death occurring within minutes. Extrapolation for human dose ranges has therefore been suggested to be between 2.3 and 31.5 µg. This study isolates a potentially PTX-enriched extract from Palythoa caribaeorum and examines its organic extract toxicity from a biogeography perspective from a within-colony to a variety of reef sites around Trinidad and Tobago that are popular for marine visitors. This research represents an acute study with a high level of crude organic extract toxicity on A. salina whilst postulating potential factors which may contribute to its extreme toxicity and the risk posed to users of these environments.


Subject(s)
Acrylamides/toxicity , Anthozoa/chemistry , Artemia/drug effects , Cnidarian Venoms/toxicity , Marine Toxins/toxicity , Acrylamides/analysis , Acrylamides/isolation & purification , Animals , Caribbean Region , Cnidarian Venoms/analysis , Cnidarian Venoms/isolation & purification , Coral Reefs , Lethal Dose 50 , Marine Toxins/analysis , Marine Toxins/isolation & purification , Seawater/chemistry , Toxicity Tests, Acute , Trinidad and Tobago , Water Movements
4.
Molecules ; 25(1)2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31905978

ABSTRACT

In natural product studies, the purification of metabolites is an important challenge. To accelerate this step, alternatives such as integrated analytical tools should be employed. Based on this, the chemical study of Swinglea glutinosa (Rutaceae) was performed using two rapid dereplication strategies: Target Analysis (Bruker Daltonics®, Bremen, Germany) MS data analysis combined with MS/MS data obtained from the GNPS platform. Through UHPLC-HRMS data, the first approach allowed, from crude fractions, a quick and visual identification of compounds already reported in the Swinglea genus. Aside from this, by grouping compounds according to their fragmentation patterns, the second approach enabled the detection of eight molecular families, which presented matches for acridonic alkaloids, phenylacrylamides, and flavonoids. Unrelated compounds for S. glutinosa have been isolated and characterized by NMR experiments, Lansamide I, Lansiumamide B, Lansiumamide C, and N-(2-phenylethyl)cinnamamide.


Subject(s)
Acridones/analysis , Acrylamides/analysis , Metabolomics/methods , Rutaceae/chemistry , Chromatography, High Pressure Liquid , Cinnamates/isolation & purification , Magnetic Resonance Spectroscopy , Molecular Structure , Secondary Metabolism , Styrenes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL