Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 864
Filter
1.
Int Immunopharmacol ; 137: 112478, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38901243

ABSTRACT

Despite the groundbreaking impact of immune checkpoint blockade (ICB), response rates in non-small cell lung cancer remain modest, particularly in immune-excluded or immune-desert microenvironments. Toll-like receptor 7 (TLR7) emerges as a latent target bridging innate and adaptive immunity, offering a promising avenue for combination therapies to augment ICB efficacy. Here, we explored the anti-tumor activity of the novel oral TLR7 agonist TQ-A3334 and its potential to enhance anti-programmed death ligand 1 (PD-L1) therapy through a combination strategy in a syngeneic murine lung cancer model. Oral administration of TQ-A3334 significantly alleviated tumor burden in C57BL/6J mice, modulated by type I interferon (IFN), and exhibited low toxicity. This therapy elicited activation of both innate and adaptive immune cells in tumor tissue, particularly increasing the abundance of CD8+ TILs through type I IFN pathway and subsequent CXCL10 expression. In vitro examinations validated that IFN-α-stimulated tumor cells exhibited increased secretion of CXCL10, conducive to the promoted trafficking of CD8+ T cells. Furthermore, combining TQ-A3334 with anti-PD-L1 treatment exceeded tumor control, with a further increase in CD8+ TIL frequency compared to monotherapy. These findings suggest that TQ-A3334 can mobilize innate immunity and promote T cell recruitment into the tumor microenvironment; a combination of TQ-A3334 and anti-PD-L1 antibodies can intensify the sensitivity of tumors to anti-PD-L1 therapy, which demonstrates significant potential for treating poorly immune-infiltrated lung cancer.


Subject(s)
B7-H1 Antigen , Immune Checkpoint Inhibitors , Interferon Type I , Lung Neoplasms , Mice, Inbred C57BL , Toll-Like Receptor 7 , Toll-Like Receptor 7/agonists , Animals , Interferon Type I/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Humans , Cell Line, Tumor , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Administration, Oral , Drug Synergism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Membrane Glycoproteins/agonists , Membrane Glycoproteins/metabolism , Signal Transduction/drug effects , Female , Immunity, Innate/drug effects , Adaptive Immunity/drug effects
2.
Nat Immunol ; 25(7): 1218-1230, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38914866

ABSTRACT

Transglutaminase 2 (TG2) plays a pivotal role in the pathogenesis of celiac disease (CeD) by deamidating dietary gluten peptides, which facilitates antigenic presentation and a strong anti-gluten T cell response. Here, we elucidate the molecular mechanisms underlying the efficacy of the TG2 inhibitor ZED1227 by performing transcriptional analysis of duodenal biopsies from individuals with CeD on a long-term gluten-free diet before and after a 6-week gluten challenge combined with 100 mg per day ZED1227 or placebo. At the transcriptome level, orally administered ZED1227 effectively prevented gluten-induced intestinal damage and inflammation, providing molecular-level evidence that TG2 inhibition is an effective strategy for treating CeD. ZED1227 treatment preserved transcriptome signatures associated with mucosal morphology, inflammation, cell differentiation and nutrient absorption to the level of the gluten-free diet group. Nearly half of the gluten-induced gene expression changes in CeD were associated with the epithelial interferon-γ response. Moreover, data suggest that deamidated gluten-induced adaptive immunity is a sufficient step to set the stage for CeD pathogenesis. Our results, with the limited sample size, also suggest that individuals with CeD might benefit from an HLA-DQ2/HLA-DQ8 stratification based on gene doses to maximally eliminate the interferon-γ-induced mucosal damage triggered by gluten.


Subject(s)
Celiac Disease , Diet, Gluten-Free , GTP-Binding Proteins , Gene Expression Profiling , Glutens , Intestinal Mucosa , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases , Celiac Disease/immunology , Humans , Glutens/immunology , Transglutaminases/metabolism , Transglutaminases/antagonists & inhibitors , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/genetics , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/drug effects , Female , Male , Adult , Transcriptome , Duodenum/pathology , Duodenum/immunology , Duodenum/metabolism , Interferon-gamma/metabolism , Middle Aged , HLA-DQ Antigens/genetics , HLA-DQ Antigens/immunology , Young Adult , Adaptive Immunity/drug effects
3.
Front Immunol ; 15: 1387950, 2024.
Article in English | MEDLINE | ID: mdl-38799472

ABSTRACT

Micronutrients, such as vitamins and trace minerals, are critical for supporting growth, performance, health and maintaining redox balance. Zinc (Zn), an essential micronutrient, aids the functioning of innate and adaptive immune cells. This scoping review aims to assemble and evaluate the evidence available for the role of Zn within calf immunity. Relevant literature was identified within Web of Science, PubMed, and CABI using search terms specific to the major innate and adaptive immune cell populations. There was no evidence that Zn supplementation altered neutrophil, natural killer cell, or T-cell functions. However, there was limited evidence to support Zn supplementation with reduced monocyte numbers, but there was no evidence to associate the monocytopenia with improvements in monocyte function. There is moderate evidence to suggest that Zn supplementation was beneficial for maintaining epithelial barriers of integumental and mucosal surfaces. The evidence supports supplementation above the current industry recommendations for improving immunoglobulin (Ig) production, with the strongest results being observed for IgG and IgM. Moreover, Zn supplementation was associated with reduced proinflammatory cytokine production, which may reduce inflammation-associated hypophagia and warrants further investigation. Furthermore, Zn reduced the duration of clinical signs in animals facing respiratory disease and diarrhea. However, consensus is needed about the optimal dose, route, and Zn formulation most appropriate for supporting immunity. In conclusion, while the literature supports that Zn could enhance calf immunity, there is insufficient evidence to adequately determine the extent to which Zn impacts innate immune cell and T-cell functions. Determination of the immune cell functions susceptible to modification by Zn supplementation is an important knowledge gap for enhancing the understanding of Zn and calf immunity.


Subject(s)
Dietary Supplements , Zinc , Animals , Cattle , Immunity, Innate/drug effects , Adaptive Immunity/drug effects
4.
Tuberculosis (Edinb) ; 147: 102517, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733881

ABSTRACT

The extensive inability of the BCG vaccine to produce long-term immune protection has not only accelerated the disease burden but also progressed towards the onset of drug resistance. In our previous study, we have reported the promising effects of Bergenin (Berg) in imparting significant protection as an adjunct immunomodulator against tuberculosis (TB). In congruence with our investigations, we delineated the impact of Berg on T cells, wherein it enhanced adaptive memory responses by modulating key transcription factors, STAT4 and Akt. We translated this finding into the vaccine model of TB and observed a notable reduction in the burden of Mycobacterium tuberculosis (M.tb) in BCG-Berg co-immunized mice as compared to BCG vaccination. Moreover, Berg, along with BCG, also aided in a heightened proinflammatory response milieu that corroborates the host protective immune response against TB. Furthermore, this response aligns with the escalated central and resident memory responses by modulating the Akt-Foxo-Stat4 axis, which plays a crucial role in enhancing the vaccine efficacy of BCG. These findings showcase the utilization of immunomodulator Berg as an immunoprophylactic agent to upgrade immunological memory, making it a more effective defender against TB.


Subject(s)
Adaptive Immunity , BCG Vaccine , Benzopyrans , Immunologic Memory , Mice, Inbred C57BL , Mycobacterium tuberculosis , Proto-Oncogene Proteins c-akt , STAT4 Transcription Factor , Signal Transduction , Animals , BCG Vaccine/immunology , BCG Vaccine/pharmacology , Immunologic Memory/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Mycobacterium tuberculosis/immunology , Benzopyrans/pharmacology , STAT4 Transcription Factor/metabolism , Adaptive Immunity/drug effects , Female , Tuberculosis/immunology , Tuberculosis/microbiology , Host-Pathogen Interactions , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Mice
5.
Cell Rep Med ; 5(6): 101584, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38776911

ABSTRACT

Iberdomide is a potent cereblon E3 ligase modulator (CELMoD agent) with promising efficacy and safety as a monotherapy or in combination with other therapies in patients with relapsed/refractory multiple myeloma (RRMM). Using a custom mass cytometry panel designed for large-scale immunophenotyping of the bone marrow tumor microenvironment (TME), we demonstrate significant increases of effector T and natural killer (NK) cells in a cohort of 93 patients with multiple myeloma (MM) treated with iberdomide, correlating findings to disease characteristics, prior therapy, and a peripheral blood immune phenotype. Notably, changes are dose dependent, associated with objective response, and independent of prior refractoriness to MM therapies. This suggests that iberdomide broadly induces innate and adaptive immune activation in the TME, contributing to its antitumor efficacy. Our approach establishes a strategy to study treatment-induced changes in the TME of patients with MM and, more broadly, patients with cancer and establishes rational combination strategies for iberdomide with immune-enhancing therapies to treat MM.


Subject(s)
Bone Marrow , Immunity, Innate , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Immunity, Innate/drug effects , Bone Marrow/drug effects , Bone Marrow/pathology , Bone Marrow/immunology , Adaptive Immunity/drug effects , Female , Male , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Middle Aged , Aged , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/drug therapy
6.
Acta Biomater ; 180: 407-422, 2024 05.
Article in English | MEDLINE | ID: mdl-38614414

ABSTRACT

Facile construction of a fully biodegradable spherical nucleic acid (SNA) nanoplatform is highly desirable for clinical translations but remains rarely explored. We developed herein the first polycarbonate-based biodegradable SNA nanoplatform for self-codelivery of a chemotherapeutic drug, doxorubicin (DOX), and a human liver-specific miR122 for synergistic chemo-gene therapy of hepatocellular carcinoma (HCC). Ring-opening polymerization (ROP) of a carbonate monomer leads to a well-defined polycarbonate backbone for subsequent DOX conjugation to the pendant side chains via acidic pH-cleavage Schiff base links and miR122 incorporation to the chain termini via click coupling, affording an amphiphilic polycarbonate-DOX-miR122 conjugate, PBis-Mpa30-DOX-miR122 that can self-assemble into stabilized SNA. Besides the desired biodegradability, another notable merit of this nanoplatform is the use of miR122 not only for gene therapy but also for enhanced innate immune response. Together with the ICD-triggering effect of DOX, PBis-Mpa30-DOX-miR122 SNA-mediated DOX and miR122 codelivery leads to synergistic immunogenicity enhancement, resulting in tumor growth inhibition value (TGI) of 98.1 % significantly higher than those of the groups treated with only drug or gene in a Hepa1-6-tumor-bearing mice model. Overall, this study develops a useful strategy toward biodegradable SNA construction, and presents a drug and gene-based self-codelivery SNA with synergistic immunogenicity enhancement for efficient HCC therapy. STATEMENT OF SIGNIFICANCE: Facile construction of a fully biodegradable SNA nanoplatform is useful for in vivo applications but remains relatively unexplored likely due to the synthetic challenge. We report herein construction of a polycarbonate-based SNA nanoplatform for co-delivering a chemotherapeutic drug, DOX, and a human liver-specific miR-122 for synergistic HCC treatment. In addition to the desired biodegradability properties, this SNA nanoplatform integrates DOX-triggered ICD and miR-122-enhanced innate immunity for simultaneously activating adaptive and innate immunities, which leads to potent antitumor efficiency with a TGI value of 98.1 % in a Hepa1-6-tumor-bearing mice model.


Subject(s)
Adaptive Immunity , Doxorubicin , Immunity, Innate , MicroRNAs , Doxorubicin/pharmacology , Doxorubicin/chemistry , MicroRNAs/genetics , Animals , Immunity, Innate/drug effects , Humans , Adaptive Immunity/drug effects , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Nanoparticles/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Mice, Nude , Mice, Inbred BALB C
7.
Mol Oral Microbiol ; 39(4): 240-259, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38613247

ABSTRACT

AIM: Metronidazole (MTZ) is an antimicrobial agent used to treat anaerobic infections. It has been hypothesized that MTZ may also have anti-inflammatory properties, but the evidence is limited and has not been previously reviewed. Thus, this scoping review aimed to answer the following question: "What is the evidence supporting anti-inflammatory properties of metronidazole that are not mediated by its antimicrobial effects?" METHODS: A scoping review was conducted according to the PRISMA-ScR statement. Five databases were searched up to January 2023 for studies evaluating the anti-inflammatory properties of MTZ used as monotherapy for treating infectious and inflammatory diseases. RESULTS: A total of 719 records were identified, and 27 studies (21 in vivo and 6 in vitro) were included. The studies reported experimental evidence of MTZ anti-inflammatory effects on (1) innate immunity (barrier permeability, leukocyte adhesion, immune cell populations), (2) acquired immunity (lymphocyte proliferation, T-cell function, cytokine profile), and (3) wound healing/resolution of inflammation. CONCLUSION: Taken together, this scoping review supported a potential anti-inflammatory effect of MTZ in periodontitis treatment. We recommend that future clinical studies should be conducted to evaluate specific MTZ anti-inflammatory pathways in the treatment of periodontitis.


