Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.189
Filter
1.
Inorg Chem ; 63(37): 17056-17066, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39238331

ABSTRACT

Alkane monooxygenase (AlkB) is a membrane-spanning metalloenzyme that catalyzes the terminal hydroxylation of straight-chain alkanes involved in the microbially mediated degradation of liquid alkanes. According to the cryoEM structures, AlkB features a unique multihistidine ligand coordination environment with a long Fe-Fe distance in its active center. Up to now, how AlkB employs the diiron center to activate dioxygen and which species is responsible for triggering the hydroxylation are still elusive. In this work, we constructed computational models and performed quantum mechanics/molecular mechanics (QM/MM) calculations to illuminate the electronic characteristics of the diiron active center and how AlkB carries out the terminal hydroxylation. Our calculations revealed that the spin-spin interaction between two irons is rather weak. The dioxygen may ligate to either the Fe1 or Fe2 atom and prefers to act as a linker to increase the spin-spin interaction of two irons, facilitating the dioxygen cleavage to generate the highly reactive Fe(IV)═O. Thus, AlkB employs Fe(IV)═O to trigger the hydrogen abstraction. In addition, the previously suggested mechanism that AlkB uses both the dioxygen and Fe-coordinated water to perform hydroxylation was calculated to be unlikely. Besides, our results indicate that AlkB cannot use the Fe-coordinated dioxygen to directly trigger hydrogen abstraction.


Subject(s)
Alkanes , Oxygen , Alkanes/chemistry , Alkanes/metabolism , Hydroxylation , Oxygen/chemistry , Oxygen/metabolism , Oxygenases/chemistry , Oxygenases/metabolism , Iron/chemistry , Iron/metabolism , Molecular Structure , Models, Molecular , Density Functional Theory , Quantum Theory , Electrons
2.
Chemosphere ; 364: 143023, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39117086

ABSTRACT

Petroleum hydrocarbon contamination is a serious hazard to marine environments, affecting ecosystems and marine life. However, extracellular polymeric substances (EPS) of marine bacteria constituting various hydrophilic and hydrophobic functional groups sequester petroleum hydrocarbons (PHs). In this study, interaction of EPS of Pseudomonas furukawaii PPS-19 with PHs such as crude oil, n-dodecane, and pyrene and its impact on PHs adsorption was investigated. Protein component of EPS was increased after treatment with PHs. Red shift of UV-Vis spectra implied change in molecular structure of EPS. Functional groups of proteins (CO, NH2) and polysaccharides (C-C, C-OH, C-O-C) predominantly interacted with PHs. Interaction with PHs affected secondary structure of EPS. Change in binding energies of corresponding functionalities of C 1s, O 1s, and N 1s confirmed the interaction. Disruption of crystalline peaks led to increased pore size in EPS primarily due to the increase in surface electronegativity. Static quenching mechanism unveils formation of complex between fulvic acid of EPS and PHs. Relative expression of alg8 gene was significantly increased in the presence of n-dodecane (6.31 fold) (P < 0.05; One way ANOVA). n-dodecane and pyrene adsorption capacity of Immobilized EPS was significantly higher (356.5 and 338.2 mg g-1, respectively) (P < 0.001; One way ANOVA) than control. Adsorption rate fits into the pseudo-second-order kinetic model. This study establishes that interaction of PHs causes structural and physical changes in EPS and EPS could be used as an adsorbent material for the sequestration of PHs pollution.


Subject(s)
Extracellular Polymeric Substance Matrix , Hydrocarbons , Petroleum , Pseudomonas , Petroleum/metabolism , Adsorption , Pseudomonas/metabolism , Hydrocarbons/metabolism , Hydrocarbons/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Biodegradation, Environmental , Water Pollutants, Chemical/metabolism , Pyrenes/metabolism , Pyrenes/chemistry , Alkanes/metabolism , Alkanes/chemistry
3.
J Chromatogr A ; 1732: 465220, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39106664

ABSTRACT

Partial least squares (PLS) regression is a valuable chemometric tool for property prediction when coupled with gas chromatography (GC). Since the separation run time and stationary phase selection are crucial for effective PLS modeling, we study these GC parameters on the prediction of viscosity, density and hydrogen content for 50 aerospace fuels. Due to the diversity of compounds in the fuels (primarily alkanes, cycloalkanes, and aromatics), we explore both polar and non-polar stationary phase columns. The robustness for the PLS models was evaluated by their normalized root mean square error of cross-validation (NRMSECV). PLS models built for viscosity across 1-min, 3-min, 7-min, and 10-min time window (TW) high-speed GC separations produced nearly the same NRMSECV with the polar column data with an average (standard deviation) of 4.41 % (0.34 %) versus the non-polar column data of 4.69 % (0.15 %). In contrast, while the NRMSECV of density modeling with the polar column data varied more than the viscosity models, averaging 7.54 % (0.67 %), the non-polar column data produced a significantly higher average NRMSECV of 10.06 % (0.35 %). Similarly, for hydrogen content, the NRMSECV with the polar column data averaged 9.50 % (0.87 %), which was significantly lower than the NRMSECV with the non-polar column data averaging 12.10 % (0.88 %). We also investigated the impact of smoothing the GC data on the corresponding PLS models. By applying varying degrees of smoothing, we can effectively obtain similar chromatographic peak patterns in a shorter TW. For example, a 10-min smoothed chromatogram appears like the 1-min separation with no smoothing but resulted in nearly the same NRMSECV. Overall, the fast separation with a 1-min TW produced robust PLS models for viscosity with either stationary phase column, whereas for density and hydrogen content the polar stationary phase column produced superior PLS models, thus with proper stationary phase selection, a fast separation run time could be readily applied with optimal PLS property modeling results.


Subject(s)
Hydrogen , Least-Squares Analysis , Chromatography, Gas/methods , Viscosity , Hydrogen/chemistry , Hydrogen/analysis , Models, Chemical , Alkanes/analysis , Alkanes/chemistry
4.
J Chromatogr A ; 1730: 465143, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38991600

ABSTRACT

The solvation parameter model uses six descriptors identified as excess molar refraction, E, dipolarity/polarizability, S, overall hydrogen-bond acidity, A, overall hydrogen-bond basicity, B, McGowan's characteristic volume, V, and the gas-liquid partition constant on hexadecane at 25 °C, L to model the distribution of neutral compounds in biphasic systems. Abraham's version of this model uses all six descriptors with two separate linear free energy relationship models for the transfer of compounds from a gas phase to a condensed phase and between condensed phases. Goss proposed a modification to this model that uses a single calibration model regardless of the physical state for each phase and five of the descriptors employed in Abraham's model (E descriptor is eliminated). The capability of Abraham's model and the Goss-modified model to characterize the contribution of intermolecular interaction to retention for gas and reversed-phase liquid chromatographic systems and distribution in liquid-liquid partition systems is evaluated using the WSU compound descriptor database. These more accurate values for the Abraham descriptors have not been utilized previously for the evaluation of the Goss-modified model and should be more capable of discerning subtle differences in model performance. It is shown that model quality defined by statistical parameters favors Abraham's model over the Goss-modified model with differences in model quality greater for systems in which Abraham's model indicates a significant contribution from electron lone pair interactions and for systems in which one phase is a solvent containing perfluoroalkyl substituents. There is a small systematic difference for the terms describing the combined contributions of cavity formation and dispersion interactions and for interactions of a dipole-type. The contribution of hydrogen-bonding interactions is virtually identical for the two models. The model intercepts are generally different and potentially assigned to a larger contribution from lack-of-fit for the Goss-modified model. Although the Abraham model descriptors have been routinely employed for applications using the Goss-modified model the possibility that Goss-model specific descriptors should be employed was evaluated. Using the Solver method and Goss-model specific calibration models for chromatographic and liquid-liquid partition systems a new set of Goss-specific descriptors was calculated for 28 varied compounds. These descriptors show good statistical agreement with the Abraham descriptor values with an average deviation of 0.009, -0.003, -0.004, and -0.023, respectively, for the S, A, B, and L descriptors, corresponding to a relative absolute deviation in percent of 2.2 %, 3.9 %, 4.3 %, and 1.2 %, respectively.


Subject(s)
Hydrogen Bonding , Models, Chemical , Solvents/chemistry , Chromatography, Reverse-Phase/methods , Chromatography, Gas/methods , Alkanes/chemistry
5.
Sci Adv ; 10(28): eadl3591, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38985863

ABSTRACT

The hydrogen isotopic composition (δ2H) of plant compounds is increasingly used as a hydroclimatic proxy; however, the interpretation of δ2H values is hampered by potential coeffecting biochemical and biophysical processes. Here, we studied δ2H values of water and carbohydrates in leaves and roots, and of leaf n-alkanes, in two distinct tobacco (Nicotiana sylvestris) experiments. Large differences in plant performance and biochemistry resulted from (a) soil fertilization with varying nitrogen (N) species ratios and (b) knockout-induced starch deficiency. We observed a strong 2H-enrichment in sugars and starch with a decreasing performance induced by increasing NO3-/NH4+ ratios and starch deficiency, as well as from leaves to roots. However, δ2H values of cellulose and n-alkanes were less affected. We show that relative concentrations of sugars and starch, interlinked with leaf gas exchange, shape δ2H values of carbohydrates. We thus provide insights into drivers of hydrogen isotopic composition of plant compounds and into the mechanistic modeling of plant cellulose δ2H values.


Subject(s)
Carbohydrates , Hydrogen , Plant Leaves , Plant Leaves/chemistry , Plant Leaves/metabolism , Hydrogen/analysis , Carbohydrates/chemistry , Carbohydrates/analysis , Starch/chemistry , Nicotiana/chemistry , Lipids/analysis , Lipids/chemistry , Plant Roots/chemistry , Plant Roots/metabolism , Carbohydrate Metabolism , Deuterium/chemistry , Alkanes/analysis , Alkanes/chemistry , Water/chemistry
6.
Anal Chem ; 96(29): 12049-12056, 2024 07 23.
Article in English | MEDLINE | ID: mdl-38975928

ABSTRACT

The diagnosis of bloodborne viral infections (viremia) is currently relegated to central laboratories because of the complex procedures required to detect viruses in blood samples. The development of point-of-care diagnostics for viremia would enable patients to receive a diagnosis and begin treatment immediately instead of waiting days for results. Point-of-care systems for viremia have been limited by the challenges of integrating multiple precise steps into a fully automated (i.e., sample-to-answer), compact, low-cost system. We recently reported the development of thermally responsive alkane partitions (TRAPs), which enable the complete automation of diagnostic assays with complex samples. Here we report the use of TRAPs for the sample-to-answer detection of viruses in blood using a low-cost portable device and easily manufacturable cassettes. Specifically, we demonstrate the detection of SARS-CoV-2 in spiked blood samples, and we show that our system detects viremia in COVID-19 patient samples with good agreement to conventional RT-qPCR. We anticipate that our sample-to-answer system can be used to rapidly diagnose SARS-CoV-2 viremia at the point of care, leading to better health outcomes for patients with severe COVID-19 disease, and that our system can be applied to the diagnosis of other life-threatening bloodborne viral diseases, including Hepatitis C and HIV.


Subject(s)
Alkanes , COVID-19 , SARS-CoV-2 , Viremia , Viremia/diagnosis , Viremia/virology , Humans , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/virology , COVID-19/blood , Alkanes/chemistry , Temperature , Point-of-Care Systems , RNA, Viral/analysis
7.
Org Lett ; 26(31): 6670-6674, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39073982

ABSTRACT

The great variety and fascinating complexity of terpenoid skeletons are achieved through different cyclizations catalyzed by terpene cyclases. Here, we report a sesquiterpene cyclase (MfdS) from Aspergillus ustus for the formation of malfilanol D, a member of the group of biochemically less investigated sesquiterpenes with a bicyclo[5.4.0]undecane skeleton. Feeding 13C-labeled acetates in Aspergillus nidulans with the mfdS sequence provides evidence for a C-1 to C-10 cyclization with subsequent 1,2-alkyl and 1,2-hydride shifts in the formation of the 6/7-fused rings.


Subject(s)
Aspergillus , Sesquiterpenes , Aspergillus/chemistry , Aspergillus/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism , Molecular Structure , Cyclization , Alkanes/chemistry , Alkanes/metabolism , Aspergillus nidulans/metabolism , Aspergillus nidulans/chemistry , Bridged Bicyclo Compounds/chemistry , Bridged Bicyclo Compounds/metabolism
8.
J Colloid Interface Sci ; 674: 951-958, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38959740

ABSTRACT

HYPOTHESIS: Our hypothesis is that dynamic interfacial tension values as measured by the partitioned-Edge-based Droplet GEneration (EDGE) tensiometry can be connected to those obtained with classical techniques, such as the automated drop tensiometer (ADT), expanding the range of timescales towards very short ones. EXPERIMENTS: Oil-water and air-water interfaces are studied, with whey protein isolate solutions (WPI, 2.5 - 10 wt%) as the continuous phase. The dispersed phase consists of pure hexadecane or air. The EDGE tensiometer and ADT are used to measure the interfacial (surface) tension at various timescales. A comparative assessment is carried out to identify differences between protein concentrations as well as between oil-water and air-water interfaces. FINDINGS: The EDGE tensiometer can measure at timescales down to a few milliseconds and up to around 10 s, while the ADT provides dynamic interfacial tension values after at least one second from droplet injection and typically is used to also cover hours. The interfacial tension values measured with both techniques exhibit overlap, implying that the techniques provide consistent and complementary information. Unlike the ADT, the EDGE tensiometer distinguishes differences in protein adsorption dynamics at protein concentrations as high as 10 wt% (which is the highest concentration tested) at both oil-water and air-water interfaces.


