Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
Trends Endocrinol Metab ; 35(6): 456-458, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599900

ABSTRACT

Obesity is associated with dysfunctions in hypothalamic neurons that regulate metabolism, including agouti-related protein (AgRP)-expressing neurons. In a recent article, Zhang et al. demonstrated that either diet- or genetically induced obesity promoted iron accumulation specifically in AgRP neurons. Preventing iron overload in AgRP neurons mitigated diet-induced obesity and related comorbidities in male mice.


Subject(s)
Agouti-Related Protein , Iron , Obesity , Obesity/metabolism , Animals , Humans , Iron/metabolism , Agouti-Related Protein/metabolism , Mice , Neurons/metabolism , Male , Hypothalamus/metabolism , Iron Overload/metabolism
2.
Nutrition ; 120: 112333, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38271759

ABSTRACT

OBJECTIVE: The aim was to investigate the intergenerational inheritance induced by a high-fat diet on sensitivity to insulin and leptin in the hypothalamic control of satiety in second-generation offspring, which were fed a control diet. METHODS: Progenitor rats were fed a high-fat or a control diet for 59 d until weaning. The first-generation and second-generation offspring were fed the control diet until 90 d of age. Body mass and adiposity index of the progenitors fed the high-fat diet and the second-generation offspring from progenitors fed the high-fat diet were evaluated as were the gene expression of DNA methyltransferase 3a, angiotensin-converting enzyme type 2, angiotensin II type 2 receptor, insulin and leptin signaling pathway (insulin receptor, leptin receptor, insulin receptor substrate 2, protein kinase B, signal transducer and transcriptional activator 3, pro-opiomelanocortin, and neuropeptide Agouti-related protein), superoxide dismutase activity, and the concentration of carbonyl protein and satiety-regulating neuropeptides, pro-opiomelanocortin and neuropeptide Agouti-related protein, in the hypothalamus. RESULTS: The progenitor group fed a high-fat diet showed increased insulin resistance and reduced insulin-secreting beta-cell function and reduced food intake, without changes in caloric intake. The second-generation offspring from progenitors fed a high-fat diet, compared with second-generation offspring from progenitors fed a control diet group, had decreased insulin-secreting beta-cell function and increased food and caloric intake, insulin resistance, body mass, and adiposity index. Furthermore, second-generation offspring from progenitors fed a high-fat diet had increased DNA methyltransferase 3a, neuropeptide Agouti-related protein, angiotensin II type 1 receptor, and nicotinamide adenine dinucleotide phosphate oxidase p47phox gene expression, superoxide dismutase activity, and neuropeptide Agouti-related protein concentration in the hypothalamus. In addition, there were reduced in gene expression of the insulin receptor, leptin receptor, insulin receptor substrate 2, pro-opiomelanocortin, angiotensin II type 2 receptor, angiotensin-converting enzyme type 2, and angiotensin-(1-7) receptor and pro-opiomelanocortin concentration in the second-generation offspring from progenitors fed the high-fat diet. CONCLUSIONS: Overall, progenitors fed a high-fat diet induced changes in the hypothalamic control of satiety of the second-generation offspring from progenitors fed the high-fat diet through intergenerational inheritance. These changes led to hyperphagia, alterations in the hypothalamic pathways of insulin, and leptin and adiposity index increase, favoring the occurrence of different cardiometabolic disorders in the second-generation offspring from progenitors fed the high-fat diet fed only with the control diet.


Subject(s)
Insulin Resistance , Neuropeptides , Rats , Animals , Leptin/metabolism , Insulin/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Diet, High-Fat/adverse effects , Agouti-Related Protein/metabolism , Insulin Receptor Substrate Proteins/metabolism , Receptor, Angiotensin, Type 2/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Receptors, Leptin/genetics , DNA Methyltransferase 3A , Rats, Sprague-Dawley , Obesity/genetics , Obesity/metabolism , Hyperphagia/complications , Hypothalamus/metabolism , Neuropeptides/metabolism , Superoxide Dismutase/metabolism , Angiotensins/metabolism
3.
Peptides ; 173: 171138, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38147963

ABSTRACT

The hypothalamic neuropeptides linked to appetite and satiety were investigated in obese mice treated with cotadutide (a dual receptor agonist of glucagon-like peptide 1 (GLP-1R)/Glucagon (GCGR)). Twelve-week-old male C57BL/6 mice were fed a control diet (C group, n = 20) or a high-fat diet (HF group, n = 20) for ten weeks. Each group was further divided, adding cotadutide treatment and forming groups C, CC, HF, and HFC for four additional weeks. The hypothalamic arcuate neurons were labeled by immunofluorescence, and protein expressions (Western blotting) for neuropeptide Y (NPY), proopiomelanocortin (POMC), agouti-related protein (AgRP), and cocaine- and amphetamine-regulated transcript (CART). Cotadutide enhanced POMC and CART neuropeptides and depressed NPY and AGRP neuropeptides. In addition, gene expressions (RT-qPCR) determined that Lepr (leptin receptor) and Calcr (calcitonin receptor) were diminished in HF compared to C but enhanced in CC compared to C and HFC compared to HF. Besides, Socs3 (suppressor of cytokine signaling 3) was decreased in HFC compared to HF, while Sst (somatostatin) was higher in HFC compared to HF; Tac1 (tachykinin 1) and Mc4r (melanocortin-4-receptor) were lower in HF compared to C but increased in HFC compared to HF. Also, Glp1r and Gcgr were higher in HFC compared to HF. In conclusion, the findings are compelling, demonstrating the effects of cotadutide on hypothalamic neuropeptides and hormone receptors of obese mice. Cotadutide modulates energy balance through the gut-brain axis and its associated signaling pathways. The study provides insights into the mechanisms underlying cotadutide's anti-obesity effects and its possible implications for obesity treatment.


Subject(s)
Glucagon , Neuropeptides , Peptides , Mice , Animals , Male , Agouti-Related Protein , Glucagon/metabolism , Mice, Obese , Pro-Opiomelanocortin/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mice, Inbred C57BL , Neuropeptides/genetics , Hypothalamus/metabolism , Neuropeptide Y/genetics , Glucagon-Like Peptide 1/metabolism
4.
Cells ; 12(20)2023 10 12.
Article in English | MEDLINE | ID: mdl-37887286

ABSTRACT

Hypothalamic mTORC1 signaling is involved in nutrient sensing. Neurons that express the agouti-related protein (AgRP) are activated by food restriction and integrate interoceptive and exteroceptive signals to control food intake, energy expenditure, and other metabolic responses. To determine whether mTORC1 signaling in AgRP neurons is necessary for regulating energy and glucose homeostasis, especially in situations of negative energy balance, mice carrying ablation of the Raptor gene exclusively in AgRP-expressing cells were generated. AgRPΔRaptor mice showed no differences in body weight, fat mass, food intake, or energy expenditure; however, a slight improvement in glucose homeostasis was observed compared to the control group. When subjected to 5 days of food restriction (40% basal intake), AgRPΔRaptor female mice lost less lean body mass and showed a blunted reduction in energy expenditure, whereas AgRPΔRaptor male mice maintained a higher energy expenditure compared to control mice during the food restriction and 5 days of refeeding period. AgRPΔRaptor female mice did not exhibit the food restriction-induced increase in serum corticosterone levels. Finally, although hypothalamic fasting- or refeeding-induced Fos expression showed no differences between the groups, AgRPΔRaptor mice displayed increased hyperphagia during refeeding. Thus, some metabolic and neuroendocrine responses to food restriction are disturbed in AgRPΔRaptor mice.


Subject(s)
Eating , Mechanistic Target of Rapamycin Complex 1 , Neurons , Animals , Female , Male , Mice , Agouti-Related Protein/metabolism , Eating/physiology , Glucose/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Neurons/metabolism
5.
J Endocrinol ; 255(2): 75-90, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35993424

ABSTRACT

Recent studies indicated an important role of connexins, gap junction proteins, in the regulation of metabolism. However, most of these studies focused on the glial expression of connexins, whereas the actions of connexins in neurons are still poorly investigated. Thus, the present study had the objective to investigate the possible involvement of gap junctions, and in particular connexin 43 (CX43), for the central regulation of energy homeostasis. Initially, we demonstrated that hypothalamic CX43 expression was suppressed in fasted mice. Using whole-cell patch-clamp recordings, we showed that pharmacological blockade of gap junctions induced hyperpolarization and decreased the frequency of action potentials in 50-70% of agouti-related protein (AgRP)-expressing neurons, depending on the blocker used (carbenoxolone disodium, TAT-Gap19 or Gap 26). When recordings were performed with a biocytin-filled pipette, this intercellular tracer was detected in surrounding cells. Then, an AgRP-specific CX43 knockout (AgRPΔCX43) mouse was generated. AgRPΔCX43 mice exhibited no differences in body weight, adiposity, food intake, energy expenditure and glucose homeostasis. Metabolic responses to 24 h fasting or during refeeding were also not altered in AgRPΔCX43 mice. However, AgRPΔCX43 male, but not female mice, exhibited a partial protection against high-fat diet-induced obesity, even though no significant changes in energy intake or expenditure were detected. In summary, our findings indicate that gap junctions regulate the activity of AgRP neurons, and AgRP-specific CX43 ablation is sufficient to mildly prevent diet-induced obesity specifically in males.


Subject(s)
Connexin 43 , Obesity , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Animals , Connexin 43/metabolism , Connexins/genetics , Connexins/metabolism , Diet, High-Fat , Gap Junctions/metabolism , Male , Mice , Neurons/metabolism , Obesity/etiology , Obesity/metabolism
6.
Endocrinology ; 162(7)2021 07 01.
Article in English | MEDLINE | ID: mdl-33972988

ABSTRACT

Ghrelin stimulates both GH secretion and food intake. The orexigenic action of ghrelin is mainly mediated by neurons that coexpress agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). GH also stimulates food intake and, importantly, ARHAgRP/NPY neurons express GH receptor (GHR). Thus, ghrelin-induced GH secretion may contribute to the orexigenic effect of ghrelin. Here, we investigated the response to ghrelin in male mice carrying GHR ablation specifically in neurons (brain GHR knockout [KO] mice) or exclusively in ARHAgRP/NPY neurons (AgRP GHR KO mice). Although brain GHR KO mice showed normal ghrelin-induced increase in plasma GH levels, these mutants lacked the expected orexigenic response to ghrelin. Additionally, brain GHR KO mice displayed reduced hypothalamic levels of Npy and Ghsr mRNA and did not elicit ghrelin-induced c-Fos expression in the ARH. Furthermore, brain GHR KO mice exhibited a prominent reduction in AgRP fiber density in the ARH and paraventricular nucleus of the hypothalamus (PVH). In contrast, AgRP GHR KO mice showed no changes in the hypothalamic Npy and Ghsr mRNAs and conserved ghrelin-induced food intake and c-Fos expression in the ARH. AgRP GHR KO mice displayed a reduced AgRP fiber density (~16%) in the PVH, but this reduction was less than that observed in brain GHR KO mice (~61%). Our findings indicate that GHR signaling in the brain is required for the orexigenic effect of ghrelin, independently of GH action on ARHAgRP/NPY neurons.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Eating/drug effects , Ghrelin/pharmacology , Growth Hormone/blood , Receptors, Somatotropin/genetics , Receptors, Somatotropin/physiology , Agouti-Related Protein/analysis , Animals , Arcuate Nucleus of Hypothalamus/chemistry , Gene Expression , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuropeptide Y/genetics , Paraventricular Hypothalamic Nucleus/chemistry , Proto-Oncogene Proteins c-fos/analysis , RNA, Messenger/analysis , Receptors, Ghrelin/genetics , Receptors, Somatotropin/deficiency , Signal Transduction/physiology
7.
Int J Mol Sci ; 21(23)2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33255553

ABSTRACT

Obesity-associated low-grade inflammation favors weight gain, whereas systemic infection frequently leads to anorexia. Thus, inflammatory signals can either induce positive or negative energy balance. In this study, we used whole-cell patch-clamp to investigate the acute effects of three important proinflammatory cytokines, tumor necrosis factor α (TNF-α), interleukin-6, and interleukin-1ß (IL-1ß) on the membrane excitability of agouti-related peptide (AgRP)- or proopiomelanocortin (POMC)-producing neurons. We found that both TNF-α and IL-1ß acutely inhibited the activity of 35-42% of AgRP-producing neurons, whereas very few POMC neurons were depolarized by TNF-α. Interleukin-6 induced no acute changes in the activity of AgRP or POMC neurons. Our findings indicate that the effect of TNF-α and IL-1ß, especially on the activity of AgRP-producing neurons, may contribute to inflammation-induced anorexia observed during acute inflammatory conditions.


Subject(s)
Agouti-Related Protein/genetics , Inflammation/genetics , Interleukin-1beta/genetics , Obesity/genetics , Tumor Necrosis Factor-alpha/genetics , Animals , Anorexia/genetics , Anorexia/metabolism , Anorexia/pathology , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/pathology , Energy Metabolism , Humans , Hypothalamus/metabolism , Hypothalamus/pathology , Inflammation/metabolism , Inflammation/pathology , Interleukin-6/genetics , Mice , Neurons/metabolism , Neurons/pathology , Neuropeptide Y/genetics , Obesity/metabolism , Obesity/pathology , Patch-Clamp Techniques , Pro-Opiomelanocortin/genetics
8.
Neuroscience ; 434: 136-147, 2020 05 10.
Article in English | MEDLINE | ID: mdl-32229232