Subject(s)
Anti-Inflammatory Agents , Metronidazole , Periodontitis , Metronidazole/therapeutic use , Metronidazole/pharmacology , Humans , Periodontitis/drug therapy , Periodontitis/microbiology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Animals , Immunity, Innate/drug effects , Wound Healing/drug effects , Adaptive Immunity/drug effects , Inflammation/drug therapy
8.
Nature ; 626(8000): 827-835, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38355791

ABSTRACT

Individuals differ widely in their immune responses, with age, sex and genetic factors having major roles in this inherent variability1-6. However, the variables that drive such differences in cytokine secretion-a crucial component of the host response to immune challenges-remain poorly defined. Here we investigated 136 variables and identified smoking, cytomegalovirus latent infection and body mass index as major contributors to variability in cytokine response, with effects of comparable magnitudes with age, sex and genetics. We find that smoking influences both innate and adaptive immune responses. Notably, its effect on innate responses is quickly lost after smoking cessation and is specifically associated with plasma levels of CEACAM6, whereas its effect on adaptive responses persists long after individuals quit smoking and is associated with epigenetic memory. This is supported by the association of the past smoking effect on cytokine responses with DNA methylation at specific signal trans-activators and regulators of metabolism. Our findings identify three novel variables associated with cytokine secretion variability and reveal roles for smoking in the short- and long-term regulation of immune responses. These results have potential clinical implications for the risk of developing infections, cancers or autoimmune diseases.


Subject(s)
Adaptive Immunity , Smoking , Female , Humans , Male , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Autoimmune Diseases/etiology , Autoimmune Diseases/immunology , Body Mass Index , Cytokines/blood , Cytokines/immunology , Cytomegalovirus/immunology , Cytomegalovirus/pathogenicity , Cytomegalovirus/physiology , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Immunity, Innate/drug effects , Immunity, Innate/genetics , Infections/etiology , Infections/immunology , Neoplasms/etiology , Neoplasms/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Smoking/adverse effects , Smoking/blood , Smoking/genetics , Smoking/immunology
9.
Cancer Chemother Pharmacol ; 93(5): 411-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38191768

ABSTRACT

BACKGROUND: Artemisinin (ART) and its derivatives are important antimalaria agents and have received increased attention due to their broad biomedical effects, such as anticancer and anti-inflammation activities. Recently, ruthenium-derived complexes have attracted considerable attention as their anticancer potentials were observed in preclinical and clinical studies. METHODS: To explore an innovative approach in colorectal cancer (CRC) management, we synthesized ruthenium-dihydroartemisinin complex (D-Ru), a novel metal-based artemisinin derivative molecule, and investigated its anticancer, anti-inflammation, and adaptive immune regulatory properties. RESULTS: Compared with its parent compound, ART, D-Ru showed stronger antiproliferative effects on the human CRC cell lines HCT-116 and HT-29. The cancer cell inhibition of D-Ru comprised G1 cell cycle arrest via the downregulation of cyclin A and the induction of apoptosis. ART and D-Ru downregulated the expressions of pro-inflammatory cytokines IL-1ß, IL-6, and IL-8. Although ART and D-Ru did not suppress Treg cell differentiation, they significantly inhibited Th1 and Th17 cell differentiation. CONCLUSIONS: Our results demonstrated that D-Ru, a novel ruthenium complexation of ART, remarkably enhanced its parent compound's anticancer action, while the anti-inflammatory potential was not compromised. The molecular mechanisms of action of D-Ru include inhibition of cancer cell growth via cell cycle arrest, induction of apoptosis, and anti-inflammation via regulation of adaptive immunity.


Subject(s)
Apoptosis , Artemisinins , Colonic Neoplasms , G1 Phase Cell Cycle Checkpoints , Humans , Artemisinins/pharmacology , Artemisinins/chemistry , Apoptosis/drug effects , Colonic Neoplasms/pathology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , G1 Phase Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Adaptive Immunity/drug effects , Ruthenium/chemistry , Ruthenium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , HCT116 Cells , HT29 Cells , Animals , Cytokines/metabolism , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Mice
10.
Autophagy ; 20(6): 1314-1334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38174993

ABSTRACT

Accumulating evidence suggests that cancer-associated fibroblast (CAF) macroautophagy/autophagy is crucial in tumor development and may be a therapeutic target for pancreatic ductal adenocarcinoma (PDAC). However, the role of CAF autophagy during immune surveillance and cancer immunotherapy is unclear. The present study revealed that the inhibition of CAF autophagy suppresses in vivo tumor development in immune-deficient xenografts. This deletion compromises anti-tumor immunity and anti-tumor efficacy both in vitro and in vivo by upregulating CD274/PDL1 levels in an immune-competent mouse model. A block in CAF autophagy reduced the production of IL6 (interleukin 6), disrupting high desmoplastic TME and decreasing USP14 expression at the transcription level in pancreatic cancer cells. We further identify USP14 as the post-translational factor responsible for downregulating CD274 expression by removing K63 linked-ubiquitination at the K280 residue. Finally, chloroquine diphosphate-loaded mesenchymal stem cell (MSC)-liposomes, by accurately targeting CAFs, inhibited CAF autophagy, improving the efficacy of immunochemotherapy to combat pancreatic cancer.Abbreviation: AIR: adaptive immune resistance; ATRA: all-trans-retinoicacid; CAF: cancer-associated fibroblast; CD274/PDL1: CD274 molecule; CM: conditioned medium; CQ: chloroquine diphosphate; CyTOF: Mass cytometry; FGF2/bFGF: fibroblast growth factor 2; ICB: immune checkpoint blockade; IF: immunofluorescence; IHC: immunohistochemistry; IP: immunoprecipitation; MS: mass spectrometer; MSC: mesenchymal stem cell; PDAC: pancreatic ductal adenocarcinoma; TEM: transmission electron microscopy; TILs: tumor infiltrating lymphocytes; TME: tumor microenvironment; USP14: ubiquitin specific peptidase 14.


Subject(s)
Autophagy , Cancer-Associated Fibroblasts , Immunotherapy , Pancreatic Neoplasms , Tumor Microenvironment , Autophagy/drug effects , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Humans , Mice , Immunotherapy/methods , Tumor Microenvironment/drug effects , Cell Line, Tumor , Adaptive Immunity/drug effects , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/drug therapy , B7-H1 Antigen/metabolism , Chloroquine/pharmacology , Chloroquine/therapeutic use
11.
EMBO Mol Med ; 15(5): e17580, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36946379

ABSTRACT

Alongside vaccines, antiviral drugs are becoming an integral part of our response to the SARS-CoV-2 pandemic. Nirmatrelvir-an orally available inhibitor of the 3-chymotrypsin-like cysteine protease-has been shown to reduce the risk of progression to severe COVID-19. However, the impact of nirmatrelvir treatment on the development of SARS-CoV-2-specific adaptive immune responses is unknown. Here, by using mouse models of SARS-CoV-2 infection, we show that nirmatrelvir administration blunts the development of SARS-CoV-2-specific antibody and T cell responses. Accordingly, upon secondary challenge, nirmatrelvir-treated mice recruited significantly fewer memory T and B cells to the infected lungs and mediastinal lymph nodes, respectively. Together, the data highlight a potential negative impact of nirmatrelvir treatment with important implications for clinical management and might help explain the virological and/or symptomatic relapse after treatment completion reported in some individuals.


Subject(s)
Adaptive Immunity , Antiviral Agents , COVID-19 Drug Treatment , Lactams , Animals , Mice , COVID-19/immunology , SARS-CoV-2 , Antiviral Agents/administration & dosage , Adaptive Immunity/drug effects , Lactams/administration & dosage , Memory T Cells/immunology , B-Lymphocytes/immunology , Mice, Inbred C57BL
12.
Biochem Pharmacol ; 209: 115417, 2023 03.
Article in English | MEDLINE | ID: mdl-36682388

ABSTRACT

Opioids are excellent analgesics for the clinical treatment of various types of acute and chronic pain, particularly cancer-related pain. Nevertheless, it is well known that opioids have some nasty side effects, including immunosuppression, which is commonly overlooked. As a result, the incidence of opportunistic bacterial and viral infections increases in patients with long-term opioid use. Nowadays, there are no effective medications to alleviate opioid-induced immunosuppression. Understanding the underlying molecular mechanism of opioids in immunosuppression can enable researchers to devise effective therapeutic interventions. This review comprehensively summarized the exogenous opioids-induced immunosuppressive effects and their underlying mechanisms, the regulatory roles of endogenous opioids on the immune system, the potential link between opioid immunosuppressive effect and the function of the central nervous system (CNS), and the future perspectives in this field.


Subject(s)
Adaptive Immunity , Analgesics, Opioid , Central Nervous System , Immune Tolerance , Immunity, Innate , Opioid Peptides , Opportunistic Infections , Analgesics, Opioid/adverse effects , Immunity, Innate/drug effects , Adaptive Immunity/drug effects , Humans , Opportunistic Infections/chemically induced , Opportunistic Infections/epidemiology , Opportunistic Infections/immunology , Incidence , Immune System , Central Nervous System/drug effects , Central Nervous System/immunology , Opioid Peptides/metabolism
13.
Cancer Res ; 83(4): 568-581, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36512628

ABSTRACT

Contradictory characteristics of elevated mutational burden and a "cold" tumor microenvironment (TME) coexist in liver kinase B1 (LKB1)-mutant non-small cell lung cancers (NSCLC). The molecular basis underlying this paradox and strategies tailored to these historically difficult to treat cancers are lacking. Here, by mapping the single-cell transcriptomic landscape of genetically engineered mouse models with Kras versus Kras/Lkb1-driven lung tumors, we detected impaired tumor-intrinsic IFNγ signaling in Kras/Lkb1-driven tumors that explains the inert immune context. Mechanistic analysis showed that mutant LKB1 led to deficiency in the DNA damage repair process and abnormally activated PARP1. Hyperactivated PARP1 attenuated the IFNγ pathway by physically interacting with and enhancing the poly(ADP-ribosyl)ation of STAT1, compromising its phosphorylation and activation. Abrogation of the PARP1-driven program triggered synthetic lethality in NSCLC on the basis of the LKB1 mutation-mediated DNA repair defect, while also restoring phosphorylated STAT1 to favor an immunologically "hot" TME. Accordingly, PARP1 inhibition restored the disrupted IFNγ signaling and thus mounted an adaptive immune response to synergize with PD-1 blockade in multiple LKB1-deficient murine tumor models. Overall, this study reveals an unexplored interplay between the DNA repair process and adaptive immune response, providing a molecular basis for dual PARP1 and PD-1 inhibition in treating LKB1-mutant NSCLC. SIGNIFICANCE: Targeting PARP exerts dual effects to overcome LKB1 loss-driven immunotherapy resistance through triggering DNA damage and adaptive immunity, providing a rationale for dual PARP and PD-1 inhibition in treating LKB1-mutant lung cancers.


Subject(s)
Adaptive Immunity , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Mice , Adaptive Immunity/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Synthetic Lethal Mutations/drug effects , Tumor Microenvironment , AMP-Activated Protein Kinase Kinases/genetics
14.
Adv Healthc Mater ; 12(2): e2202017, 2023 01.
Article in English | MEDLINE | ID: mdl-36321509

ABSTRACT

As a promising cancer treatment modality that has emerged, photothermal therapy can harness antitumor immunity by triggering immunogenic cell death (ICD) in addition to direct cell ablation. However, the immuno-stimulation induced by PTT alone is insufficient to achieve satisfactory cancer eradication, especially in immunologically "cold" tumors due to their harsh immunosuppressive microenvironment. Effective activation of the innate immune system is indispensable to boost a robust adaptive antitumor immune response typically initiated by dendritic cells (DCs). Herein the above issues are addressed by constructing an environmentally responsive supramolecular nanoself-assembly (PSAs) derived from a novel polypeptide-based block copolymer, which is capable of co-load photothermal immunomodulators efficiently under structure-guided π-π stacking interactions. In the murine model of 4T1 xenograft tumors, the fabricated PSAs with payloads trigger both adaptive and innate immune responses in situ through activation of ICD as well as STING-dependent signal pathway. The findings reveal a new mechanism of harnessing photothermal therapy toward immunologically "cold" tumors.


Subject(s)
Nanostructures , Neoplasms , Photothermal Therapy , Animals , Humans , Mice , Adaptive Immunity/drug effects , Adjuvants, Immunologic/pharmacology , Cell Line, Tumor , Immunity, Innate/drug effects , Immunotherapy , Neoplasms/therapy , Peptides/pharmacology , Nanostructures/chemistry , Nanostructures/therapeutic use
15.
Cancer Res ; 82(4): 534-536, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35180305

ABSTRACT

In 1978, a Cancer Research article by Dougherty and colleagues reported the first large-scale clinical trial of photodynamic therapy (PDT) for treatment of 113 cutaneous or subcutaneous lesions associated with ten different kinds of malignancies. In classic applications, PDT depends on excitation of a tissue-localized photosensitizer with wavelengths of visible light to damage malignant or otherwise diseased tissues. Thus, in this landmark article, photosensitizer (hematoporphyrin derivative) dose, drug-light interval, and fractionation scheme were evaluated for their therapeutic efficacy and normal tissue damage. From their observations came early evidence of the mechanisms of PDT's antitumor action, and in the decades since this work, our knowledge of these mechanisms has grown to build an understanding of the multifaceted nature of PDT. These facets are comprised of multiple cell death pathways, together with antivascular and immune stimulatory actions that constitute a PDT reaction. Mechanism-informed PDT protocols support the contribution of PDT to multimodality treatment approaches. Moreover, guided by an understanding of its mechanisms, PDT can be applied to clinical needs in fields beyond oncology. Undoubtedly, there still remains more to learn; new modes of cell death continue to be elucidated with relevance to PDT, and factors that drive PDT innate and adaptive immune responses are not yet fully understood. As research continues to forge a path forward for PDT in the clinic, direction is provided by anchoring new applications in mechanistically grounded protocol design, as was first exemplified in the landmark work conducted by Dougherty and colleagues. See related article by Dougherty and colleagues, Cancer Res 1978;38:2628-35.


Subject(s)
Neoplasms/drug therapy , Photochemotherapy/history , Photochemotherapy/trends , Photosensitizing Agents/therapeutic use , Adaptive Immunity/drug effects , Apoptosis/drug effects , Autophagy/drug effects , History, 20th Century , History, 21st Century , Humans , Immunity, Innate/drug effects , Neoplasms/pathology , Photochemotherapy/methods
16.
J Am Coll Cardiol ; 79(6): 577-593, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35144750

ABSTRACT

Immune checkpoint inhibitor therapy has revolutionized the treatment of advanced malignancies in recent years. Numerous reports have detailed the myriad of possible adverse inflammatory effects of immune checkpoint therapies, including within the cardiovascular system. However, these reports have been largely limited to myocarditis. The critical role of inflammation and adaptive immunity in atherosclerosis has been well characterized in preclinical studies, and several emerging clinical studies indicate a potential role of immune checkpoint targeting therapies in the development and exacerbation of atherosclerosis. In this review, we provide an overview of the role of T-cell immunity in atherogenesis and describe the molecular effects and clinical associations of both approved and investigational immune checkpoint therapy on atherosclerosis. We also highlight the role of cholesterol metabolism in oncogenesis and discuss the implications of these associations on future treatment and monitoring of atherosclerotic cardiovascular disease in the oncologic population receiving immune checkpoint therapy.


Subject(s)
Adaptive Immunity/drug effects , Atherosclerosis/etiology , Immune Checkpoint Inhibitors/adverse effects , Neoplasms/drug therapy , T-Lymphocytes/immunology , Humans
17.
Cells ; 11(2)2022 01 13.
Article in English | MEDLINE | ID: mdl-35053375

ABSTRACT

Although some therapies are available for regular breast cancers, there are very few options for triple-negative breast cancer (TNBC). Here, we demonstrated that serum level of IL-12p40 monomer (p40) was much higher in breast cancer patients than healthy controls. On the other hand, levels of IL-12, IL-23 and p40 homodimer (p402) were lower in serum of breast cancer patients as compared to healthy controls. Similarly, human TNBC cells produced greater level of p40 than p402. The level of p40 was also larger than p402 in serum of a patient-derived xenograft (PDX) mouse model. Accordingly, neutralization of p40 by p40 mAb induced death of human TNBC cells and tumor shrinkage in PDX mice. While investigating the mechanism, we found that neutralization of p40 led to upregulation of human CD4+IFNγ+ and CD8+IFNγ+ T cell populations, thereby increasing the level of human IFNγ and decreasing the level of human IL-10 in PDX mice. Finally, we demonstrated the infiltration of human cytotoxic T cells, switching of tumor-associated macrophage M2 (TAM2) to TAM1 and suppression of transforming growth factor ß (TGFß) in tumor tissues of p40 mAb-treated PDX mice. Our studies identify a possible new immunotherapy for TNBC in which p40 mAb inhibits tumor growth in PDX mice.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Interleukin-12 Subunit p40/immunology , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Adaptive Immunity/drug effects , Animals , Antibodies, Monoclonal/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Female , Humans , Immunotherapy , Interferon-gamma/metabolism , Interleukin-12/blood , Interleukin-12/metabolism , Interleukin-12 Subunit p40/blood , Interleukin-23/blood , Interleukin-23/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred NOD , Mice, SCID , Neutralization Tests , Spleen/metabolism , Triple Negative Breast Neoplasms/blood , Up-Regulation
18.
Nat Commun ; 13(1): 440, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064122

ABSTRACT

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Male , RNA-Seq/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , COVID-19 Drug Treatment
19.
Toxicology ; 465: 153057, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34864091

ABSTRACT

The large conjugated π bond in the molecular structure of carbon nanotubes (CNTs) interacts with the benzene ring structure in di (n-butyl) phthalates (DBP) through a π - π bond. Compounds of CNTs and DBP form easily, becoming another environmental pollutant of concern. We explore whether CNTs entering animals slow down the degradation of the DBP adsorbed in the CNT cavity, thereby prolonging the "hormonal activity" of DBP. In our study, male BALb/c mice were used as experimental subjects divided into four groups: the control group; the multi-walled carbon nanotubes (MWCNTs) exposure group (10mg/kg/d); the DBP exposure group (2.15 mg/kg/d); and the compound exposure group (MWCNTs + DBP). After 30 days of exposure, the mice were sacrificed and their spleens used for immunotoxicology study. The results showed that the exposure groups exhibited splenomegaly and suffered severe oxidative damage to the spleen. In the compound exposure group: levels of IgA and IgG in the serum of the mice changed, and were significantly different from levels in both the MWCNTs and DBP exposure groups (p <0.05); the pathological sections of the spleen showed that the boundary between the white pulp area (WP) and the red pulp area (RP) was blurred, that the cell arrangement was loose, and that more red blood cells were retained in the spleen. Proteomics mass spectrometry analysis showed that compared with the control group, 70 proteins were up-regulated and 27 proteins were down-regulated in the MWCNTs group, 36 proteins were up-regulated and 23 proteins were down-regulated in the DBP group, 87 proteins were up-regulated and 21 proteins were down-regulated in the compound exposure group. The results of GO enrichment analysis and KEGG enrichment analysis of the differentially expressed proteins showed that the compound exposure harmed the spleen antigen recognition, processing, and presentation, inhibited the activation and proliferation of B cells and T cells, and hindered the adaptive immune responses. Our results showed that MWCNTs and DBP compounds can damage the spleen, and impair the innate and adaptive immune functions of the body.


Subject(s)
Dibutyl Phthalate/toxicity , Environmental Pollutants/toxicity , Nanotubes, Carbon/toxicity , Spleen/drug effects , Splenomegaly/chemically induced , Adaptive Immunity/drug effects , Animals , Gene Regulatory Networks , Immunity, Innate/drug effects , Immunoglobulins/blood , Male , Mice, Inbred BALB C , Oxidative Stress/drug effects , Proteome/drug effects , Proteome/metabolism , Risk Assessment , Spleen/immunology , Spleen/metabolism , Spleen/pathology , Splenomegaly/immunology , Splenomegaly/metabolism , Splenomegaly/pathology , Transcriptome/drug effects
20.
Exp Hematol ; 105: 32-38.e2, 2022 01.
Article in English | MEDLINE | ID: mdl-34800603

ABSTRACT

Chemotherapy-induced bone marrow (BM) injury is a significant cause of morbidity and mortality in acute myeloid leukemia (AML). Time to hematologic recovery after standard ("7 + 3") myeloablative chemotherapy can vary considerably among patients, but the factors that drive or predict BM recovery remain incompletely understood. Here, we assessed the composition of innate and adaptive immune subsets in the regenerating BM (day 17) after induction chemotherapy and related it to hematologic recovery in AML. T cells, and in particular the CD4 central memory (CD4CM) T-cell subset, were significantly enriched in the BM after chemotherapy, suggesting the relative chemoresistance of cells providing long-term memory for systemic pathogens. In contrast, B cells and other hematopoietic subsets were depleted. Higher frequencies of the CD4CM T-cell subset were associated with delayed hematopoietic recovery, whereas a high frequency of natural killer (NK) cells was related to faster recovery of neutrophil counts. The NK/CD4CM ratio in the BM after chemotherapy was significantly associated with the time to subsequent neutrophil recovery (Spearman's ρ = -0.723, p < 0.001, false discovery rate <0.01). The data provide novel insights into adaptive immune cell recovery after injury and identify the NK/CD4CM index as a putative predictor of hematopoietic recovery in AML.


Subject(s)
Adaptive Immunity/drug effects , Antineoplastic Agents/adverse effects , Immunity, Innate/drug effects , Leukemia, Myeloid, Acute/drug therapy , Adult , Aged , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Female , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/immunology , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...