Subject(s)
Surface Tension , Water , Whey Proteins , Adsorption , Whey Proteins/chemistry , Water/chemistry , Air , Alkanes/chemistry , Oils/chemistry , Particle Size , Surface Properties , Microfluidic Analytical Techniques/instrumentation
9.
STAR Protoc ; 5(2): 103112, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38843401

ABSTRACT

A membrane reactor (MR) offers a solution to overcome thermodynamic equilibrium limitations by enabling in situ product separation, enhancing product yields and energy efficiency. Here we present a protocol for synthesizing a carbon MR that couples a H2-permeable carbon molecular sieve hollow fiber membrane and a metal supported on zeolite catalyst for non-oxidative propane and ethane dehydrogenation. We describe steps for catalyst preparation, membrane fabrication, and MR construction. The as-developed MR has significant improvements in alkene yield and a record-high stability. For complete details on the use and execution of this protocol, please refer to Liu et al.1.


Subject(s)
Alkanes , Carbon , Carbon/chemistry , Alkanes/chemistry , Catalysis , Zeolites/chemistry , Membranes, Artificial , Hydrogenation , Hydrogen/chemistry , Oxidation-Reduction
10.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38866708

ABSTRACT

This study aimed to investigating the possible interference caused by glass test tubes on the quantification of bacterial adhesion to hydrocarbons by the MATH test. The adhesion of four bacteria to hexadecane and to glass test tubes was evaluated employing different suspending polar phases. The role of the ionic strength of the polar phase regarding adhesion to glassware was investigated. Within the conditions studied, Gram-positive bacteria adhered to both the test tube and the hydrocarbon regardless of the polar phase employed; meanwhile, Escherichia coli ATCC 25922 did not attach to either one. The capacity of the studied microorganisms to adhere to glassware was associated with their electron-donor properties. The ionic strength of the suspending media altered the patterns of adhesion to glass in a strain-specific manner by defining the magnitude of electrostatic repulsion observed between bacteria and the glass surface. This research demonstrated that glass test tubes may interact with suspended bacterial cells during the MATH test under specific conditions, which may lead to overestimating the percentage of adhesion to hydrocarbons and, thus, to erroneous values of cell surface hydrophobicity.


Subject(s)
Bacterial Adhesion , Glass , Glass/chemistry , Escherichia coli , Alkanes/chemistry , Osmolar Concentration , Hydrophobic and Hydrophilic Interactions , Hydrocarbons/metabolism , Gram-Positive Bacteria/isolation & purification
11.
J Ethnopharmacol ; 333: 118414, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38830451

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatocellular Carcinoma (HCC) is an aggressive killer worldwide with high incidence and mortality. The herb Chloranthus fortunei (A. Gray) Solms-Laub is known as "Si Ji Feng" and is classified as a Feng-type medicine in classic Yao medicines. According to Yao's medical beliefs, Chloranthus fortunei has the functions of dispelling Feng, regulating qi, detoxifying, promoting blood circulation, etc. Folk uses its decoctions to treat stagnant liver conditions, such as liver abscesses, cirrhosis, hepatitis, and liver cancer. However, the bioactivity and mechanisms of Chloranthus fortunei extract against HCC have not been reported. AIM OF THE STUDY: To investigate the anti-HCC bioactivity and potential mechanism of the extract of Chloranthus fortunei (CFS). MATERIALS AND METHODS: Using 70% ethanol for reflux extraction of CFS resulted in the CFS ethanol extract, followed by sequential extractions with petroleum ether, chloroform, ethyl acetate, and n-butanol, yielding four fractions. The CCK-8 assay was utilized to examine the cytotoxic effects of 4 fractions on MHCC97-H and HepG2 cells, exploring the most effective component, namely petroleum ether extracts of CFS (PECFS). The major active ingredients of PECFS were identified using LC/MS technology, and the impact on cell proliferation and apoptosis in HCC cells was studied. The key genes and proteins in the pathway were validated using RT-PCR and Western blotting. BALB/c nude mice were chosen for tumor xenotransplantation and PECFS therapy. hinders the proliferation of HCC cells and promotes apoptosis. RESULTS: Among the four fractions, it was found that PECFS have the highest antiproliferative activity against MHCC97-H and HepG2 cells (IC50 = 13.86, 10.55 µg/mL), with sesquiterpene compounds being the primary active constituents. The antiproliferative activity of PECFS on HCC cells was linked to the inhibition of cell cloning, invasion, and metastasis abilities, as well as the arrest of the cell cycle at the G2/M phase. Additionally, exerts pro-apoptotic effects on HCC cells by upregulating the pro-apoptotic protein Bax, downregulating the anti-apoptotic protein Bcl-2, and activating the expression of the Caspase family. Moreover, protein and m-RNA expression data showed that PECFS inhibits HCC cell proliferation and promotes apoptosis by regulating the PI3K/AKT/mTOR pathway. Besides, after PECFS treatment, tumor growth in nude mice was suppressed. CONCLUSION: PECFS can inhibit the viability of HCC cells by acting on the PI3K/AKT/mTOR pathway, demonstrating anti-tumor potential. This study's findings suggest that PECFS may represent a promising source of novel agents for liver cancer treatment, providing scientific evidence for the traditional application of CFS in treating HCC.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis , Carcinoma, Hepatocellular , Liver Neoplasms , Mice, Inbred BALB C , Mice, Nude , Plant Extracts , Animals , Humans , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Mice , Hep G2 Cells , Alkanes/chemistry , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Male
12.
J Chromatogr A ; 1730: 465039, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38901296

ABSTRACT

A system consisting of a thermal desorption unit (TDU) and micro thermal desorption tubes (µTD-tubes, 1.4 mm I.D., 10mg Tenax TA) for fast desorption of analytes was developed for the efficient combination of hyper fast gas chromatography with thermal desorption. The fast desorption is achieved by a significantly reduced thermal mass compared to conventional thermal desorption tubes. Therefore, extremely fast heating and cooling cycles are possible. Proof of concept measurements combining the new setup with a flow-field thermal gradient gas chromatograph (FF-TG-GC) and FID detection show good precision and linearity with R2≥0.995 in the analysis of an n-alkane mix (C8-C20). Thermal desorption occurs within 12s. The impact of reduced µTD-tube dimensions on desorption time, full width at half maximum (FWHM), breakthrough volumes, tube flow rates ergo linear velocities, porosity and back pressure is discussed.


Subject(s)
Chromatography, Gas , Time Factors , Chromatography, Gas/instrumentation , Chromatography, Gas/methods , Pressure , Reproducibility of Results , Alkanes/analysis , Alkanes/chemistry
13.
J Chromatogr A ; 1729: 465036, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38843573

ABSTRACT

In this work, a microchip gas chromatography (GC) column assembly utilizing a three-dimensional (3D) printed micro oven and a flexible stainless steel capillary column was developed. The assembly's performance and separation capabilities were characterized. The key components include a 3D printed aluminum plate (7.50 × 7.50 × 0.16 cm) with a 3-meter-long circular spiral channel, serving as the oven, and the column coiled on the channel with an inner diameter of 320 µm and a stationary phase of OV-1. A heating ceramic plate was affixed on the opposite side of the plate. The assembly weighed 40.3 g. The design allows for easy disassembly, or stacking of heating devices and columns, enabling flexibility in adjusting column length. When using n-C13 as the test analyte at 140 °C, a retention factor (k) was 8.5, and 7797 plates (2599 plates/m) were obtained. The assembly, employing resistance heating, demonstrated effective separation performance for samples containing alkanes, aromatics, alcohols and ketones, with good reproducibility. The reduction in theoretical plates compared to oven heating was only 2.95 %. In the boiling point range of C6 to C18, rapid temperature programming (120 °C/min) was achieved with a power consumption of 119.512 W. The assembly was successfully employed to separate benzene series compounds, gasoline and volatile organic compounds (VOCs), demonstrating excellent separation performance. This innovative design addresses the challenges of the complexity and low repeatability of the fabrication process and the high cost associated with microchip columns. Furthermore, its versatility makes it suitable for outdoor analysis applications.


Subject(s)
Printing, Three-Dimensional , Stainless Steel , Chromatography, Gas/methods , Chromatography, Gas/instrumentation , Stainless Steel/chemistry , Equipment Design , Reproducibility of Results , Alkanes/analysis , Alkanes/isolation & purification , Alkanes/chemistry , Alcohols/analysis , Alcohols/chemistry , Alcohols/isolation & purification
14.
J Chromatogr A ; 1729: 465052, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38852268

ABSTRACT

Retention in gas chromatographic systems has a central role in the identification of compounds even if detectors providing spectral information are used. But linear retention indices (LRI) of a single compound originating from multiple sources tend to vary greatly, probably due to differences in the experimental settings of the determinations. The effect of gas chromatographic parameters on LRI has been investigated using 41 compounds - previously identified from food contact plastics - and n-alkanes (n-C7-n-C40) used as reference series. As the reproducibility of LRIs under the same conditions is generally very good, the smallest changes in the settings often caused statistically significant, though irrelevant changes in the LRI values. Therefore, a multicriterial scoring-ranking system has been worked out to highlight the LRI value differences. Our results highlight that column length, heating rate, and film thickness can all be the reasons of the varying published LRI values. We also demonstrated that for the reproduction of LRI data, the chemistry (and not simply the polarity) of the stationary phase is crucial.


Subject(s)
Alkanes , Chromatography, Gas/methods , Alkanes/chemistry , Alkanes/analysis , Reproducibility of Results , Plastics/chemistry
15.
Angew Chem Int Ed Engl ; 63(37): e202407778, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-38871651

ABSTRACT

Multienzyme cascades (MECs) have gained much attention in synthetic chemistry but remain far from being a reliable synthetic tool. Here we report a four-enzyme cascade comprising a cofactor-independent and a cofactor self-sustaining bienzymatic modules for the enantioselective benzylic C-H amination of arylalkanes, a challenging transformation from bulk chemicals to high value-added chiral amines. The two modules were subsequently optimized by enzyme co-immobilization with microenvironmental tuning, and finally integrated in a gas-liquid segmented flow system, resulting in simultaneous improvements in enzyme performance, mass transfer, system compatibility, and productivity. The flow system enabled continuous C-H amination of arylalkanes (up to 100 mM) utilizing the sole cofactor NADH (0.5 mM) in >90 % conversion, achieving a high space-time yield (STY) of 3.6 g ⋅ L-1 ⋅ h-1, which is a 90-fold increase over the highest value previously reported.


Subject(s)
Enzymes, Immobilized , Amination , Stereoisomerism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Amines/chemistry , Alkanes/chemistry , Molecular Structure , NAD/chemistry , NAD/metabolism
16.
Water Res ; 259: 121799, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38815336

ABSTRACT

Carbon dioxide radical anion (CO2•-) recently becomes appreciated in halogenated contaminants elimination; nevertheless, its application has been restricted by insufficient mechanistic understanding. Herein, we provided a quantitative insight into the kinetics and mechanisms of CO2•- mediated dehalogenation of halogenated alkanes. A CO2•- dominated UV254/H2O2/HCOO- system has been successfully established and demonstrated for effective elimination of 7 kinds of halogenated alkanes (71.3 % to 100 % of removal). Using a laser flash photolysis technology, the second-order rate constants of CO2•- ( [Formula: see text] ) reacting with CCl4, CHCl3 and CH2Cl2 were firstly reported, to be 2.5 × 108, 6.2 × 107 and 5.8 × 106 M-1s-1, respectively. [Formula: see text] presented a significant negative correlation with the lowest unoccupied molecular orbital energy (ELUMO) of chlorinated alkanes, proving that the enhanced dehalogenation of CO2•- was attributed by direct electron transfer mechanism. A fitting model was developed accordingly for [Formula: see text] prediction. This study also demonstrated that the CO2•- mediated ARP effectively removed halogenated alkanes regardless of pH condition (6.0∼9.0) and bicarbonate concentrations. These findings are significant in advancing the scientific understanding of CO2•- mediated ARP. This reductive process a promising control strategy for halogenated contaminants, such as polyfluoroalkyl substances (PFAS) and halogenated pharmaceuticals.


Subject(s)
Alkanes , Carbon Dioxide , Halogenation , Kinetics , Alkanes/chemistry , Carbon Dioxide/chemistry
17.
Langmuir ; 40(21): 11106-11115, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38745419

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), as persistent environmental pollutants, often reside in nonaqueous-phase liquids (NAPLs). Mycobacterium sp. WY10, boasting highly hydrophobic surfaces, can adsorb to the oil-water interface, stabilizing the Pickering emulsion and directly accessing PAHs for biodegradation. We investigated the impact of Triton X-100 (TX100) on this interfacial uptake of phenanthrene (PHE) by Mycobacteria, using n-tetradecane (TET) and bis-(2-ethylhexyl) phthalate (DEHP) as NAPLs. Interfacial tension, phase behavior, and emulsion stability studies, alongside confocal laser scanning microscopy and electron microscope observations, unveiled the intricate interplay. In surfactant-free systems, Mycobacteria formed stable W/O Pickering emulsions, directly degrading PHE within the NAPLs because of their intimate contact. Introducing low-dose TX100 disrupted this relationship. Preferentially binding to the cells, the surfactant drastically increased the cell hydrophobicity, triggering desorption from the interface and phase separation. Consequently, PAH degradation plummeted due to hindered NAPL access. Higher TX100 concentrations flipped the script, creating surfactant-stabilized O/W emulsions devoid of interfacial cells. Surprisingly, PAH degradation remained efficient. This paradox can be attributed to NAPL emulsification, driven by the surfactant, which enhanced mass transfer and brought the substrate closer to the cells, despite their absence at the interface. This study sheds light on the complex effect of surfactants on Mycobacteria and PAH uptake, revealing an antagonistic effect at low concentrations that ultimately leads to enhanced degradation through emulsification at higher doses. These findings offer valuable insights into optimizing bioremediation strategies in PAH-contaminated environments.


Subject(s)
Biodegradation, Environmental , Mycobacterium , Octoxynol , Phenanthrenes , Surface-Active Agents , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/metabolism , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Mycobacterium/metabolism , Mycobacterium/drug effects , Mycobacterium/chemistry , Octoxynol/chemistry , Emulsions/chemistry , Alkanes/chemistry , Alkanes/metabolism , Hydrophobic and Hydrophilic Interactions
18.
J Ethnopharmacol ; 331: 118300, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38718889

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra sphenanthera (Schisandra sphenanthera Rehd. et Wils.) is the dried mature fruit of Schisandra sphenanthera, a plant in the Magnoliaceae family. It was used in the treatment of diabetes mellitus in the Jade Fluid Decoction and the Xiaoke pills, which were recorded in ancient books. However, its mechanism of action in the treatment of type 2 diabetes mellitus (T2DM) was unclear and needs further study. AIM OF THE STUDY: This research aimed to investigate the chemical composition and lignan content of Schisandra sphenanthera petroleum ether parts (SPEP) and to evaluate the effects of SPEP on sweet taste receptors (STRs) and intestinal flora in rats on a high-fat diet (HFD). Additionally, the relationships between SPEP and hyperglycemia and insulin resistance were examined. MATERIALS AND METHODS: GC-MS was used to determine the chemical composition of SPEP, and HPLC was used to determine the lignin content. A combination of the HFD and the administration of streptozotocin (STZ) was employed to generate a rat model of T2DM. Petroleum ether extracts from Schisandra sphenanthera were used as the focus of the research to evaluate the effects of these extracts on the glucolipid metabolism of T2DM rats, as well as the underlying mechanisms. RESULTS: Analysis of the GC-MS spectrum of SESP revealed a total of 58 compounds. HPLC analysis revealed that SPEP had the highest concentration of Schisandrin A and the lowest concentration of Schisandrol A. The drug administration intervention resulted in a significant decrease in body weight and pancreatic weight of diabetic rats compared to the Normal group. When compared to the Model group, the body weight of rats in the drug administration group and the Metformin group had a more moderate decrease, while the pancreatic weight and pancreatic-to-body ratio increased. The Model group shown significant increases in FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, and NEFA, as well as significant decreases in HDL-C and SOD, when compared to the Normal group (P < 0.05). The administration of each group was found to be significantly effective in decreasing FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, NEFA, while increasing HDL-C and SOD when compared to the Model group. The application of SPEP had a positive impact on hepatocyte swelling, hepatocyte degeneration, and necrosis, as well as the morphological structure of pancreatic islet cells. Furthermore, the protein expression levels of T1R2, TRPM5 and GLP-1 in the small intestine of the Model group were reduced. After a period of six weeks, the protein expression levels began to align more closely with those of the Normal group of rats. Analysis of 16S rRNA sequencing revealed that the intestinal microbiota of diabetic rats was significantly disrupted, with a decrease in the abundance of the Firmicutes phylum and an increase in the abundance of the Bacteroidetes phylum. Furthermore, the composition of the dominant genus was distinct from that of the control group. After the drug intervention, the microbiota of diabetic rats was significantly altered, exhibiting a higher abundance and diversity, as well as a significant enrichment of the community. The SPEP treatment resulted in a significant increase in acetic acid, propionic acid, and butyric acid. CONCLUSIONS: The findings of this research indicated that SPEP could be effective in treating T2DM through the regulation of STRs, the adjustment of disturbed metabolite levels, and the alteration of intestinal flora.