ABSTRACT

The arcuate nucleus (ARH) is an important hypothalamic area for the homeostatic control of feeding and other metabolic functions. In the ARH, proopiomelanocortin- (POMC) and agouti-related peptide (AgRP)-expressing neurons play a key role in the central regulation of metabolism. These neurons are influenced by circulating factors, such as leptin and growth hormone (GH). The objective of the present study was to determine whether a direct action of GH on ARH neurons regulates the density of POMC and AgRP axonal projections to major postsynaptic targets. We studied POMC and AgRP axonal projections to the hypothalamic paraventricular (PVH), lateral (LHA) and dorsomedial (DMH) nuclei in leptin receptor (LepR)-deficient mice (Leprdb/db), GH-deficient mice (Ghrhrlit/lit) and in mice carrying specific ablations of GH receptor (GHR) either in LepR- or AgRP-expressing cells. Leprdb/db mice presented reduction in the density of POMC innervation to the PVH compared to wild-type and Ghrhrlit/lit mice. Additionally, both Leprdb/db and Ghrhrlit/lit mice showed reduced AgRP fiber density in the PVH, LHA and DMH. LepR GHR knockout mice showed decreased density of POMC innervation in the PVH and DMH, compared to control mice, whereas a reduction in the density of AgRP innervation was observed in all areas analyzed. Conversely, AgRP-specific ablation of GHR led to a significant reduction in AgRP projections to the PVH, LHA and DMH, without affecting POMC innervation. Our findings indicate that GH has direct trophic effects on the formation of POMC and AgRP axonal projections and provide additional evidence that GH regulates hypothalamic neurocircuits controlling energy homeostasis.


Subject(s)
Arcuate Nucleus of Hypothalamus , Receptors, Somatotropin , Agouti-Related Protein/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Receptors, Somatotropin/genetics
9.
J Mol Endocrinol ; 64(1): 13-27, 2020 01.
Article in English | MEDLINE | ID: mdl-31756168

ABSTRACT

AgRP neurons are important players in the control of energy homeostasis and are responsive to several hormones. In addition, STAT5 signalling in the brain, which is activated by metabolic hormones and growth factors, modulates food intake, body fat and glucose homeostasis. Given that, and the absence of studies that describe STAT5 function in AgRP cells, the present study investigated the metabolic effects of Stat5a/b gene ablation in these neurons. We observed that STAT5 signalling in AgRP neurons regulates body fat in female mice. However, male and female STAT5-knockout mice did not exhibit altered food intake, energy expenditure or glucose homeostasis compared to control mice. The counter-regulatory response or glucoprivic hyperphagia induced by 2-deoxy-d-glucose treatment were also not affected by AgRP-specific STAT5 ablation. However, under 60% food restriction, AgRP STAT5-knockout mice had a blunted upregulation of hypothalamic Agrp mRNA expression and corticosterone serum levels compared to control mice, suggesting a possible role for STAT5 in AgRP neurons for neuroendocrine adaptations to food restriction. Interestingly, ad libitum fed knockout male mice had reduced Pomc and Ucp-1 mRNA expression compared to control group. Taken together, these results suggest that STAT5 signalling in AgRP neurons regulates body adiposity in female mice, as well as some neuroendocrine adaptations to food restriction.


Subject(s)
Adaptation, Physiological/physiology , Adiposity/physiology , Agouti-Related Protein/metabolism , Energy Metabolism/physiology , Neurons/metabolism , STAT5 Transcription Factor/metabolism , Animals , Eating/physiology , Female , Hypothalamus/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Uncoupling Protein 1/metabolism , Up-Regulation/physiology
10.
J Endocrinol ; 244(1): 71-82, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31557728

ABSTRACT

The mTOR/S6Ks signaling is one of the intracellular pathways important for metabolic control, acting both peripherally and centrally. In the hypothalamus, mTOR/S6Ks axis mediates the action of leptin and insulin and can modulate the expression of neuropeptides. We analyzed the role of different S6Ks isoforms in the hypothalamic regulation of metabolism. We observed decreased food intake and decreased expression of agouti-related peptide (AgRP) following intracerebroventricular (icv) injections of adenoviral-mediated overexpression of three different S6Ks isoforms. Moreover, mice overexpressing p70-S6K1 in undefined periventricular hypothalamic neurons presented changes in glucose metabolism, as an increase in gluconeogenesis. To further evaluate the hypothalamic role of a less-studied S6K isoform, p54-S6K2, we used a Cre-LoxP approach to specifically overexpress it in AgRP neurons. Our findings demonstrate the potential participation of S6K2 in AgRP neurons regulating feeding behavior.


Subject(s)
Feeding Behavior/drug effects , Glucose/metabolism , Protein Isoforms/pharmacology , Ribosomal Protein S6 Kinases, 90-kDa/pharmacology , Ribosomal Protein S6 Kinases/pharmacology , Agouti-Related Protein/metabolism , Animals , Eating/genetics , Hypothalamus/metabolism , Mice , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism
11.
Brain Behav Immun ; 87: 272-285, 2020 07.
Article in English | MEDLINE | ID: mdl-31863824

ABSTRACT

Interleukin-17 (IL-17) is expressed in the intestine in response to changes in the gut microbiome landscape and plays an important role in intestinal and systemic inflammatory diseases. There is evidence that dietary factors can also modify the expression of intestinal IL-17. Here, we hypothesized that, similar to several other gut-produced factors, IL-17 may act in the hypothalamus to modulate food intake. We confirm that food intake increases IL-17 expression in the mouse ileum and human blood. There is no expression of IL-17 in the hypothalamus; however, IL-17 receptor A is expressed in both pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons. Upon systemic injection, IL-17 promoted a rapid increase in hypothalamic POMC expression, which was followed by a late increase in the expression of AgRP. Both systemic and intracerebroventricular injections of IL-17 reduced calorie intake without affecting whole-body energy expenditure. Systemic but not intracerebroventricular injection of IL-17 increase brown adipose tissue temperature. Thus, IL-17 is a gut-produced factor that is controlled by diet and modulates food intake by acting in the hypothalamus. Our findings provide the first evidence of a cytokine that is acutely regulated by food intake and plays a role in the regulation of eating.


Subject(s)
Hypothalamus , Interleukin-17 , Agouti-Related Protein/metabolism , Animals , Eating , Humans , Hypothalamus/metabolism , Mice , Pro-Opiomelanocortin/metabolism
12.
Cell Physiol Biochem ; 53(4): 701-712, 2019.
Article in English | MEDLINE | ID: mdl-31592599

ABSTRACT

BACKGROUND/AIMS: Cholinergic signalling mediated by the activation of muscarinic and nicotinic receptors has been described in the literature as a classic and important signalling pathway in the regulation of the inflammatory response. Recent research has investigated the role of acetylcholine, the physiological agonist of these receptors, in the control of energy homeostasis at the central level. Studies have shown that mice that do not express acetylcholine in brain regions regulating energy homeostasis present with excessive weight gain and hyperphagia. However, it has not yet been well-described in the literature which cholinergic receptor subunits are involved in this response; moreover, the signalling pathways responsible for the observed effects are not fully delineated. The hypothalamus is the regulating centre of energy homeostasis, and the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR) is highly expressed in this region. When active, α7nAChR recruits proteins such as JAK2/STAT3 to mediate its signalling; the same intracellular components are required by leptin, an anorexigenic hormone. The aim of the present study was to evaluate the role of the hypothalamic α7nAChR in the control of energy homeostasis. METHODS: The work was performed on Swiss male mice. Initially, using immunofluorescent staining on brain sections, the presence of α7nAChR in hypothalamic cells regulating energy homeostasis was evaluated. Animals were submitted to stereotaxis in the lateral ventricle and intracerebroventricular stimulation (ICV) was used for the administration of an agonist (PNU) or antagonist (α-bungarotoxin) of α7nAChR. Metabolic parameters were evaluated and the expression of neuropeptides was evaluated in the hypothalamus by real-time PCR and western blot. The expression of hypothalamic neuropeptides was evaluated in mice treated with siRNA or inhibitors of JAK2/STAT3 (AG490 and STATTIC) proteins. We also evaluated food intake in α7nAChR knockout animals (α7KO). Additionally, in mouse hypothalamic cell culture (the mypHoA-POMC/GFP lineage), we evaluated the expression of neuropeptides and pSTAT3 after stimulation with PNU. RESULTS: Our results indicate co-localisation of α7nAChR with α-MSH, AgRP and NPY in hypothalamic cells. Pharmacological activation of α7nAChR reduced food intake and increased hypothalamic POMC expression and decreased NPY and AgRP mRNA levels and the protein content of pAMPK. Inhibition of α7nAChR with an antagonist increased the mRNA content of NPY and AgRP. Inhibition of α7nAChR with siRNA led to the suppression of POMC expression and an increase in AgRP mRNA levels. α7KO mice showed no changes in food intake. Inhibition of proteins involved in the JAK2/STAT3 signalling pathway reversed the effects observed after PNU stimulation. POMC-GFP cells, when treated with PNU, showed increased POMC expression and nuclear translocation of pSTAT3. CONCLUSION: Thus, selective activation of α7nAChR is able to modulate important markers of the response to food intake, suggesting that α7nAChR activation can suppress the expression of orexigenic markers and favour the expression of anorexics using the intracellular JAK2/STAT3 machinery.


Subject(s)
Agouti-Related Protein/metabolism , Janus Kinase 2/metabolism , Pro-Opiomelanocortin/metabolism , STAT3 Transcription Factor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Agouti-Related Protein/genetics , Animals , Benzamides/pharmacology , Bridged Bicyclo Compounds/pharmacology , Bungarotoxins/pharmacology , Cell Line , Eating/drug effects , Energy Metabolism/drug effects , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Pro-Opiomelanocortin/genetics , RNA Interference , RNA, Small Interfering/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , alpha7 Nicotinic Acetylcholine Receptor/genetics
13.
Cell ; 178(1): 44-59.e7, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31104844

ABSTRACT

Hypothalamic Agrp neurons regulate food ingestion in adult mice. Whether these neurons are functional before animals start to ingest food is unknown. Here, we studied the functional ontogeny of Agrp neurons during breastfeeding using postnatal day 10 mice. In contrast to adult mice, we show that isolation from the nursing nest, not milk deprivation or ingestion, activated Agrp neurons. Non-nutritive suckling and warm temperatures blunted this effect. Using in vivo fiber photometry, neonatal Agrp neurons showed a rapid increase in activity upon isolation from the nest, an effect rapidly diminished following reunion with littermates. Neonates unable to release GABA from Agrp neurons expressed blunted emission of isolation-induced ultrasonic vocalizations. Chemogenetic overactivation of these neurons further increased emission of these ultrasonic vocalizations, but not milk ingestion. We uncovered important functional properties of hypothalamic Agrp neurons during mouse development, suggesting these neurons facilitate offspring-to-caregiver bonding.


Subject(s)
Agouti-Related Protein/metabolism , Feeding Behavior/physiology , Hypothalamus/cytology , Neurons/metabolism , Agouti-Related Protein/genetics , Animals , Animals, Newborn , Eating/physiology , Maternal Behavior/physiology , Mice , Mice, Knockout , Milk , Proto-Oncogene Proteins c-fos/metabolism , Social Isolation , Sucking Behavior/physiology , Temperature , Vocalization, Animal/physiology , gamma-Aminobutyric Acid/metabolism
14.
Brain Res ; 1717: 136-146, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31009611

ABSTRACT

The central melanocortin system is composed of neurons that express either the proopiomelanocortin (POMC) or the agouti-related protein (AgRP). POMC is cleaved in bioactive peptides, including the α-melanocyte-stimulating hormone (α-MSH). α-MSH activates the melanocortin-4 receptor (MC4R) inducing satiety, whereas AgRP acts as an inverse agonist of MC4R. However, only limited information is available regarding possible area-specific differences in the interaction between α-MSH and AgRP terminals on MC4R-expressing cells. Therefore, the objective of the present study was to compare the distribution pattern of α-MSH and AgRP terminals on the perikarya of MC4R-expressing neurons. We performed a triple-label immunofluorescence reaction in brain series of MC4R-reporter mice to visualize MC4R-expressing neurons together with AgRP and α-MSH terminals. POMC and AgRP neurons project to areas that contain MC4R-expressing cells, although several brain nuclei exhibit AgRP and α-MSH terminals, but they do no express MC4R, while other brain areas contain MC4R-expressing cells and receive no apparent innervation of AgRP and POMC neurons. AgRP terminals make more presumptive appositions than α-MSH on the soma of MC4R-expressing neurons of the medial preoptic area and paraventricular nucleus of the hypothalamus (Pa). Additionally, a higher percentage of MC4R cells receive at least one presumptive apposition from AgRP terminals in the median preoptic nucleus and Pa, compared to α-MSH appositions. Thus, our study revealed area-specific differences in the interaction between α-MSH and AgRP terminals and the soma of MC4R-expressing neurons. These findings provide new insights about the relationship between first- and second-order neurons of the central melanocortin system.


Subject(s)
Agouti-Related Protein/metabolism , Receptor, Melanocortin, Type 4/metabolism , alpha-MSH/metabolism , Animals , Axons/metabolism , Brain/metabolism , Eating/physiology , Energy Metabolism/physiology , Hypothalamus/metabolism , Leptin/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism
15.
Nat Commun ; 10(1): 662, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30737388

ABSTRACT

Weight loss triggers important metabolic responses to conserve energy, especially via the fall in leptin levels. Consequently, weight loss becomes increasingly difficult with weight regain commonly occurring in most dieters. Here we show that central growth hormone (GH) signaling also promotes neuroendocrine adaptations during food deprivation. GH activates agouti-related protein (AgRP) neurons and GH receptor (GHR) ablation in AgRP cells mitigates highly characteristic hypothalamic and metabolic adaptations induced by weight loss. Thus, the capacity of mice carrying an AgRP-specific GHR ablation to save energy during food deprivation is impaired, leading to increased fat loss. Additionally, administration of a clinically available GHR antagonist (pegvisomant) attenuates the fall of whole-body energy expenditure of food-deprived mice, similarly as seen by leptin treatment. Our findings indicate GH as a starvation signal that alerts the brain about energy deficiency, triggering key adaptive responses to conserve limited fuel stores.


Subject(s)
Agouti-Related Protein/metabolism , Receptors, Somatotropin/metabolism , Agouti-Related Protein/genetics , Animals , Body Weight/drug effects , Brain/drug effects , Brain/metabolism , Energy Metabolism/drug effects , Female , Growth Hormone/metabolism , Growth Hormone/pharmacology , Human Growth Hormone/analogs & derivatives , Human Growth Hormone/therapeutic use , Leptin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Somatotropin/genetics , Weight Loss/drug effects
16.
Elife ; 82019 01 29.
Article in English | MEDLINE | ID: mdl-30694175

ABSTRACT

Leptin regulates energy balance and also exhibits neurotrophic effects during critical developmental periods. However, the actual role of leptin during development is not yet fully understood. To uncover the importance of leptin in early life, the present study restored leptin signaling either at the fourth or tenth week of age in mice formerly null for the leptin receptor (LepR) gene. We found that some defects previously considered irreversible due to neonatal deficiency of leptin signaling, including the poor development of arcuate nucleus neural projections, were recovered by LepR reactivation in adulthood. However, LepR deficiency in early life led to irreversible obesity via suppression of energy expenditure. LepR reactivation in adulthood also led to persistent reduction in hypothalamic Pomc, Cartpt and Prlh mRNA expression and to defects in the reproductive system and brain growth. Our findings revealed that early defects in leptin signaling cause permanent metabolic, neuroendocrine and developmental problems.


Subject(s)
Aging/genetics , Gene Expression Regulation, Developmental , Leptin/genetics , Obesity/genetics , Receptors, Leptin/genetics , Aging/metabolism , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Animals , Animals, Newborn , Arcuate Nucleus of Hypothalamus/growth & development , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/pathology , Energy Metabolism/genetics , Female , Gonads/growth & development , Gonads/metabolism , Gonads/pathology , Hypothalamus/growth & development , Hypothalamus/metabolism , Hypothalamus/pathology , Leptin/metabolism , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Obesity/metabolism , Obesity/pathology , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Prolactin-Releasing Hormone/genetics , Prolactin-Releasing Hormone/metabolism , Receptors, Leptin/deficiency , Signal Transduction
17.
Pharmacol Res ; 141: 303-309, 2019 03.
Article in English | MEDLINE | ID: mdl-30610962

ABSTRACT

Hypothalamic Agrp neurons are critical regulators of food intake in adult mice. In addition to food intake, these neurons have been involved in other cognitive processes, such as the manifestation of stereotyped behaviors. Here, we evaluated the extent to which Agrp neurons modulate mouse behavior in spatial memory-related tasks. We found that activation of Agrp neurons did not affect spatial learning but altered behavioral flexibility using a modified version of the Barnes Maze task. Furthermore, using the Y-maze test to probe working memory, we found that chemogenetic activation of Agrp neurons reduced spontaneous alternation behavior mediated by the neuropeptide Y receptor-5 signaling. These findings suggest novel functional properties of Agrp neurons in memory-related cognitive processes.


Subject(s)
Agouti-Related Protein/metabolism , Hypothalamus/physiology , Memory , Neurons/metabolism , Animals , Cognition , Eating , Female , Male , Maze Learning , Mice , Neuropeptide Y/metabolism
18.
Neuropeptides ; 66: 18-24, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28801068

ABSTRACT

OBJECTIVE: Leptin is an adipokine released mainly by adipose tissue, with many functions including regulation of energy balance. However, little is known about the effect of LEPR polymorphism on orexigenic and anorexigenic neuropeptides. Thus, the aim of the present study is to verify the influence of LEPR polymorphism (rs2767485) on serum orexigenic (NPY, MCH and AgRP) and anorexigenic (Leptin and α-MSH) neuropeptides levels among obese adolescents submitted to 1year of multicomponent weight loss therapy. METHODS: Seventy-six adolescents with obesity were enrolled in 1year of weight loss therapy including clinical, nutritional, psychological and exercise-related. Blood samples were collected to analyze neuropeptides (NPY, MCH, AgRP and leptin) and LEPR genotyping. Visceral fat was measured by ultrasound and body composition was measured by plethysmography. The parameters were measured at baseline and after one year. Adolescents were grouped according to genotype (TT or CT+CC group). Effect of the weight loss therapy was analyzed through ANOVA and Wilcox, according to normality. Statistic value was set at <0.05. RESULTS: C-allele carriers have the orexigenic neuropeptides (NPY, AgRP and MCH) levels statistically higher when compared with TT group, at baseline. Furthermore, TT group seems to respond better to the therapy by a greater delta on BMI. Indeed, the data suggest a concomitant increased of AgRP levels in CT+CC genotypes, after weight loss therapy. CONCLUSION: Both groups responded to the weight loss intervention, however wildtypes (TT) appear to respond to the intervention most optimally with C carries, where post intervention reduction in BMI was significantly greater in wildtypes. The leptin receptor polymorphism seems to affect neuroendocrine regulation of energy balance among adolescents with obesity.


Subject(s)
Energy Metabolism/genetics , Obesity/genetics , Receptors, Leptin/genetics , Weight Loss/genetics , Adiposity/physiology , Adolescent , Agouti-Related Protein/blood , Brazil , Female , Humans , Leptin/blood , Male , Neuropeptide Y/blood , Obesity/blood , Obesity/diagnostic imaging , Obesity/therapy , Polymorphism, Single Nucleotide , Ultrasonography
19.
eNeuro ; 4(1)2017.
Article in English | MEDLINE | ID: mdl-28275717

ABSTRACT

Variations in circulating corticosterone (Cort) are driven by the paraventricular nucleus of the hypothalamus (PVN), mainly via the sympathetic autonomic nervous system (ANS) directly stimulating Cort release from the adrenal gland and via corticotropin-releasing hormone targeting the adenohypophysis to release adrenocorticotropic hormone (ACTH). Cort feeds back through glucocorticoid receptors (GRs). Here we show in male Wistar rats that PVN neurons projecting to the adrenal gland do not express GRs, leaving the question of how the ANS in the PVN gets information about circulating Cort levels to control the adrenal. Since the arcuate nucleus (ARC) shows a less restrictive blood-brain barrier, expresses GRs, and projects to the PVN, we investigated whether the ARC can detect and produce fast adjustments of circulating Cort. In low Cort conditions (morning), local microdialysis in the ARC with type I GR antagonist produced a fast and sustained increase of Cort. This was not observed with a type II antagonist. At the circadian peak levels of Cort (afternoon), a type II GR antagonist, but not a type I antagonist, increased Cort levels but not ACTH levels. Antagonist infusions in the PVN did not modify circulating Cort levels, demonstrating the specificity of the ARC to give Cort negative feedback. Furthermore, type I and II GR agonists in the ARC prevented the increase of Cort after stress, demonstrating the role of the ARC as sensor to modulate Cort release. Our findings show that the ARC may be essential to sense blood levels of Cort and adapt Cort secretion depending on such conditions as stress or time of day.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Corticosterone/metabolism , Adrenal Glands/metabolism , Agouti-Related Protein/metabolism , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Circadian Rhythm/physiology , Feedback, Physiological/physiology , Male , Neurons/drug effects , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Random Allocation , Rats, Wistar , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Glucocorticoid/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
20.
Neuroscience ; 346: 102-112, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28093215

ABSTRACT

The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that is expressed in several brain nuclei playing a crucial role in the regulation of energy balance controlling the homeostasis of the organism. It displays both agonist-evoked and constitutive activity, and moreover, it can couple to different G proteins. Most of the research on MC4R has been focused on agonist-induced activity, while the molecular and cellular basis of MC4R constitutive activity remains scarcely studied. We have previously shown that neuronal N-type voltage-gated calcium channels (CaV2.2) are inhibited by MC4R agonist-dependent activation, while the CaV subtypes that carry L- and P/Q-type current are not. Here, we tested the hypothesis that MC4R constitutive activity can affect CaV, with focus on the channel subtypes that can control transcriptional activity coupled to depolarization (L-type, CaV1.2/1.3) and neurotransmitter release (N- and P/Q-type, CaV2.2 and CaV2.1). We found that MC4R constitutive activity inhibits specifically CaV1.2/1.3 and CaV2.1 subtypes of CaV. We also explored the signaling pathways mediating this inhibition, and thus propose that agonist-dependent and basal MC4R activation modes signal differentially through Gs and Gi/o pathways to impact on different CaV subtypes. In addition, we found that chronic incubation with MC4R endogenous inverse agonist, agouti and agouti-related peptide (AgRP), occludes CaV inhibition in a cell line and in amygdaloid complex cultured neurons as well. Thus, we define new mechanisms of control of the main mediators of depolarization-induced calcium entry into neurons by a GPCR that displays constitutive activity.


Subject(s)
Calcium Channels, L-Type/physiology , Neurons/physiology , Receptor, Melanocortin, Type 4/physiology , Agouti-Related Protein/administration & dosage , Amygdala/metabolism , Amygdala/physiology , Animals , Female , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Receptor, Melanocortin, Type 4/agonists , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL