Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.128
Filter
1.
Protein Sci ; 33(8): e5091, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38980078

ABSTRACT

Protein misfolding and aggregation are involved in several neurodegenerative disorders, such as α-synuclein (αSyn) implicated in Parkinson's disease, where new therapeutic approaches remain essential to combat these devastating diseases. Elucidating the microscopic nucleation mechanisms has opened new opportunities to develop therapeutics against toxic mechanisms and species. Here, we show that naturally occurring molecular chaperones, represented by the anti-amyloid Bri2 BRICHOS domain, can be used to target αSyn-associated nucleation processes and structural species related to neurotoxicity. Our findings revealed that BRICHOS predominantly suppresses the formation of new nucleation units on the fibrils surface (secondary nucleation), decreasing the oligomer generation rate. Further, BRICHOS directly binds to oligomeric αSyn species and effectively diminishes αSyn fibril-related toxicity. Hence, our studies show that molecular chaperones can be utilized as tools to target molecular processes and structural species related to αSyn neurotoxicity and have the potential as protein-based treatments against neurodegenerative disorders.


Subject(s)
Molecular Chaperones , alpha-Synuclein , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , alpha-Synuclein/toxicity , Humans , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Protein Domains
2.
Cell Biol Int ; 48(8): 1080-1096, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924608

ABSTRACT

BAG3 is a multifaceted protein characterised by having WW domain, PXXP motif and BAG domain. This protein gets upregulated during malignant transformation of cells and has been associated with poorer survival of patients. Procancerous activity of BAG domain of BAG3 is well documented. BAG domain interacts with ATPase domain of Hsp-70 preventing protein delivery to proteasome. This impediment results in enhanced cell survival, proliferation, resistance to apoptosis and chemoresistance. Besides BAG domain other two domains/motifs of BAG3 are under research vigilance to explore its further oncogenic role. This review summarises the role of different structural determinants of BAG3 in elevating oncogenesis. Based on the already existing findings, more interacting partners of BAG3 are anticipated. The anticipated partners of BAG3 can shed a wealth of information into the mechanistic insights of its proproliferative role. Proper insights into the mechanistic details adopted by BAG3 to curtail/elaborate activity of anticipated interacting partners can serve as a potent target for development of therapeutic interventions.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Humans , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Carcinogenesis/metabolism , Animals , Neoplasms/metabolism , Neoplasms/pathology , Apoptosis , Protein Domains
3.
Cell Biol Int ; 48(8): 1069-1079, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38884348

ABSTRACT

ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus. Due to the differences in the structures of these two isoforms, they have different binding partners and protein modifications. Ebp1 can function as both an oncogene and a tumor suppressor factor. However, the underlying mechanisms by which these two isoforms exert opposite functions are still not fully understood. In this review, we summarize the genes and the structures of protein of these two isoforms, protein modifications, binding partners and the association of different isoforms with diseases.


Subject(s)
Protein Isoforms , Humans , Protein Isoforms/metabolism , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , CCAAT-Enhancer-Binding Proteins/metabolism , Neoplasms/metabolism , Protein Binding
4.
Protein Sci ; 33(7): e5063, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38864729

ABSTRACT

Proteins can misfold into fibrillar or amorphous aggregates and molecular chaperones act as crucial guardians against these undesirable processes. The BRICHOS chaperone domain, found in several otherwise unrelated proproteins that contain amyloidogenic regions, effectively inhibits amyloid formation and toxicity but can in some cases also prevent non-fibrillar, amorphous protein aggregation. Here, we elucidate the molecular basis behind the multifaceted chaperone activities of the BRICHOS domain from the Bri2 proprotein. High-confidence AlphaFold2 and RoseTTAFold predictions suggest that the intramolecular amyloidogenic region (Bri23) is part of the hydrophobic core of the proprotein, where it occupies the proposed amyloid binding site, explaining the markedly reduced ability of the proprotein to prevent an exogenous amyloidogenic peptide from aggregating. However, the BRICHOS-Bri23 complex maintains its ability to form large polydisperse oligomers that prevent amorphous protein aggregation. A cryo-EM-derived model of the Bri2 BRICHOS oligomer is compatible with surface-exposed hydrophobic motifs that get exposed and come together during oligomerization, explaining its effects against amorphous aggregation. These findings provide a molecular basis for the BRICHOS chaperone domain function, where distinct surfaces are employed against different forms of protein aggregation.


Subject(s)
Molecular Chaperones , Protein Domains , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Binding Sites , Humans , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Models, Molecular , Hydrophobic and Hydrophilic Interactions
5.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928272

ABSTRACT

The SH2 domains of SHP2 play a crucial role in determining the function of the SHP2 protein. While the folding and binding properties of the isolated NSH2 and CSH2 domains have been extensively studied, there is limited information about the tandem SH2 domains. This study aims to elucidate the folding and binding kinetics of the NSH2-CSH2 tandem domains of SHP2 through rapid kinetic experiments, complementing existing data on the isolated domains. The results indicate that while the domains generally fold and unfold independently, acidic pH conditions induce complex scenarios involving the formation of a misfolded intermediate. Furthermore, a comparison of the binding kinetics of isolated NSH2 and CSH2 domains with the NSH2-CSH2 tandem domains, using peptides that mimic specific portions of Gab2, suggests a dynamic interplay between NSH2 and CSH2 in binding Gab2 that modulate the microscopic association rate constant of the binding reaction. These findings, discussed in the context of previous research on the NSH2 and CSH2 domains, enhance our understanding of the function of the SH2 domain tandem of SHP2.


Subject(s)
Protein Binding , Protein Folding , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , src Homology Domains , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Hydrogen-Ion Concentration , Kinetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry
6.
Nat Commun ; 15(1): 5241, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898011

ABSTRACT

While the elucidation of regulatory mechanisms of folded proteins is facilitated due to their amenability to high-resolution structural characterization, investigation of these mechanisms in disordered proteins is more challenging due to their structural heterogeneity, which can be captured by a variety of biophysical approaches. Here, we used the transcriptional master corepressor CtBP, which binds the putative metastasis suppressor RAI2 through repetitive SLiMs, as a model system. Using cryo-electron microscopy embedded in an integrative structural biology approach, we show that RAI2 unexpectedly induces CtBP polymerization through filaments of stacked tetrameric CtBP layers. These filaments lead to RAI2-mediated CtBP nuclear foci and relieve its corepressor function in RAI2-expressing cancer cells. The impact of RAI2-mediated CtBP loss-of-function is illustrated by the analysis of a diverse cohort of prostate cancer patients, which reveals a substantial decrease in RAI2 in advanced treatment-resistant cancer subtypes. As RAI2-like SLiM motifs are found in a wide range of organisms, including pathogenic viruses, our findings serve as a paradigm for diverse functional effects through multivalent interaction-mediated polymerization by disordered proteins in healthy and diseased conditions.


Subject(s)
Alcohol Oxidoreductases , Polymerization , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/chemistry , Cryoelectron Microscopy , Cell Line, Tumor , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Protein Binding , HEK293 Cells , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Motifs , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/genetics
7.
Methods Enzymol ; 698: 301-342, 2024.
Article in English | MEDLINE | ID: mdl-38886037

ABSTRACT

Protein-protein interactions between SH2 domains and segments of proteins that include a post-translationally phosphorylated tyrosine residue (pY) underpin numerous signal transduction cascades that allow cells to respond to their environment. Dysregulation of the writing, erasing, and reading of these posttranslational modifications is a hallmark of human disease, notably cancer. Elucidating the precise role of the SH2 domain-containing adaptor proteins Crk and CrkL in tumor cell migration and invasion is challenging because there are no specific and potent antagonists available. Crk and CrkL SH2s interact with a region of the docking protein p130Cas containing 15 potential pY-containing tetrapeptide motifs. This chapter summarizes recent efforts toward peptide antagonists for this Crk/CrkL-p130Cas interaction. We describe our protocol for recombinant expression and purification of Crk and CrkL SH2s for functional assays and our procedure to determine the consensus binding motif from the p130Cas sequence. To develop a more potent antagonist, we employ methods often associated with structure-based drug design. Computational docking using Rosetta FlexPepDock, which accounts for peptides having a greater number of conformational degrees of freedom than small organic molecules that typically constitute libraries, provides quantitative docking metrics to prioritize candidate peptides for experimental testing. A battery of biophysical assays, including fluorescence polarization, differential scanning fluorimetry and saturation transfer difference nuclear magnetic resonance spectroscopy, were employed to assess the candidates. In parallel, GST pulldown competition assays characterized protein-protein binding in vitro. Taken together, our methodology yields peptide antagonists of the Crk/CrkL-p130Cas axis that will be used to validate targets, assess druggability, foster in vitro assay development, and potentially serve as lead compounds for therapeutic intervention.


Subject(s)
Crk-Associated Substrate Protein , Peptides , Phosphotyrosine , Proto-Oncogene Proteins c-crk , src Homology Domains , Crk-Associated Substrate Protein/metabolism , Crk-Associated Substrate Protein/chemistry , Proto-Oncogene Proteins c-crk/metabolism , Proto-Oncogene Proteins c-crk/chemistry , Humans , Phosphotyrosine/metabolism , Phosphotyrosine/chemistry , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Protein Binding , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Molecular Docking Simulation/methods , Nuclear Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry
8.
Nat Commun ; 15(1): 3725, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38697971

ABSTRACT

Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell receptor signaling and as such is an attractive target for cancer immunotherapy. Although the role of the HPK1 kinase domain (KD) has been extensively characterized, the function of its citron homology domain (CHD) remains elusive. Through a combination of structural, biochemical, and mechanistic studies, we characterize the structure-function of CHD in relationship to KD. Crystallography and hydrogen-deuterium exchange mass spectrometry reveal that CHD adopts a seven-bladed ß-propellor fold that binds to KD. Mutagenesis associated with binding and functional studies show a direct correlation between domain-domain interaction and negative regulation of kinase activity. We further demonstrate that the CHD provides stability to HPK1 protein in cells as well as contributes to the docking of its substrate SLP76. Altogether, this study highlights the importance of the CHD in the direct and indirect regulation of HPK1 function.


Subject(s)
Adaptor Proteins, Signal Transducing , Protein Serine-Threonine Kinases , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/chemistry , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/chemistry , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Binding , Protein Domains , Crystallography, X-Ray , HEK293 Cells
9.
J Biol Chem ; 300(6): 107390, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777146

ABSTRACT

SARS-CoV-2 entry into host cells is facilitated by the interaction between the receptor-binding domain of its spike protein (CoV2-RBD) and host cell receptor, ACE2, promoting viral membrane fusion. The virus also uses endocytic pathways for entry, but the mediating host factors remain largely unknown. It is also unknown whether mutations in the RBD of SARS-CoV-2 variants promote interactions with additional host factors to promote viral entry. Here, we used the GST pull-down approach to identify novel surface-located host factors that bind to CoV2-RBD. One of these factors, SH3BP4, regulates internalization of CoV2-RBD in an ACE2-independent but integrin- and clathrin-dependent manner and mediates SARS-CoV-2 pseudovirus entry, suggesting that SH3BP4 promotes viral entry via the endocytic route. Many of the identified factors, including SH3BP4, ADAM9, and TMEM2, show stronger affinity to CoV2-RBD than to RBD of the less infective SARS-CoV, suggesting SARS-CoV-2-specific utilization. We also found factors preferentially binding to the RBD of the SARS-CoV-2 Delta variant, potentially enhancing its entry. These data identify the repertoire of host cell surface factors that function in the events leading to the entry of SARS-CoV-2.


Subject(s)
Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Protein Domains , HEK293 Cells , COVID-19/metabolism , COVID-19/virology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/chemistry , Host-Pathogen Interactions
10.
Trends Cell Biol ; 34(7): 566-577, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806345

ABSTRACT

Biomolecular condensates, the membraneless cellular compartments formed by liquid-liquid phase separation (LLPS), represent an important mechanism for physiological and tumorigenic processes. Recent studies have advanced our understanding of how these condensates formed in the cytoplasm or nucleus regulate Hippo signaling, a central player in organogenesis and tumorigenesis. Here, we review recent findings on the dynamic formation and function of biomolecular condensates in regulating the Hippo-yes-associated protein (YAP)/transcription coactivator with PDZ-binding motif (TAZ) signaling pathway under physiological and pathological processes. We further discuss how the nuclear condensates of YAP- or TAZ-fusion oncoproteins compartmentalize crucial transcriptional co-activators and alter chromatin architecture to promote oncogenic programs. Finally, we highlight key questions regarding how these findings may pave the way for novel therapeutics to target cancer.


Subject(s)
Hippo Signaling Pathway , Neoplasms , Protein Serine-Threonine Kinases , Signal Transduction , Transcription Factors , Humans , Neoplasms/metabolism , Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Transcription Factors/chemistry , Animals , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , YAP-Signaling Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
11.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38767621

ABSTRACT

In this issue, the discovery by Yang et al. (https://doi.org/10.1083/jcb.202308013) that folded WW domains of YAP1 and other proteins bind to Impα introduces a new class of globular NLS, contrasting with the extensively studied linear NLS motifs. This finding underscores the versatility of importins in recognizing their cargo proteins.


Subject(s)
Nuclear Localization Signals , Humans , Nuclear Localization Signals/metabolism , WW Domains/genetics , alpha Karyopherins/metabolism , alpha Karyopherins/genetics , alpha Karyopherins/chemistry , Protein Binding , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/chemistry , YAP-Signaling Proteins/metabolism
12.
J Phys Chem B ; 128(16): 3795-3806, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38606592

ABSTRACT

The Hippo signaling pathway is a highly conserved signaling network that plays a central role in regulating cellular growth, proliferation, and organ size. This pathway consists of a kinase cascade that integrates various upstream signals to control the activation or inactivation of YAP/TAZ proteins. Phosphorylated YAP/TAZ is sequestered in the cytoplasm; however, when the Hippo pathway is deactivated, it translocates into the nucleus, where it associates with TEAD transcription factors. This partnership is instrumental in regulating the transcription of progrowth and antiapoptotic genes. Thus, in many cancers, aberrantly hyperactivated YAP/TAZ promotes oncogenesis by contributing to cancer cell proliferation, metastasis, and therapy resistance. Because YAP and TAZ exert their oncogenic effects by binding with TEAD, it is critical to understand this key interaction to develop cancer therapeutics. Previous research has indicated that TEAD undergoes autopalmitoylation at a conserved cysteine, and small molecules that inhibit TEAD palmitoylation disrupt effective YAP/TAZ binding. However, how exactly palmitoylation contributes to YAP/TAZ-TEAD interactions and how the TEAD palmitoylation inhibitors disrupt this interaction remains unknown. Utilizing molecular dynamics simulations, our investigation not only provides detailed atomistic insight into the YAP/TAZ-TEAD dynamics but also unveils that the inhibitor studied influences the binding of YAP and TAZ to TEAD in distinct manners. This discovery has significant implications for the design and deployment of future molecular interventions targeting this interaction.


Subject(s)
Lipoylation , Molecular Dynamics Simulation , TEA Domain Transcription Factors , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , Humans , Acyltransferases/metabolism , Acyltransferases/antagonists & inhibitors , Acyltransferases/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/chemistry , Allosteric Regulation/drug effects , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , Protein Binding , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , TEA Domain Transcription Factors/chemistry , TEA Domain Transcription Factors/metabolism , Trans-Activators/metabolism , Trans-Activators/chemistry , Trans-Activators/antagonists & inhibitors , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Transcriptional Coactivator with PDZ-Binding Motif Proteins/chemistry , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , YAP-Signaling Proteins/chemistry , YAP-Signaling Proteins/metabolism
13.
Science ; 383(6690): eadk8544, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38547289

ABSTRACT

Cytoplasmic dynein is a microtubule motor vital for cellular organization and division. It functions as a ~4-megadalton complex containing its cofactor dynactin and a cargo-specific coiled-coil adaptor. However, how dynein and dynactin recognize diverse adaptors, how they interact with each other during complex formation, and the role of critical regulators such as lissencephaly-1 (LIS1) protein (LIS1) remain unclear. In this study, we determined the cryo-electron microscopy structure of dynein-dynactin on microtubules with LIS1 and the lysosomal adaptor JIP3. This structure reveals the molecular basis of interactions occurring during dynein activation. We show how JIP3 activates dynein despite its atypical architecture. Unexpectedly, LIS1 binds dynactin's p150 subunit, tethering it along the length of dynein. Our data suggest that LIS1 and p150 constrain dynein-dynactin to ensure efficient complex formation.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase , Adaptor Proteins, Signal Transducing , Dynactin Complex , Dyneins , Microtubule-Associated Proteins , Nerve Tissue Proteins , Cryoelectron Microscopy , Dynactin Complex/chemistry , Dynactin Complex/genetics , Dynactin Complex/metabolism , Dyneins/chemistry , Dyneins/genetics , Dyneins/metabolism , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Protein Binding , Humans , HeLa Cells , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , WD40 Repeats , Protein Interaction Mapping
14.
Nat Struct Mol Biol ; 31(6): 925-938, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459129

ABSTRACT

The Commander complex, a 16-protein assembly, plays multiple roles in cell homeostasis, cell cycle and immune response. It consists of copper-metabolism Murr1 domain proteins (COMMD1-10), coiled-coil domain-containing proteins (CCDC22 and CCDC93), DENND10 and the Retriever subcomplex (VPS26C, VPS29 and VPS35L), all expressed ubiquitously in the body and linked to various diseases. Here, we report the structure and key interactions of the endogenous human Commander complex by cryogenic-electron microscopy and mass spectrometry-based proteomics. The complex consists of a stable core of COMMD1-10 and an effector containing DENND10 and Retriever, scaffolded together by CCDC22 and CCDC93. We establish the composition of Commander and reveal major interaction interfaces. These findings clarify its roles in intracellular transport, and uncover a strong association with cilium assembly, and centrosome and centriole functions.


Subject(s)
Cryoelectron Microscopy , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Models, Molecular , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/chemistry , HEK293 Cells , Protein Binding , Cilia/metabolism , Cilia/ultrastructure , Centrioles/metabolism , Centrioles/ultrastructure
15.
Cell Chem Biol ; 31(6): 1162-1175.e10, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38320555

ABSTRACT

Cereblon (CRBN) is an E3 ligase substrate adapter widely exploited for targeted protein degradation (TPD) strategies. However, achieving efficient and selective target degradation is a preeminent challenge with ligands that engage CRBN. Here, we report that the cyclimids, ligands derived from the C-terminal cyclic imide degrons of CRBN, exhibit distinct modes of interaction with CRBN and offer a facile approach for developing potent and selective bifunctional degraders. Quantitative TR-FRET-based characterization of 60 cyclimid degraders in binary and ternary complexes across different substrates revealed that ternary complex binding affinities correlated strongly with cellular degradation efficiency. Our studies establish the unique properties of the cyclimids as versatile warheads in TPD and a systematic biochemical approach for quantifying ternary complex formation to predict their cellular degradation activity, which together will accelerate the development of ligands that engage CRBN.


Subject(s)
Adaptor Proteins, Signal Transducing , Proteolysis , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Ligands , Molecular Structure , HEK293 Cells
16.
J Mol Biol ; 436(3): 168452, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38246410

ABSTRACT

Protein clustering is a powerful form of optogenetic control, yet remarkably few proteins are known to oligomerize with light. Recently, the photoreceptor BcLOV4 was found to form protein clusters in mammalian cells in response to blue light, although clustering coincided with its translocation to the plasma membrane, potentially constraining its application as an optogenetic clustering module. Herein we identify key amino acids that couple BcLOV4 clustering to membrane binding, allowing us to engineer a variant that clusters in the cytoplasm and does not associate with the membrane in response to blue light. This variant-called BcLOVclust-clustered over many cycles with substantially faster clustering and de-clustering kinetics compared to the widely used optogenetic clustering protein Cry2. The magnitude of clustering could be strengthened by appending an intrinsically disordered region from the fused in sarcoma (FUS) protein, or by selecting the appropriate fluorescent protein to which it was fused. Like wt BcLOV4, BcLOVclust activity was sensitive to temperature: light-induced clusters spontaneously dissolved at a rate that increased with temperature despite constant illumination. At low temperatures, BcLOVclust and Cry2 could be multiplexed in the same cells, allowing light control of independent protein condensates. BcLOVclust could also be applied to control signaling proteins and stress granules in mammalian cells. While its usage is currently best suited in cells and organisms that can be cultured below ∼30 °C, a deeper understanding of BcLOVclust thermal response will further enable its use at physiological mammalian temperatures.


Subject(s)
Adaptor Proteins, Signal Transducing , Cryptochromes , Golgi Matrix Proteins , Optogenetics , Animals , Cell Membrane/chemistry , Cell Membrane/radiation effects , Cluster Analysis , Cytoplasm/chemistry , Cytoplasm/radiation effects , Light , Cryptochromes/chemistry , Cryptochromes/radiation effects , Golgi Matrix Proteins/chemistry , Golgi Matrix Proteins/radiation effects , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/radiation effects , Protein Multimerization
17.
Cell Chem Biol ; 31(5): 955-961.e4, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38215746

ABSTRACT

NLRP1 is an innate immune receptor that detects pathogen-associated signals, assembles into a multiprotein structure called an inflammasome, and triggers a proinflammatory form of cell death called pyroptosis. We previously discovered that the oxidized, but not the reduced, form of thioredoxin-1 directly binds to NLRP1 and represses inflammasome formation. However, the molecular basis for NLRP1's selective association with only the oxidized form of TRX1 has not yet been established. Here, we leveraged AlphaFold-Multimer, site-directed mutagenesis, thiol-trapping experiments, and mass spectrometry to reveal that a specific cysteine residue (C427 in humans) on NLRP1 forms a transient disulfide bond with oxidized TRX1. Overall, this work demonstrates how NLRP1 monitors the cellular redox state, further illuminating an unexpected connection between the intracellular redox potential and the innate immune system.


Subject(s)
Adaptor Proteins, Signal Transducing , Disulfides , NLR Proteins , Oxidation-Reduction , Thioredoxins , Humans , Disulfides/chemistry , Disulfides/metabolism , Thioredoxins/metabolism , Thioredoxins/chemistry , NLR Proteins/metabolism , NLR Proteins/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , HEK293 Cells , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/chemistry , Inflammasomes/metabolism , Cysteine/metabolism , Cysteine/chemistry
18.
J Am Chem Soc ; 146(1): 399-409, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38111344

ABSTRACT

Signal transduction by the ligated B cell antigen receptor (BCR) depends on the preorganization of its intracellular components, such as the effector proteins SLP65 and CIN85 within phase-separated condensates. These liquid-like condensates are based on the interaction between three Src homology 3 (SH3) domains and the corresponding proline-rich recognition motifs (PRM) in CIN85 and SLP65, respectively. However, detailed information on the protein conformation and how it impacts the capability of SLP65/CIN85 condensates to orchestrate BCR signal transduction is still lacking. This study identifies a hitherto unknown intramolecular SH3:PRM interaction between the C-terminal SH3 domain (SH3C) of CIN85 and an adjacent PRM. We used high-resolution nuclear magnetic resonance (NMR) experiments to study the flexible linker region containing the PRM and determined the extent of the interaction in multidomain constructs of the protein. Moreover, we observed that the phosphorylation of a serine residue located in the immediate vicinity of the PRM regulates this intramolecular interaction. This allows for a dynamic modulation of CIN85's valency toward SLP65. B cell culture experiments further revealed that the PRM/SH3C interaction is crucial for maintaining the physiological level of SLP65/CIN85 condensate formation, activation-induced membrane recruitment of CIN85, and subsequent mobilization of Ca2+. Our findings therefore suggest that the intramolecular interaction with the adjacent disordered linker is effective in modulating CIN85's valency both in vitro and in vivo. This therefore constitutes a powerful way for the modulation of SLP65/CIN85 condensate formation and subsequent B cell signaling processes within the cell.


Subject(s)
Adaptor Proteins, Signal Transducing , Signal Transduction , Adaptor Proteins, Signal Transducing/chemistry , Signal Transduction/physiology , src Homology Domains , B-Lymphocytes/metabolism , Receptors, Antigen, B-Cell/metabolism , Protein Binding
19.
J Mol Graph Model ; 126: 108642, 2024 01.
Article in English | MEDLINE | ID: mdl-37797430

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most aggressive and life-threatening cancers. Although multiple treatment options are available, the prognosis of HCC patients is poor due to metastasis and drug resistance. Hence, discovering novel targets is essential for better therapeutic development for HCC. In this study, we used the cancer genome atlas (TCGA) dataset to analyze the expression of bromodomain-containing proteins in HCC, as bromodomains are emerging attractive therapeutic targets. Our analysis identified BRPF1 as the most highly upregulated gene in HCC among the 43 bromodomain-containing genes. Upregulation of BRPF1 was significantly associated with poorer patient survival. Therefore, targeting BRPF1 may be an approach for HCC treatment. Previously, several potential inhibitors of BRPF1 bromodomain have been discovered. However, due to the limited clinical success of the current inhibitors, we aim to search for new inhibitors with high affinity and specificity for the BRPF1 bromodomain. In this study, we utilized high-throughput virtual screening methods to screen synthetic and natural compound databases against the BRPF1 bromodomain. In addition, we used machine learning-based QSAR modeling to predict the IC50 values of the selected BRPF1 bromodomain inhibitors. Extensive MD simulations were used to calculate the binding free energies of BRPF1 bromodomain and inhibitor complexes. Using this approach, we identified four lead scaffolds with a similar or better binding affinity towards the BRPF1 bromodomain than the previously reported inhibitors. Overall, this study discovered some promising compounds that have the potential to act as potent BRPF1 bromodomain inhibitors.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Nuclear Proteins/chemistry , DNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Liver Neoplasms/drug therapy
20.
J Mol Biol ; 435(22): 168293, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37775038

ABSTRACT

Arl8b, a specific Arf-like family GTPase present on lysosome, and plays critical roles in many lysosome-related cellular processes such as autophagy. The active Arl8b can be specifically recognized by the RUN domains of two Arl8b-effectors PLEKHM1 and SKIP, thereby regulating the autophagosome/lysosome membrane fusion and the intracellular lysosome positioning, respectively. However, the mechanistic bases underlying the interactions of Arl8b with the RUN domains of PLEKHM1 and SKIP remain elusive. Here, we report the two high-resolution crystal structures of the active Arl8b in complex with the RUN domains of PLEKHM1 and SKIP. In addition to elucidating the detailed molecular mechanism governing the specific interactions of the active Arl8b with the RUN domains of PLEKHM1 and SKIP, the determined complex structures also reveal a general binding mode shared by the PLEKHM1 and SKIP RUN domains for interacting with the active Arl8b. Furthermore, we uncovered a competitive relationship between the RUN domains of PLEKHM1 and SKIP in binding to the active Arl8b as well as a unique small GTPase-binding mode adopted by the PLEKHM1 and SKIP RUN domains, thereby enriching the repertoire of the RUN domain/small GTPase interaction modes. In all, our findings provide new mechanistic insights into the interactions of the active Arl8b with PLEKHM1 and SKIP, and are valuable for further understanding the working modes of these proteins in relevant cellular processes.


Subject(s)
ADP-Ribosylation Factors , Adaptor Proteins, Signal Transducing , Autophagy-Related Proteins , Nuclear Receptor Coactivators , Protein Interaction Domains and Motifs , Adaptor Proteins, Signal Transducing/chemistry , Lysosomes/metabolism , Membrane Fusion , ADP-Ribosylation Factors/chemistry , Autophagy-Related Proteins/chemistry , Nuclear Receptor Coactivators/chemistry , Crystallography, X-Ray , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...