Subject(s)
Alkanes , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Hyperglycemia , Insulin Resistance , Plant Extracts , Rats, Sprague-Dawley , Schisandra , Animals , Schisandra/chemistry , Gastrointestinal Microbiome/drug effects , Male , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Hyperglycemia/drug therapy , Rats , Alkanes/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Diet, High-Fat/adverse effects , Blood Glucose/drug effects , Blood Glucose/metabolism , Streptozocin , Receptors, G-Protein-Coupled/metabolism , Lignans/pharmacology , Lignans/isolation & purification
19.
J Contam Hydrol ; 264: 104338, 2024 May.
Article in English | MEDLINE | ID: mdl-38692145

ABSTRACT

Performance evaluation of in situ bioremediation processes in the field is difficult due to uncertainty created by matrix and contaminant heterogeneity, inaccessibility to direct observation, expense of sampling, and limitations of some measurements. The goal of this research was to develop a strategy for evaluating in situ bioremediation of light nonaqueous-phase liquid (LNAPL) contamination and demonstrating the occurrence of bioenhanced LNAPL dissolution by: (1) integrating a suite of analyses into a rational evaluation strategy; and (2) demonstrating the strategy's application in intermediate-scale flow-cell (ISFC) experiments simulating an aquifer contaminated with a pool of LNAPL (naphthalene dissolved in dodecane). Two ISFCs were operated to evaluate how the monitored parameters changed between a "no bioremediation" scenario and an "intrinsic in situ bioremediation" scenario. Key was incorporating different measures of microbial activity and contaminant degradation relevant to bioremediation: contaminant loss; consumption of electron acceptors; and changes in total alkalinity, pH, dissolved total inorganic carbon, carbon-stable isotopes, microorganisms, and intermediate metabolites. These measurements were integrated via mass-flux modeling and mass-balance analyses to document that in situ biodegradation of naphthalene was strongly accelerated in the "intrinsic in situ bioremediation" scenario versus "no bioremediation." Furthermore, the integrated strategy provided consistent evidence of bioenhancement of LNAPL dissolution through intrinsic bioremediation by a factor of approximately 2 due to the biodegradation of the naphthalene near the pool/water interface.


Subject(s)
Biodegradation, Environmental , Naphthalenes , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Naphthalenes/chemistry , Naphthalenes/metabolism , Groundwater/chemistry , Alkanes/chemistry , Alkanes/metabolism , Solubility
20.
J Chromatogr A ; 1727: 464969, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38776606

ABSTRACT

Polymerization of 5-n-alkyl-substituted 2-norbornenes synthesized a series of polymers having the same structure of the main polymer chain, but differing in the length of the alkyl substituent (up to 14 methylene units). The obtained polymers were studied by the capillary IGC method as a stationary phase during separation of a mixture of normal hydrocarbons C6-C10. Retention data in the form of a logarithm of the retention factor lnk were correlated with the size of the sorbate (via the carbon number of the alkane ZS) and with the size of the n-alkyl substituent in the polymer chain (via the carbon number of the polymer ZP). Correlation of lnk vs. ZS turned out to be linear for all polymers, but the angle of the slope of linear dependence dlnk/dZS increases with a decrease in the carbon number of the polymer ZP. Dependency of dlnk/dZS vs. ZP is not linear and indicates an increase in the retention of sorbates by the stationary phase with a decrease in the length of the alkyl substituent in the polymer chain. The correlation of the retention of lnk analytes with the carbon number of the polymer ZP is not linear and indicates an increase in the sorbate/sorbent interaction with a decrease in the length of the alkyl substituent. Inflection points were found at both correlations with ZP in the region of ZP = 8, which indicates a possible change in the sorption mechanism or a change in the phase state of the polymer. In polymer chemistry, the phase state of a polymer is characterized by the glass transition temperature Tg, the dependence of which vs. ZP turned out to be nonlinear with an inflection point at ZP ∼11. Thus, a decrease in the length of the alkyl substituent leads to the transition of the polymer from a rubbery state to a glassy one at ZP ∼ 11, which in turn, with a further decrease in the carbon number of the polymer to ZP ∼ 8, causes a change in the sorption mechanism from bulk sorption to surface sorption. The change in the sorption mechanism is accompanied by an increase in the interaction of the sorbate with the stationary phase, which manifests itself both in an increase in the retention time of analytes and in an increase in the enthalpy and entropy of sorption. The reason for this increase can be seen in the formation of a microporous structure in 5-alkyl-substituted polynorbornenes in a glassy state.


Subject(s)
Norbornanes , Norbornanes/chemistry , Polymers/chemistry , Polymerization , Alkanes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL