Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 47-52, 2024 Jan 20.
Article in Chinese | MEDLINE | ID: mdl-38322520

ABSTRACT

Objective: To investigate the mechanical responses of mitochondrial morphology to extracellular matrix stiffness in human mesenchymal stem cells (hMSCs) and the role of AMP-activated protein kinase (AMPK) in the regulation of mitochondrial mechanoresponses. Methods: Two polyacrylamide (PAAm) hydrogels, a soft one with a Young's modulus of 1 kPa and a stiff one of 20 kPa, were prepared by changing the monomer concentrations of acrylamide and bis-acrylamide. Then, hMSCs were cultured on the soft and stiff PAAm hydrogels and changes in mitochondrial morphology were observed using a laser confocal microscope. Western blot was performed to determine the expression and activation of AMPK, a protein associated with mitochondrial homeostasis. Furthermore, the activation of AMPK was regulated on the soft and stiff matrixes by AMPK activator A-769662 and the inhibitor Compound C, respectively, to observe the morphological changes of mitochondria. Results: The morphology of the mitochondria in hMSCs showed heterogeneity when there was a change in gel stiffness. On the 1 kPa soft matrix, 74% mitochondria exhibited a dense, elongated filamentous network structure, while on the 20 kPa stiff matrix, up to 63.3% mitochondria were fragmented or punctate and were sparsely distributed. Western blot results revealed that the phosphorylated AMPK (p-AMPK)/AMPK ratio on the stiff matrix was 1.6 times as high as that on the soft one. Immunofluorescence assay results revealed that the expression of p-AMPK was elevated on the hard matrix and showed nuclear localization, which indicated that the activation of intracellular AMPK increased continuously along with the increase in extracellular matrix stiffness. When the hMSCs on the soft matrix were treated with A-769662, an AMPK activator, the mitochondria transitioned from a filamentous network morphology to a fragmented morphology, with the ratio of filamentous network decreasing from 74% to 9.5%. Additionally, AMPK inhibition with Compound C promoted mitochondrial fusion on the stiff matrix and significantly reduced the generation of punctate mitochondria. Conclusion: Extracellular matrix stiffness regulates mitochondrial morphology in hMSCs through the activation of AMPK. Stiff matrix promotes the AMPK activation, resulting in mitochondrial fission and the subsequent fragmentation of mitochondria. The impact of matrix stiffness on mitochondrial morphology can be reversed by altering the level of AMPK phosphorylation.


Subject(s)
AMP-Activated Protein Kinases , Extracellular Matrix , Mesenchymal Stem Cells , Mitochondria , Humans , Acrylamides/analysis , Acrylamides/metabolism , AMP-Activated Protein Kinases/analysis , AMP-Activated Protein Kinases/metabolism , Biphenyl Compounds , Cells, Cultured , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Hydrogels/analysis , Hydrogels/metabolism , Pyrones , Thiophenes
2.
Theor Appl Genet ; 137(2): 46, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38332254

ABSTRACT

KEY MESSAGE: Different wheat QTLs were associated to the free asparagine content of grain grown in four different conditions. Environmental effects are a key factor when selecting for low acrylamide-forming potential. The amount of free asparagine in grain of a wheat genotype determines its potential to form harmful acrylamide in derivative food products. Here, we explored the variation in the free asparagine, aspartate, glutamine and glutamate contents of 485 accessions reflecting wheat worldwide diversity to define the genetic architecture governing the accumulation of these amino acids in grain. Accessions were grown under high and low nitrogen availability and in water-deficient and well-watered conditions, and plant and grain phenotypes were measured. Free amino acid contents of grain varied from 0.01 to 1.02 mg g-1 among genotypes in a highly heritable way that did not correlate strongly with grain yield, protein content, specific weight, thousand-kernel weight or heading date. Mean free asparagine content was 4% higher under high nitrogen and 3% higher in water-deficient conditions. After genotyping the accessions, single-locus and multi-locus genome-wide association study models were used to identify several QTLs for free asparagine content located on nine chromosomes. Each QTL was associated with a single amino acid and growing environment, and none of the QTLs colocalised with genes known to be involved in the corresponding amino acid metabolism. This suggests that free asparagine content is controlled by several loci with minor effects interacting with the environment. We conclude that breeding for reduced asparagine content is feasible, but should be firmly based on multi-environment field trials. KEY MESSAGE: Different wheat QTLs were associated to the free asparagine content of grain grown in four different conditions. Environmental effects are a key factor when selecting for low acrylamide-forming potential.


Subject(s)
Asparagine , Triticum , Triticum/metabolism , Genome-Wide Association Study , Nitrogen/metabolism , Plant Breeding , Edible Grain/genetics , Edible Grain/metabolism , Amino Acids/metabolism , Phenotype , Acrylamides/metabolism
3.
Int J Food Microbiol ; 410: 110513, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38043376

ABSTRACT

Thirty strains of lactic acid bacteria (LAB) and Saccharomyces cerevisiae E8.9 (wild type) were used to formulate fifteen combinations of starters by mixing two or three LAB with the yeast (ratio LAB: yeast, 10: 1). Such combinations were used to prepare rye sourdough and their performance in term of acidification and biochemical characteristics during fermentation at two temperatures (30 and 37 °C) and duration (4 and 8 h) were screened. The best thirteen sourdough formulations were selected and used for rye crispbread making. The analysis of acrylamide concentration demonstrated that 11 out 13 formulations resulted in significant decreases of concentration compared to the baker's yeast (control), with reductions up to 79.6 %. The rye sourdough crispbreads showed also higher amount of volatile organic compounds (VOCs) compared to the baker's yeast control. Two rye sourdough crispbreads, selected to represent the opposite extremes within the thirteen formulations in term of VOC profiles and fermentation performances, demonstrated better sensory and nutritional features, such as phytic acid reduction (up to 47.3 %), and enhanced total free amino acid compared to the control. These evidences suggest the potential of tailored sourdough fermentations as alternative and suitable biotechnological strategy for lowering acrylamide levels in rye crispbread.


Subject(s)
Lactobacillales , Saccharomyces cerevisiae , Fermentation , Saccharomyces cerevisiae/metabolism , Secale/chemistry , Secale/microbiology , Bread/microbiology , Acrylamides/metabolism , Flour/microbiology
4.
PLoS Pathog ; 19(11): e1011781, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37976321

ABSTRACT

Human cytomegalovirus (HCMV) is an important pathogen for which new antiviral drugs are needed. HCMV, like other herpesviruses, encodes a nuclear egress complex (NEC) composed of two subunits, UL50 and UL53, whose interaction is crucial for viral replication. To explore whether small molecules can exert selective antiviral activity by inhibiting NEC subunit interactions, we established a homogeneous time-resolved fluorescence (HTRF) assay of these interactions and used it to screen >200,000 compound-containing wells. Two compounds, designated GK1 and GK2, which selectively inhibited this interaction in the HTRF assay with GK1 also active in a co-immunoprecipitation assay, exhibited more potent anti-HCMV activity than cytotoxicity or activity against another herpesvirus. At doses that substantially reduced HCMV plaque formation, GK1 and GK2 had little or no effect on the expression of viral proteins and reduced the co-localization of UL53 with UL50 at the nuclear rim in a subset of cells. GK1 and GK2 contain an acrylamide moiety predicted to covalently interact with cysteines, and an analog without this potential lacked activity. Mass spectrometric analysis showed binding of GK2 to multiple cysteines on UL50 and UL53. Nevertheless, substitution of cysteine 214 of UL53 with serine (C214S) ablated detectable inhibitory activity of GK1 and GK2 in vitro, and the C214S substitution engineered into HCMV conferred resistance to GK1, the more potent of the two inhibitors. Thus, GK1 exerts selective antiviral activity by targeting the NEC. Docking studies suggest that the acrylamide tethers one end of GK1 or GK2 to C214 within a pocket of UL53, permitting the other end of the molecule to sterically hinder UL50 to prevent NEC formation. Our results prove the concept that targeting the NEC with small molecules can selectively block HCMV replication. Such compounds could serve as a foundation for development of anti-HCMV drugs and as chemical tools for studying HCMV.


Subject(s)
Cytomegalovirus , Herpesviridae , Humans , Cell Nucleus/metabolism , Herpesviridae/metabolism , Virus Replication , Simplexvirus , Acrylamides/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism
5.
J Neurochem ; 166(3): 588-608, 2023 08.
Article in English | MEDLINE | ID: mdl-37350308

ABSTRACT

Acrylamide (ACR), a common industrial ingredient that is also found in many foodstuffs, induces dying-back neuropathy in humans and animals. However, the mechanisms remain poorly understood. Sterile alpha and toll/interleukin 1 receptor motif-containing protein 1 (SARM1) is the central determinant of axonal degeneration and has crosstalk with different cell death programs to determine neuronal survival. Herein, we illustrated the role of SARM1 in ACR-induced dying-back neuropathy. We further demonstrated the upstream programmed cell death mechanism of this SARM1-dependent process. Spinal cord motor neurons that were induced to overexpress SARM1 underwent necroptosis rather than apoptosis in ACR neuropathy. Mechanically, non-canonical necroptotic pathways mediated mitochondrial permeability transition pore (mPTP) opening, reactive oxygen species (ROS) production, and mitochondrial fission. What's more, the final executioner of necroptosis, phosphorylation-activated mixed lineage kinase domain-like protein (MLKL), aggregated in mitochondrial fractions. Rapamycin intervention removed the impaired mitochondria, inhibited necroptosis for axon maintenance and neuronal survival, and alleviated ACR neuropathy. Our work clarified the functional links among mitophagy, necroptosis, and SARM1-dependent axonal destruction during ACR intoxication, providing novel therapeutic targets for dying-back neuropathies.


Subject(s)
Mitophagy , Necroptosis , Animals , Humans , Motor Neurons/metabolism , Apoptosis/physiology , Axons/physiology , Acrylamides/metabolism , Cytoskeletal Proteins/metabolism , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism
6.
Food Chem Toxicol ; 177: 113818, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37172712

ABSTRACT

Acrylamide (ACR), a well-documented human neurotoxicant that is widely exists in starchy foods. More than 30% of human daily energy is provided by ACR-containing foods. Evidence indicated that ACR can induce apoptosis and inhibit autophagy, but the mechanisms are limited. Transcription Factor EB (TFEB) is a major transcriptional regulator of the autophagy-lysosomal biogenesis that regulates autophagy processes and cell degradation. Our study aimed to investigated the potential mechanisms of TFEB-regulated lysosomal function in ACR-caused autophagic flux inhibition and apoptosis in Neuro-2a cells. Our results found that ACR exposure inhibited the autophagic flux, as revealed by the elevated LC3-II/LC3-I and p62 levels and a notable increased autophagosomes. ACR exposure reduced the amounts of LAMP1 and mature cathepsin D and caused an accumulation of ubiquitinated proteins, which suggests lysosomal dysfunction. In addition, ACR increased cellular apoptosis via decreasing Bcl-2 expression, increasing Bax and cleaved caspase-3 expression, and raising the apoptotic rate. Interestingly, TFEB overexpression alleviated the ACR-induced lysosomal dysfunction, and then mitigated the autophagy flux inhibition and cellular apoptosis. On the other hand, TFEB knockdown exacerbated the ACR-induced lysosomal dysfunction, autophagy flux inhibition, and cellular apoptosis. These findings strongly suggested that TFEB- regulated lysosomal function is responsible for ACR-caused autophagic flux inhibition and apoptosis in Neuro-2a cells. The present study hopes to explore new sensitive indicators in the mechanism of ACR neurotoxicity and thus provide new targets for the prevention and treatment of ACR intoxication.


Subject(s)
Autophagy , Lysosomes , Humans , Acrylamides/metabolism , Apoptosis/physiology , Autophagosomes/metabolism , Autophagy/physiology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lysosomes/metabolism
7.
Biopharm Drug Dispos ; 44(2): 165-174, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36649539

ABSTRACT

Osimertinib is a highly selective third-generation irreversible inhibitor of epidermal growth factor receptor mutant, which can be utilized to treat non-small cell lung cancer. As the substrate of cytochrome P450 enzyme, it is mainly metabolized by the CYP3A enzyme in humans. Among the metabolites produced by osimertinib, AZ5104, and AZ7550, which are demethylated that is most vital. Nowadays, deuteration is a new design approach for several drugs. This popular strategy is deemed to improve the pharmacokinetic characteristics of the original drugs. Therefore, in this study the metabolism profiles of osimertinib and its deuterated compound (osimertinib-d3) in liver microsomes and human recombinant cytochrome P450 isoenzymes and the pharmacokinetics in rats and humans were compared. After deuteration, its kinetic isotope effect greatly inhibited the metabolic pathway that produces AZ5104. The plasma concentration of the key metabolite AZ5104 of osimertinib-d3 in rats and humans decreased significantly compared with that of the osimertinib. This phenomenon was consistent with the results of the metabolism studies in vitro. In addition, the in vivo results indicated that osimertinib-d3 had higher systemic exposure (AUC) and peak concentration (Cmax ) compared with the osimertinib in rats and human body.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Rats , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Indoles , Acrylamides/metabolism , Acrylamides/pharmacology , Aniline Compounds/metabolism , Aniline Compounds/pharmacology , Microsomes, Liver/metabolism
8.
ACS Appl Mater Interfaces ; 15(4): 4863-4872, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36652631

ABSTRACT

Endothelial cells lining blood vessels are continuously exposed to biophysical cues that regulate their function in health and disease. As we age, blood vessels lose their elasticity and become stiffer. Vessel stiffness alters the mechanical forces that endothelial cells experience. Despite ample evidence on the contribution of endothelial cells to vessel stiffness, less is known about how vessel stiffness affects endothelial cells. In this study, we developed a versatile model to study the cooperative effect of substrate stiffness and cyclic stretch on human aortic endothelial cells. We cultured endothelial cells on elastomeric wells covered with fibronectin-coated polyacrylamide gel. Varying the concentrations of acrylamide and bis-acrylamide enabled us to produce soft and stiff substrates with elastic modules of 40 and 200 kPa, respectively. Using a customized three-dimensional (3D) printed cam-driven system, the cells were exposed to 5 and 10% cyclic stretch levels. This enabled us to mimic the stiffness and stretch levels that endothelial cells experience in young and aged arteries. Using this model, we found that endothelial cells cultured on a soft substrate had minimal cytoskeletal alignment to the direction of the stretch compared to the ones cultured on the stiff substrate. We also observed an increase in the cellular area and aspect ratio in cells cultured on the stiff substrate, both of which are positively regulated by cyclic stretch. However, neither cyclic stretch nor substrate stiffness significantly affected the nuclear circularity. Additionally, we found that the accumulation of NF-κB in the nucleus, endothelial proliferation, tube formation, and expression of IL1ß depends on the stretch level and substrate stiffness. Our model can be further used to investigate the complex signaling pathways associated with vessel stiffening that govern the endothelial responses to mechanical forces.


Subject(s)
Cell Culture Techniques , Endothelial Cells , Humans , Aged , Endothelial Cells/metabolism , Elasticity , Mechanical Phenomena , Cells, Cultured , Acrylamides/metabolism
9.
Food Chem Toxicol ; 172: 113576, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36565847

ABSTRACT

Acrylamide (ACR) is formed during the cooking of starchy foods at high temperatures. Accumulating evidence has shown that ACR has toxic effects, but the mechanism of its potential reproductive toxicity remains unclear. In this study, we observed that ACR caused weight loss in mice. There was no significant difference in the weight of testis and epididymis between the low/medium-dose ACR group and the control group. And the number of epididymal sperms, testicular Leydig cells, serum testosterone level, testicular steroidogenic genes and enzymes, including cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and cytochrome P450 family 17 subfamily A member 1 (CYP17A1), were decreased in the medium/high-dose ACR group. Additional cell experiments showed that the apoptosis rate and the level of reactive oxygen species (ROS) were increased, and testosterone levels and CYP17A1 protein expression were reduced in Leydig cells with treated ACR. Furthermore, the phosphorylation levels of extracellular signal-regulated kinases (ERK1/2) increased significantly; however, there was no significant difference in the levels of serine-threonine protein kinase (AKT) phosphorylation in the testis of mice and Leydig cells treated with ACR. These results suggest that ACR exposure leads to the damage of testicular structure and function and a decline in testosterone synthesis in Leydig cells and mouse testis, which may be related to the activated phosphorylation of ERK1/2.


Subject(s)
Leydig Cells , Testosterone , Animals , Male , Acrylamides/metabolism , Acrylamides/pharmacology , MAP Kinase Signaling System , Phosphorylation , Testis , Testosterone/metabolism , Cholesterol Side-Chain Cleavage Enzyme/chemistry , Cholesterol Side-Chain Cleavage Enzyme/metabolism
10.
PLoS One ; 17(10): e0268592, 2022.
Article in English | MEDLINE | ID: mdl-36206263

ABSTRACT

Fetuin-A is a liver derived plasma protein showing highest serum concentrations in utero, preterm infants, and neonates. Fetuin-A is also present in cerebrospinal fluid (CSF). The origin of CSF fetuin-A, blood-derived via the blood-CSF barrier or synthesized intrathecally, is presently unclear. Fetuin-A prevents ectopic calcification by stabilizing calcium and phosphate as colloidal calciprotein particles mediating their transport and clearance. Thus, fetuin-A plays a suppressive role in inflammation. Fetuin-A is a negative acute-phase protein under investigation as a biomarker for multiple sclerosis (MS). Here we studied the association of pediatric inflammatory CNS diseases with fetuin-A glycosylation and phosphorylation. Paired blood and CSF samples from 66 children were included in the study. Concentration measurements were performed using a commercial human fetuin-A/AHSG ELISA. Of 60 pairs, 23 pairs were analyzed by SDS-PAGE following glycosidase digestion with PNGase-F and Sialidase-AU. Phosphorylation was analyzed in 43 pairs by Phos-TagTM acrylamide electrophoresis following alkaline phosphatase digestion. Mean serum and CSF fetuin-A levels were 0.30 ± 0.06 mg/ml and 0.644 ± 0.55 µg/ml, respectively. This study showed that serum fetuin-A levels decreased in inflammation corroborating its role as a negative acute-phase protein. Blood-CSF barrier disruption was associated with elevated fetuin-A in CSF. A strong positive correlation was found between the CSF fetuin-A/serum fetuin-A quotient and the CSF albumin/serum albumin quotient, suggesting predominantly transport across the blood-CSF barrier rather than intrathecal fetuin-A synthesis. Sialidase digestion showed increased asialofetuin-A levels in serum and CSF samples from children with neuroinflammatory diseases. Desialylation enhanced hepatic fetuin-A clearance via the asialoglycoprotein receptor thus rapidly reducing serum levels during inflammation. Phosphorylation of fetuin-A was more abundant in serum samples than in CSF, suggesting that phosphorylation may regulate fetuin-A influx into the CNS. These results may help establish Fetuin-A as a potential biomarker for neuroinflammatory diseases.


Subject(s)
Calcium , alpha-2-HS-Glycoprotein , Acrylamides/metabolism , Acute-Phase Proteins/metabolism , Alkaline Phosphatase/metabolism , Asialoglycoprotein Receptor/metabolism , Biomarkers , Calcium/metabolism , Central Nervous System Diseases , Child , Glycosylation , Humans , Infant, Newborn , Infant, Premature , Inflammation/metabolism , Liver/metabolism , Neuraminidase/metabolism , Phosphates/metabolism , Phosphorylation , Protein Processing, Post-Translational , Serum Albumin/metabolism , alpha-2-HS-Glycoprotein/metabolism , alpha-Fetoproteins/metabolism
11.
ACS Appl Mater Interfaces ; 14(4): 4899-4913, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35060707

ABSTRACT

Despite advances in the development of complex culture technologies, the utility, survival, and function of large 3D cell aggregates, or spheroids, are impeded by mass transport limitations. The incorporation of engineered microparticles into these cell aggregates offers a promising approach to increase spheroid integrity through the creation of extracellular spaces to improve mass transport. In this study, we describe the formation of uniform oxygenating fluorinated methacrylamide chitosan (MACF) microparticles via a T-shaped microfluidic device, which when incorporated into spheroids increased extracellular spacing and enhanced oxygen transport via perfluorocarbon substitutions. The addition of MACF microparticles into large liver cell spheroids supported the formation of stable and large spheroids (>500 µm in diameter) made of a heterogeneous population of immortalized human hepatoma (HepG2) and hepatic stellate cells (HSCs) (4 HepG2/1 HSC), especially at a 150:1 ratio of cells to microparticles. Further, as confirmed by the albumin, urea, and CYP3A4 secretion amounts into the culture media, biological functionality was maintained over 10 days due to the incorporation of MACF microparticles as compared to controls without microparticles. Importantly, we demonstrated the utility of fluorinated microparticles in reducing the number of hypoxic cells within the core regions of spheroids, while also promoting the diffusion of other small molecules in and out of these 3D in vitro models.


Subject(s)
Acrylamides/pharmacology , Biocompatible Materials/pharmacology , Chitosan/pharmacology , Oxygen/metabolism , Spheroids, Cellular/drug effects , Acrylamides/chemistry , Acrylamides/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Cell Line , Cell Survival/drug effects , Chitosan/chemistry , Chitosan/metabolism , Halogenation , Humans , Materials Testing , Oxygen/chemistry , Particle Size , Spheroids, Cellular/metabolism , Surface Properties
12.
ACS Appl Mater Interfaces ; 13(49): 58508-58521, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34871496

ABSTRACT

An extracellular electron transfer (EET) process between an electroactive biofilm and an electrode is a crucial step for the performance of microbial fuel cells (MFCs), which is highly related to the enrichment of exoelectrogens and the electrocatalytic activity of the electrode. Herein, an efficient N- and Fe-abundant carbon cloth (CC) electrode with the comodification of iron porphyrin (FePor) and polyquaternium-7 (PQ) was synthesized using a facile solvent evaporation and immersion method and developed as an anode (named FePor-PQ) in MFCs. The surface structural characterizations confirmed the successful introduction of N and Fe atoms, whereas FePor-PQ achieved the N content of 9.59 at %, which may offer various active sites for EET. The introduction of PQ contributed to improving the surface hydrophilicity, providing the composite electrode good biocompatibility for bacterial attachment and colonization as well as substrate diffusion. Based on the advantages, the MFC with the FePor-PQ anode produced a maximum power density of 2165.7 mW m-2, strikingly higher than those of CC (1124.0 mW m-2), PQ (1668.8 mW m-2), and FePor (1978.9 mW m-2). Furthermore, with the EET mediated by the binding of flavins and c-type cytochromes on the outer membrane was enhanced prominently, the typical exoelectrogen Geobacter was enriched up to 55.84% in the FePor-PQ anode biofilm. This work reveals a synergistic effect from heteroatom coating and surface properties tailoring to boost both the EET efficiency and exoelectrogen enrichment for enhancing MFC performance, which also provides valuable insights for designing electrodes in other bio-electrochemical systems.


Subject(s)
Bacteria/chemistry , Bioelectric Energy Sources , Acrylamides/chemical synthesis , Acrylamides/chemistry , Acrylamides/metabolism , Ammonium Chloride/chemical synthesis , Ammonium Chloride/chemistry , Ammonium Chloride/metabolism , Bacteria/cytology , Bacteria/metabolism , Bacterial Adhesion , Biocompatible Materials , Carbon/chemistry , Electrodes , Electron Transport , Electrons , Materials Testing , Metalloporphyrins/chemical synthesis , Metalloporphyrins/chemistry , Metalloporphyrins/metabolism , Particle Size , Surface Properties
13.
Chem Res Toxicol ; 34(11): 2309-2318, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34665607

ABSTRACT

Covalent drugs are newly developed and proved to be successful therapies in past decades. However, the pharmacokinetics (PK) and pharmacodynamic (PD) studies of covalent drugs now ignore the drug and metabolite-protein modification. The low abundance of modified proteins also prevents its investigation. Herein, a simple, selective, and sensitive liquid chromatography-mass spectrometry (LC-MS)/MS quantitative method was established based on the mechanism of a drug and its metabolite-protein adducts using osimertinib as an example. Five metabolites with covalent modification potential were identified. The drug and its metabolite-cysteine adducts released from modified proteins by a mixed hydrolysis method were developed to characterize the level of the modified proteins. This turned the quantitative objects from proteins or peptides to small molecules, which increased the sensitivity and throughput of the quantitative approach. Accumulation of protein adducts formed by osimertinib and its metabolites in target organs was observed in vivo and long-lasting modifications were noted. These results interpreted the long duration of the covalent drugs' effect from the perspective of both parent and the metabolites. In addition, the established method could also be applied in blood testing as noninvasive monitoring. This newly developed approach showed great feasibility for PK and PD studies of covalent drugs.


Subject(s)
Acrylamides/analysis , Aniline Compounds/analysis , Chymotrypsin/metabolism , Cysteine/analysis , Liver/drug effects , Acrylamides/metabolism , Acrylamides/pharmacology , Aniline Compounds/metabolism , Aniline Compounds/pharmacology , Animals , Cattle , Chromatography, Liquid , Cysteine/metabolism , Cysteine/pharmacology , Female , Humans , Hydrolysis , Liver/metabolism , Male , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
14.
Drug Des Devel Ther ; 15: 3915-3925, 2021.
Article in English | MEDLINE | ID: mdl-34552321

ABSTRACT

BACKGROUND: Rociletinib (CO-1686; RLC) is a new, small molecule that is orally administered to inhibit mutant-selective covalent inhibitor of most epidermal growth factor receptor (EGFR)-mutated forms, including T790M, L858R, and exon 19 deletions, but not exon 20 insertions. Non-small-cell lung cancer (NSCLC) with a gene mutation that encodes EGFR is sensitive to approved EGFR inhibitors, but usually resistance develops, which is frequently mediated by T790M EGFR mutation. RLC is an EGFR inhibitor found to be active in preclinical models of EGFR-mutated NSCLC with or without T790M. METHODS: In silico drug metabolism prediction of RLC was executed with the aid of the WhichP450 module (StarDrop software package) to verify its metabolic liability. Second, a fast, accurate, and competent LC-MS/MS assay was developed for RLC quantification to determine its metabolic stability. RLC and bosutinib (BOS) (internal standard; IS) were separated using an isocratic elution system with a C18 column (reversed stationary phase). RESULTS: The developed LC-MS/MS analytical method showed linearity of 5-500 ng/mL with r2 ≥ 0.9998 in the human liver microsomes (HLMs) matrix. A limit of quantification of 4.6 ng/mL revealed the sensitivity of the analytical method, while the acquired inter- and intra-day accuracy and precision values below 4.63% inferred the method reproducibility. RLC metabolic stability estimation was calculated using intrinsic clearance (20.15 µL/min/mg) and in vitro half-life (34.39 min) values. CONCLUSION: RLC exhibited a moderate extraction ratio indicative of good bioavailability. The developed analytical method herein is the first LC-MS/MS assay for RLC metabolic stability.


Subject(s)
Acrylamides/analysis , Chromatography, Liquid/methods , Microsomes, Liver/metabolism , Pyrimidines/analysis , Tandem Mass Spectrometry/methods , Acrylamides/metabolism , Computer Simulation , Humans , Male , Protein Kinase Inhibitors/analysis , Protein Kinase Inhibitors/metabolism , Pyrimidines/metabolism , Reproducibility of Results
15.
Rapid Commun Mass Spectrom ; 35(22): e9195, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34491599

ABSTRACT

RATIONALE: Pyrotinib is an irreversible EGFR/HER2 inhibitor that has shown antitumor activity and tolerance in the treatment of breast cancer. Studies focused on its metabolic pathways and major metabolites are insufficient. In the evaluation of drug safety and therapeutic use, metabolite characterization is critical. The metabolism of pyrotinib in vitro was studied utilizing rat, dog and human hepatocytes in this study. METHODS: Pyrotinib (10 µM) was incubated with hepatocytes in Williams' E medium. The metabolites were examined and profiled using ultrahigh-performance liquid chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry. The metabolite structures were deduced by comparing their precise molecular weights, fragment ions and retention times with those of the parent drug. RESULTS: A total of 16 metabolites, including 6 novel ones, were discovered and structurally described under the present conditions. Oxidation, demethylation, dehydrogenation, O-dealkylation and glutathione (GSH) conjugation were all involved in the metabolism of pyrotinib in hepatocytes. The most predominant metabolic route was identified as GSH conjugation (M5). CONCLUSIONS: This study generated valuable metabolite profiles of pyrotinib in several species, which will aid in the understanding of the drug's disposition in various species and in evaluating the contribution of metabolites to overall effectiveness and toxicity of pyrotinib.


Subject(s)
Acrylamides/chemistry , Acrylamides/metabolism , Aminoquinolines/chemistry , Aminoquinolines/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Hepatocytes/metabolism , Animals , Chromatography, High Pressure Liquid/methods , Dogs , Hepatocytes/chemistry , Humans , Rats , Tandem Mass Spectrometry/methods
16.
J Med Chem ; 64(18): 13793-13806, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34473502

ABSTRACT

The cysteine protease cathepsin K is a target for the treatment of diseases associated with high bone turnover. Cathepsin K is mainly expressed in osteoclasts and responsible for the destruction of the proteinaceous components of the bone matrix. We designed various fluorescent activity-based probes (ABPs) and their precursors that bind to and inactivate cathepsin K. ABP 25 exhibited extraordinary potency (kinac/Ki = 35,300 M-1s-1) and selectivity for human cathepsin K. Crystal structures of cathepsin K in complex with ABP 25 and its nonfluorescent precursor 21 were determined to characterize the binding mode of this new type of acrylamide-based Michael acceptor with the particular orientation of the dibenzylamine moiety to the primed subsite region. The cyanine-5 containing probe 25 allowed for sensitive detection of cathepsin K, selective visualization in complex proteomes, and live cell imaging of a human osteosarcoma cell line, underlining its applicability in a pathophysiological environment.


Subject(s)
Acrylamides/chemistry , Cathepsin K/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemistry , Fluorescent Dyes/chemistry , Acrylamides/chemical synthesis , Acrylamides/metabolism , Catalytic Domain , Cathepsin K/chemistry , Cathepsin K/metabolism , Cell Line, Tumor , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/metabolism , Drug Design , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Protein Binding
17.
ACS Chem Biol ; 16(9): 1644-1653, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34397208

ABSTRACT

Covalent inhibition is a powerful strategy to develop potent and selective small molecule kinase inhibitors. Targeting the conserved catalytic lysine is an attractive method for selective kinase inactivation. We have developed novel, selective inhibitors of phosphoinositide 3-kinase δ (PI3Kδ) which acylate the catalytic lysine, Lys779, using activated esters as the reactive electrophiles. The acylating agents were prepared by adding the activated ester motif to a known selective dihydroisobenzofuran PI3Kδ inhibitor. Three esters were designed, including an acetate ester which was the smallest lysine modification evaluated in this work. Covalent binding to the enzyme was characterized by intact protein mass spectrometry of the PI3Kδ-ester adducts. An enzymatic digest coupled with tandem mass spectrometry identified Lys779 as the covalent binding site, and a biochemical activity assay confirmed that PI3Kδ inhibition was a direct result of covalent lysine acylation. These results indicate that a simple chemical modification such as lysine acetylation is sufficient to inhibit kinase activity. The selectivity of the compounds was evaluated against lipid kinases in cell lysates using a chemoproteomic binding assay. Due to the conserved nature of the catalytic lysine across the kinome, we believe the covalent inhibition strategy presented here could be applicable to a broad range of clinically relevant targets.


Subject(s)
Acrylamides/chemistry , Adenine/analogs & derivatives , Afatinib/chemistry , Aniline Compounds/chemistry , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Lysine/chemistry , Phosphoinositide-3 Kinase Inhibitors/chemistry , Piperidines/chemistry , Acetylation , Acrylamides/metabolism , Adenine/chemistry , Adenine/metabolism , Afatinib/metabolism , Amino Acid Sequence , Aniline Compounds/metabolism , Catalysis , Catalytic Domain , Class I Phosphatidylinositol 3-Kinases/metabolism , Humans , Mass Spectrometry , Molecular Docking Simulation , Phosphoinositide-3 Kinase Inhibitors/metabolism , Piperidines/metabolism , Protein Binding , Protein Conformation , Substrate Specificity
18.
Biomed Chromatogr ; 35(12): e5221, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34331710

ABSTRACT

Pyrotinib is an irreversible EGFR/HER2 inhibitor that has been approved for the treatment of breast cancer. The aim of this work was to establish a quantification method for the simultaneous determination of pyrotinib and its metabolite pyrotinib-lactam in rat plasma using UPLC-MS/MS. After simple protein precipitation with acetonitrile, the analytes and internal standard (neratinib) were separated on an ACQUITY BEH C18 column (2.1 × 50 mm, 1.7 µm) using a mobile phase of water containing 0.1% formic acid and acetonitrile. The detection was performed using selected reaction monitoring mode with precursor-to-product ion transitions at m/z 583.2 > 138.1 for pyrotinib, m/z 597.2 > 152.1 for pyrotinib-lactam, and m/z 557.2 > 112.1 for internal standard. The assay exhibited excellent linearity in the concentration range of 0.5-1000 ng/mL for pyrotinib and pyrotinib-lactam. The assay met the criteria of the United States Food and Drug Administration-validated bioanalytical methods and was successfully applied to a pharmacokinetic study of pyrotinib and its metabolite for the first time. Our results demonstrated that pyrotinib rapidly converted into pyrotinib-lactam, whose in vivo exposure was 21% that of pyrotinib.


Subject(s)
Acrylamides/blood , Acrylamides/pharmacokinetics , Aminoquinolines/blood , Aminoquinolines/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Acrylamides/chemistry , Acrylamides/metabolism , Aminoquinolines/chemistry , Aminoquinolines/metabolism , Animals , Limit of Detection , Linear Models , Rats , Rats, Sprague-Dawley , Reproducibility of Results
19.
Angew Chem Int Ed Engl ; 60(33): 18231-18239, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34097796

ABSTRACT

Protein crystallography (PX) is widely used to drive advanced stages of drug optimization or to discover medicinal chemistry starting points by fragment soaking. However, recent progress in PX could allow for a more integrated role into early drug discovery. Here, we demonstrate for the first time the interplay of high throughput synthesis and high throughput PX. We describe a practical multicomponent reaction approach to acrylamides and -esters from diverse building blocks suitable for mmol scale synthesis on 96-well format and on a high-throughput nanoscale format in a highly automated fashion. High-throughput PX of our libraries efficiently yielded potent covalent inhibitors of the main protease of the COVID-19 causing agent, SARS-CoV-2. Our results demonstrate, that the marriage of in situ HT synthesis of (covalent) libraires and HT PX has the potential to accelerate hit finding and to provide meaningful strategies for medicinal chemistry projects.


Subject(s)
Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/metabolism , Small Molecule Libraries/metabolism , Acrylamides/chemical synthesis , Acrylamides/metabolism , Acrylates/chemical synthesis , Acrylates/metabolism , Catalytic Domain , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemical synthesis , Drug Discovery , High-Throughput Screening Assays , Protein Binding , SARS-CoV-2/chemistry , Small Molecule Libraries/chemical synthesis
20.
J Photochem Photobiol B ; 221: 112238, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34130091

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is a crucial coenzyme in energy production. The imbalance of NAD+ synthesis has been found to trigger age-related diseases, such as metabolic disorders, cancer, and neurodegenerative diseases. Also, UV irradiation induces NAD+ depletion in the skin. In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway and essential for NAD+ homeostasis. However, but few studies have focused on the role of NAMPT in response to UV irradiation. Here, we show that NAMPT prevents NAD+ depletion in epidermal keratinocytes to protect against the mild-dose UVA and UVB (UVA/B)-induced proliferation defects. We showed that poly(ADP-ribose) polymerase (PARP) inhibitor rescued the NAD+ depletion in UVA/B-irradiated human keratinocytes, confirming that PAPR transiently exhausts cellular NAD+ to repair DNA damage. Notably, the treatment with a NAMPT inhibitor exacerbated the UVA/B-induced loss of energy production and cell viability. Moreover, the NAMPT inhibitor abrogated the sirtuin-1 (SIRT1)-mediated deacetylation of p53 and significantly inhibited the proliferation of UVA/B-irradiated cells, suggesting that the NAMPT-NAD+-SIRT1 axis regulates p53 functions upon UVA/B stress. The supplementation with NAD+ intermediates, nicotinamide mononucleotide and nicotinamide riboside, rescued the UVA/B-induced phenotypes in the absence of NAMPT activity. Therefore, NAD+ homeostasis is likely essential for the protection of keratinocytes from UV stress in mild doses. Since the skin is continuously exposed to UVA/B irradiation, understanding the protective role of NAMPT in UV stress will help prevent and treat skin photoaging.


Subject(s)
NAD/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/metabolism , Ultraviolet Rays , Acrylamides/chemistry , Acrylamides/metabolism , Acrylamides/pharmacology , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , DNA Damage/radiation effects , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Piperidines/chemistry , Piperidines/metabolism , Piperidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...