Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 422
1.
Sci Total Environ ; 940: 173663, 2024 Aug 25.
Article En | MEDLINE | ID: mdl-38823714

In a mixed forest, certain plants can release allelochemicals that exert allelopathic effects on neighboring plants, thereby facilitating interspecific coexistence of two species. Previous studies have demonstrated that allelochemicals released from Ficus carica Linn. roots in mixed forest of F. carica and Taxus cuspidata Sieb. et Zucc. has phase characteristics over time, which can improve the soil physicochemical properties, enzyme activity and microbial diversity, thus promoting the growth of T. cuspidata. Based on the irrigation of exogenous allelochemicals, changes in soil fertility (soil physical and chemical properties, soil enzyme activity and soil microelement content) were observed in response to variations in allelochemicals during five phases of irrigation: initial disturbance phase (0-2 d), physiological compensation phase (2-8 d), screening phase (8-16 d), restore phase (16-32 d) and maturity phase (32-64 d), which was consistent with the response of soil microorganisms. The allelopathic response of growth physiological indexes of T. cuspidata, however, exhibited a slight lag behind the soil fertility, with distinct phase characteristics becoming evident on the 4th day following irrigation of allelochemicals. The findings demonstrated that the allelochemicals released by the root of F. carica induced a synergistic effect on soil fertility and microorganisms, thereby facilitating the growth of T. cuspidata. This study provides a comprehensive elucidation of the phased dynamic response-based allelopathic mechanism employed by F. carica to enhance the growth of T. cuspidata, thus establishing a theoretical basis for optimizing forest cultivation through allelopathic pathways.


Ficus , Pheromones , Plant Roots , Taxus , Taxus/physiology , Allelopathy , Soil/chemistry , Soil Microbiology , Plant Exudates
2.
BMC Plant Biol ; 24(1): 523, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38853237

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.


Allelopathy , Antioxidants , Plant Extracts , Plant Growth Regulators , Rumex , Trifolium , Trifolium/growth & development , Trifolium/metabolism , Trifolium/drug effects , Plant Extracts/pharmacology , Antioxidants/metabolism , Rumex/growth & development , Rumex/metabolism , Rumex/drug effects , Rumex/chemistry , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Methanol , Plant Weeds/drug effects , Plant Weeds/growth & development , Pheromones/pharmacology , Pheromones/metabolism , Plant Shoots/growth & development , Plant Shoots/drug effects , Plant Shoots/metabolism , Plant Shoots/chemistry
3.
Sci Rep ; 14(1): 13192, 2024 06 08.
Article En | MEDLINE | ID: mdl-38851826

Water eutrophication has emerged as a pressing concern for massive algal blooms, and these harmful blooms can potentially generate harmful toxins, which can detrimentally impact the aquatic environment and human health. Consequently, it is imperative to identify a safe and efficient approach to combat algal blooms to safeguard the ecological safety of water. This study aimed to investigate the procedure for extracting total flavonoids from Z. bungeanum residue and assess its antioxidant properties. The most favorable parameters for extracting total flavonoids from Z. bungeanum residue were a liquid-solid ratio (LSR) of 20 mL/g, a solvent concentration of 60%, an extraction period of 55 min, and an ultrasonic temperature of 80 °C. Meanwhile, the photosynthetic inhibitory mechanism of Z. bungeanum residue extracts against M. aeruginosa was assessed with a particular focus on the concentration-dependent toxicity effect. Z. bungeanum residue extracts damaged the oxygen-evolving complex structure, influenced energy capture and distribution, and inhibited the electron transport of PSII in M. aeruginosa. Furthermore, the enhanced capacity for ROS detoxification enables treated cells to sustain their photosynthetic activity. The findings of this study hold considerable relevance for the ecological management community and offer potential avenues for the practical utilization of resources in controlling algal blooms.


Flavonoids , Microcystis , Photosynthesis , Zanthoxylum , Flavonoids/chemistry , Flavonoids/isolation & purification , Flavonoids/pharmacology , Zanthoxylum/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Allelopathy , Harmful Algal Bloom , Reactive Oxygen Species/metabolism , Photosystem II Protein Complex/metabolism
4.
Molecules ; 29(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38792226

The study investigated compounds present in the invasive grass Hordeum murinum L. subsp. murinum and tested the allelopathic potential of this plant against common meadow species Festuca rubra L. and Trifolium repens L. Gas chromatography-mass spectrometry (GC-MS) performed separately on the ears and stalks with leaves of wall barley revealed 32 compounds, including secondary metabolites, that may play an important role in allelopathy. Two compounds, N-butylbenzenesulfonamide (NBBS) and diphenylsulfone (DDS), were described for the first time for wall barley and the Poaceae family. The presence of 6,10,14-trimethylpentadecan-2-one (TMP) has also been documented. Aqueous extracts of H. murinum organs (ears and stalks with leaves) at concentrations of 2.5%, 5%, and 7.5% were used to evaluate its allelopathic potential. Compared to the control, all extracts inhibited germination and early growth stages of meadow species. The inhibitory effect was strongest at the highest concentration for both the underground and aboveground parts of the seedlings of the meadow species tested. Comparing the allelopathic effect, Trifolium repens proved to be more sensitive. In light of the results of the study, the removal of wall barley biomass appears to be important for the restoration of habitats where this species occurs due to its allelopathic potential.


Allelopathy , Hordeum , Plant Extracts , Hordeum/chemistry , Hordeum/growth & development , Hordeum/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Introduced Species , Trifolium/chemistry , Trifolium/growth & development , Trifolium/drug effects , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Festuca/drug effects , Festuca/growth & development , Festuca/chemistry
5.
Mar Drugs ; 22(5)2024 May 17.
Article En | MEDLINE | ID: mdl-38786618

Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host-virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host-virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects.


Allelopathy , Diatoms , Oxylipins , Oxylipins/metabolism , Animals , Aquatic Organisms , Zooplankton
6.
Sci Rep ; 14(1): 10446, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714777

This study evaluates induced allelopathy in a rye-pigweed model driven by rye's (Secale cereale L.) allelopathic potential as a cover crop and pigweed's (Amaranthus retroflexus L.) notoriety as a weed. The response of rye towards pigweed's presence in terms of benzoxazinoids (BXs) provides valuable insight into induced allelopathy for crop improvement. In the 2 week plant stage, pigweed experiences a significant reduction in growth in rye's presence, implying allelopathic effects. Rye exhibits increased seedling length and BXs upsurge in response to pigweed presence. These trends persist in the 4 week plant stage, emphasizing robust allelopathic effects and the importance of different co-culture arrangements. Germination experiments show rye's ability to germinate in the presence of pigweed, while pigweed exhibits reduced germination with rye. High-performance liquid chromatography with diode-array detection (HPLC-DAD) analysis identifies allelopathic compounds (BXs), 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in rye. Rye significantly increases BX production in response to pigweed, age-dependently. Furthermore, pigweed plants are screened for possible BX uptake from the rhizosphere. Results suggest that allelopathy in rye-pigweed co-cultures is influenced by seed timing, and age-dependent dynamics of plants' allelopathic compounds, providing a foundation for further investigations into chemical and ecological processes in crop-weed interactions.


Allelopathy , Benzoxazines , Secale , Amaranthus/growth & development , Germination , Coculture Techniques/methods , Plant Weeds , Crops, Agricultural/growth & development , Seedlings/growth & development
7.
Sci Rep ; 14(1): 10159, 2024 05 03.
Article En | MEDLINE | ID: mdl-38698043

Invasive alien species are becoming more and more prevalent worldwide, Erigeron bonariensis and Bidens pilosa are two invasive species of Asteraceae in Egypt. To mitigate their detrimental effects and understand their differences in invasiveness, we compared the allelopathic potentials of E. bonariensis and B. pilosa using leachates, decaying residues, and volatilization processes. Notably, the allelopathic variances in leachates were significant, influenced by plant types, concentrations, and response patterns of target plant traits, as indicated by EC50. The relative phytotoxicity of the invasive species decayed residues peaked between 20 and 25 days in the soil, with a positive correlation with concentrations and soil properties. The highest quantities of phenolic acids were chlorogenic acid and caffeic acid reaching (5.41 and 4.39 µg g-1) E. bonariensis and (4.53 and 4.46 µg g-1) B. pilosa, in leachates extracts respectively, while in the soil extract of decayed residues were coumaric acid and ferulic acid measuring (1.66 and 1.67 µg g-1) E. bonariensis and (1.47 and 1.57 µg g-1) B. pilosa, respectively. Using GC/MS analysis, the main volatile components in E. bonariensis were 1, 8 cineole (5.62%), and α-terpinene (5.43%) and iso-Caryophyllene (5.2%) which showed the greatest inhibitory effects. While B. pilosa main constituents were trans-sabinene (5.39%) and Camphene (5.11%), respectively. Finally, the high invasion level displayed from E. bonariensis (0.221) compared with B. pilosa (0.094) which correlated with the stronger allelopathic activities against plant species, and soil properties. Therefore, the allelopathic potentialities of these species are critically relevant to their invasion success.


Allelopathy , Bidens , Erigeron , Introduced Species , Soil , Soil/chemistry , Erigeron/chemistry , Egypt , Hydroxybenzoates
8.
Oecologia ; 204(4): 899-913, 2024 Apr.
Article En | MEDLINE | ID: mdl-38582800

Allelopathy has a profound impact on the germination and growth of plants, influencing the establishment of plant populations and shaping community ecological patterns. However, the allelopathic potential of many grassland species remains poorly understood. In this study, we prepared aqueous extracts from 17 herbaceous plants to investigate their allelopathic effects on the seed germination and seedling growth of Leymus chinensis, a dominant grassland species. Our results revealed that the response of L. chinensis to allelopathic compounds was dependent on the specific plant species, extract concentration, and target plant organ. Notably, Fabaceae plants exhibited a stronger allelopathic potential than Poaceae, Asteraceae, and other plant families. Moreover, we observed that root growth of L. chinensis was more sensitive to allelopathy than shoot growth, and seed germination was more affected than seedling growth. Generally, the germination of L. chinensis was strongly inhibited as the donor plant extract concentration increased. The leachate of Fabaceae plants inhibited the seedling growth of L. chinensis at concentrations ranging from 0.025 to 0.1 g mL-1. On the other hand, the leachate from other families' plants exhibited either inhibitory or hormetic effects on the early growth of L. chinensis, promoting growth at 0.025 g mL-1 and hindering it at concentrations between 0.05 and 0.1 g mL-1. These findings highlight the significant allelopathic potential of grassland plants, which plays a critical role in establishing plant populations and associated ecological processes. In addition, they shed light on the coexistence of other plants with dominant plants in the community.


Allelopathy , Germination , Grassland , Seedlings , Seedlings/growth & development , Seeds/growth & development , Poaceae/growth & development , Plant Roots/growth & development
9.
Sci Rep ; 14(1): 7679, 2024 04 01.
Article En | MEDLINE | ID: mdl-38561368

Allelopathy is a process whereby a plant directly or indirectly promotes or inhibits growth of surrounding plants. Perennial sugarcane root extracts from various years significantly inhibited Bidens pilosa, Digitaria sanguinalis, sugarcane stem seedlings, and sugarcane tissue-cultured seedlings (P < 0.05), with maximum respective allelopathies of - 0.60, - 0.62, - 0.20, and - 0.29. Allelopathy increased with increasing concentrations for the same-year root extract, and inhibitory effects of the neutral, acidic, and alkaline components of perennial sugarcane root extract from different years were significantly stronger than those of the control for sugarcane stem seedlings (P < 0.05). The results suggest that allelopathic effects of perennial sugarcane root extract vary yearly, acids, esters and phenols could be a main reason for the allelopathic autotoxicity of sugarcane ratoons and depend on the type and content of allelochemicals present, and that allelopathy is influenced by other environmental factors within the rhizosphere such as the presence of old perennial sugarcane roots. This may be a crucial factor contributing to the decline of perennial sugarcane root health.


Saccharum , Seedlings , Plant Roots/chemistry , Plant Weeds/physiology , Allelopathy , Plant Extracts/chemistry
10.
Plant Signal Behav ; 19(1): 2335025, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38678583

Allelopathy is the main chemical means in the invasion process of exotic plants and one of the key factors in grassland degradation. In this experiment, we investigated the effects of ethyl acetate phase extract (EAE), n-butanol phase extract (BE) and aqueous phase extract (AE) from the aboveground (stems and leaves) and roots of Ligularia sagitta on seed germination and seedling growth of four Gramineae forages (Poa pratensis L. Festuca ovina L. Elymus nutans Griseb. Agropyron cristatum (L.) Gaertn.) in their sympatric domains and one Legosuminae forage (Medicago sativa L.). The chemical components in each phase extract of L. sagitta were determined with UHPLC-MS/MS non-targeted metabolomics, and the differential compounds were screened using Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA). Within a set concentration range, EAE significantly inhibited seed germination and seedling growth of four Gramineae forages. BE and AE acted mainly in the seedling growth stage and did not significantly inhibit forage seed germination. P. pratensis was most sensitive to L. sagitta extracts; at 2.0 mg/mL of EAE from roots, germination energy and germination rate of P. pratensis seeds were 0. L. sagitta extracts inhibited the growth of M. sativa seedlings and did not inhibit its seed germination. A total of 904 compounds were identified with UHPLC-MS/MS, among which 31, 64, 81 and 66 metabolites displayed different accumulation patterns in the four comparison groups (R.EAE vs. R.BE, R.EAE vs. R.AE, SL.EAE vs. SL.BE, SL.EAE vs. SL.AE), respectively. In particular, 9 compounds were found to be common up-regulated differential metabolites in the four comparison groups and were enriched in EAE. Additionally, N,N-dimethylaniline, Caffeic acid, 4-Hydroxybenzoic acid, 4-Hydroxybenzaldehyde and cis-9-Octadecenoic acid as potential allelochemicals in L. sagitta. The results of this study support efforts at finding alternative control plants for the restoration of poisonous grass-type degraded grasslands.


Allelopathy , Asteraceae , Germination , Introduced Species , Pheromones , Asteraceae/metabolism , Asteraceae/drug effects , Pheromones/pharmacology , Pheromones/metabolism , Germination/drug effects , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Plant Extracts/pharmacology
11.
Molecules ; 29(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38675697

The allelopathic autotoxicity of ginsenosides is an important cause of continuous cropping obstacles in ginseng planting. There is no report on the potential molecular mechanism of the correlation between polarity of ginsenoside components and their allelopathic autotoxicity. This study applied a combination of metabolomics and transcriptomics analysis techniques, combined with apparent morphology, physiological indexes, and cell vitality detection of the ginseng hairy roots, through which the molecular mechanism of correlation between polarity and allelopathic autotoxicity of ginsenosides were comprehensively studied. The hairy roots of ginseng presented more severe cell apoptosis under the stress of low-polarity ginsenoside components (ZG70). ZG70 exerted allelopathic autotoxicity by regulating the key enzyme genes of cis-zeatin (cZ) synthesis pathway, indole-3-acetic acid (IAA) synthesis pathway, and jasmonates (JAs) signaling transduction pathway. The common pathway for high-polarity ginsenoside components (ZG50) and ZG70 to induce the development of allelopathic autotoxicity was through the expression of key enzymes in the gibberellin (GA) signal transduction pathway, thereby inhibiting the growth of ginseng hairy roots. cZ, indole-3-acetamid (IAM), gibberellin A1 (GA1), and jasmonoyl-L-isoleucine (JA-ILE) were the key response factors in this process. It could be concluded that the polarity of ginsenoside components were negatively correlated with their allelopathic autotoxicity.


Gene Expression Regulation, Plant , Ginsenosides , Panax , Plant Growth Regulators , Plant Roots , Transcriptome , Panax/metabolism , Panax/genetics , Panax/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant/drug effects , Gene Expression Profiling , Allelopathy , Signal Transduction/drug effects , Metabolomics/methods
12.
Chemosphere ; 357: 141953, 2024 Jun.
Article En | MEDLINE | ID: mdl-38614395

The effects of culture filtrate of Alexandrium tamarense on Prorocentrum donghaiense and Heterosigma akashiwo were investigated, including determination of algal density, photosynthesis, intracellular enzyme content and activity. The filtrate of A. tamarense had a stronger inhibitory effect on P. donghaiense than H. akashiwo, and the inhibitory effect decreased with higher temperature treatment of the filtrate. Instantaneous fluorescence (Ft) and maximum quantum yield of photosystem II (Fv/Fm) values of both kinds of target algae were reduced as exposed to the filtrate of A. tamarense, which proved that allelopathy could inhibit the normal operation of photosynthetic system. The increase of Malondialdehyde (MDA) content of the two kinds of target algae indicated that the cell membrane was seriously damaged by allelochemicals released by A. tamarense. The different responses of Superoxide Dismutase (SOD) and Catalase (CAT) activity in two kinds of target algae demonstrated the complexity and diversity of allelopathic mechanism. The filtrate of A. tamarense also influenced the metabolic function (ATPases) of P. donghaiense and H. akashiwo, and the influence on P. donghaiense was greater. Liquid-liquid extraction was used to extract and isolate allelochemicals from the filtrate of A. tamarense. It was found that only component I with molecular weight of 424.2573 and 434.2857 could inhibit the growth of P. donghaiense by HPLC-MS.


Allelopathy , Catalase , Dinoflagellida , Malondialdehyde , Pheromones , Photosynthesis , Dinoflagellida/physiology , Pheromones/pharmacology , Malondialdehyde/metabolism , Photosynthesis/drug effects , Catalase/metabolism , Superoxide Dismutase/metabolism , Photosystem II Protein Complex/metabolism
13.
BMC Genom Data ; 25(1): 24, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38438998

OBJECTIVES: Brasenia is a monotypic genus in the family of Cabombaceae. The only species, B. schreberi, is a macrophyte distributed worldwide. Because it requires good water quality, it is endangered in China and other countries due to the deterioration of aquatic habitats. The young leaves and stems of B. schreberi are covered by thick mucilage, which has high medical value. As an allelopathic aquatic plant, it can also be used in the management of aquatic weeds. Here, we present its assembled and annotated genome to help shed light on medial and allelopathic substrates and facilitate their conservation. DATA DESCRIPTION: Genomic DNA and RNA extracted from B. schreberi leaf tissues were used for whole genome and RNA sequencing using a Nanopore and/or MGI sequencer. The assembly was 1,055,148,839 bp in length, with 92 contigs and an N50 of 22,379,495 bp. The repetitive elements in the assembly were 555,442,205 bp. A completeness assessment of the assembly with BUSCO and compleasm indicated 88.4 and 90.9% completeness in the Eudicots database and 95.4 and 96.6% completeness in the Embryphyta database. Gene annotation revealed 67,747 genes that coded for 73,344 proteins.


Plant Weeds , Seeds , Allelopathy , China , Databases, Factual
14.
J Agric Food Chem ; 72(7): 3445-3455, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38325393

As representatives of allelopathy, weeds consistently coexist with crops, exhibiting mutual growth inhibition. At the same time, herbicides are usually employed to control weeds. However, few studies have investigated how herbicides will affect allelopathy between crops and their neighboring weeds. Our findings suggested that allelopathic-induced phenotypic variations in ryegrass were reduced in the presence of the herbicide imazethapyr (IM), consistent with the antioxidant system analysis results. Additionally, IM affected the levels of allelochemical hydroxamic acid (Hx) in both plants. Hydroponic experiments revealed that this impact was due to the accelerated transportation of Hx from wheat to ryegrass, driven by ryegrass-secreted jasmonic acid. This study holds paramount significance for comprehending the effects of herbicides on the allelopathic interactions between nontargeted crops and neighboring weeds, contributing to an enhanced understanding of herbicides on plant species interactions.


Herbicides , Lolium , Nicotinic Acids , Triticum , Herbicides/pharmacology , Allelopathy , Plant Weeds , Crops, Agricultural
15.
Ecol Appl ; 34(1): e2833, 2024 Jan.
Article En | MEDLINE | ID: mdl-36864716

Few studies tried to explore the mitigation effect and underlying mechanisms of biochar and their complex for negative allelopathy from invasive plants, which may provide a new way in the invasive plant management. Herein, an invasive plant (Solidago canadensis)-derived biochar (IBC) and its composite with hydroxyapatite (HAP/IBC) were synthesized by high temperature pyrolysis, and characterized by scanning electron microscopy, energy dispersion spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Then, both the batch adsorption and pot experiments were conducted to compare the removal effects of kaempferol-3-O-ß-D-glucoside (C21 H20 O11 , kaempf), an allelochemical from S. canadensis, on IBC and HAP/IBC, respectively. HAP/IBC showed a stronger affinity for kaempf than IBC due to its higher specific surface area, more functional groups (P-O, P-O-P, PO4 3- ), stronger crystallization [Ca3 (PO4 )2 ]. The maximum kaempf adsorption capacity on HAP/IBC was six times higher than on IBC (10.482 mg/g > 1.709 mg/g) via π-π interactions, functional groups, and metal complexation. The kaempf adsorption process could be fitted best by both pseudo-second-order kinetic and Langmuir isotherm models. Furthermore, HAP/IBC addition into soils could enhance and even recover the germination rate and/or seedling growth of tomato inhibited by negative allelopathy from the invasive S. canadensis. These results indicate that the composite of HAP/IBC could more effectively mitigate the allelopathy from S. canadensis than IBC, which may be a potential efficient approach to control the invasive plant and improve invaded soils.


Solidago , Water Pollutants, Chemical , Allelopathy , Durapatite/chemistry , Charcoal/chemistry , Soil , Water Pollutants, Chemical/analysis
16.
Plant Biol (Stuttg) ; 26(1): 11-27, 2024 Jan.
Article En | MEDLINE | ID: mdl-37751515

Chemical interactions in plants often involve plant allelopathy and allelobiosis. Allelopathy is an ecological phenomenon leading to interference among organisms, while allelobiosis is the transmission of information among organisms. Crop failures and low yields caused by inappropriate management can be related to both allelopathy and allelobiosis. Therefore, research on these two phenomena and the role of chemical substances in both processes will help us to understand and upgrade agroecosystems. In this review, substances involved in allelopathy and allelobiosis in plants are summarized. The influence of environmental factors on the generation and spread of these substances is discussed, and relationships between allelopathy and allelobiosis in interspecific, intraspecific, plant-micro-organism, plant-insect, and mechanisms, are summarized. Furthermore, recent results on allelopathy and allelobiosis in agroecosystem are summarized and will provide a reference for the future application of allelopathy and allelobiosis in agroecosystem.


Allelopathy , Plants , Animals , Insecta
17.
Environ Sci Pollut Res Int ; 31(3): 4280-4289, 2024 Jan.
Article En | MEDLINE | ID: mdl-38100025

Eucalyptus plantations are usually characterized by low biodiversity due to allelopathy effects. Wood vinegar is considered a complex growth regulator that can promote plant growth at low concentrations. However, there is information scarcity about the co-application of eucalypt leaf water extract and wood vinegar on plants. This study aimed at clarifying whether wood vinegar can protect seed germination against suppression by eucalypt-induced allelopathy. We examined germination behavior and seedling elongation characteristics in rapeseed (Brassica rapa L.) treated with different solutions of wood vinegar and eucalypt leaf water extract. The results showed that eucalypt leaf water extracts, wood vinegar solutions, and their mixture allelopathically suppressed seed germination rate. After rapeseed sprouting, eucalypt leaf water extracts promoted root elongation, stem elongation, and fresh weight elongation. Malondialdehyde content was also lower under the influence of eucalypt leaf water extract. Mixture of high concentration of eucalypt leaf water extract and lower concentration of wood vinegar significantly promoted root elongation. Therefore, both eucalypt leaf water extract and wood vinegar are complex plant growth regulators, which can be used to inhibit or stimulate plants at different ontogenic stages. During the seed germination period, both eucalypt leaf extracts and wood vinegar could be used as weed inhibitors. Conversely, during the period of sprouting (seedling establishment), low concentrations of eucalypt leaf extracts and wood vinegar can promote growth.


Acetic Acid , Brassica napus , Brassica rapa , Eucalyptus , Methanol , Germination , Allelopathy , Seedlings , Plant Extracts/pharmacology , Water
18.
Water Sci Technol ; 88(11): 2955-2973, 2023 Dec.
Article En | MEDLINE | ID: mdl-38096081

Macrophytes play a significant role in shaping plankton communities by shading, controlling water turbulence, and nutrient availability, while also producing allelochemicals causing varying effects on different organisms. Many researchers have shown that when live macrophytes are present, they inhibit cyanobacteria. However, their widespread use is often limited due to numerous concerns, including invasive characteristics. This study focused on the applicability of Egeria densa extracts to suppress Microcystis aeruginosa. We employed pure water and dimethyl sulfoxide, to obtain compounds from E. densa. The results revealed that E. densa aqueous extracts stimulated M. aeruginosa growth, whereas organic extracts exhibited suppression. Specifically, at low concentrations of organics extracts (0.5 and 1 g/L), after day 4, the growth inhibition was confirmed by significantly higher (p < 0.05) stress levels shown in cells treated with low concentrations. The highest inhibition rate of 32% was observed at 0.5 g/L. However, high concentrations of organic extracts (3 and 6 g/L), showed increased growth compared with control. These results suggest that high concentrations of organic extracts from E. densa potentially suppress allelochemical-induced M. aeruginosa inhibition due to high nutrient availability. In comparison with an aqueous solvent, the use of organic solvent seems to be more effective in efficiently extracting allelochemicals from E. densa.


Microcystis , Allelopathy , Water/pharmacology , Pheromones/pharmacology , Solvents
19.
J Agric Food Chem ; 71(49): 19434-19444, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38014643

Tree-crop intercropping is of great significance in food security, land protection, and sustainable agriculture. However, the mechanisms of allelopathy between plant species during intercropping are still limited. This study focuses on the allelopathic effects in the intercropping between Camellia oleifera and Arachis hypogaea L. in southern China. We use different parts of the C. oleifera extract to evaluate their impact on peanut seed germination. The results showed that it has inhibitory effects on peanut germination and growth, with the fruit shell having the strongest inhibitory effect. Three main allelopathic substances affecting A. hypogaea germination and growth were identified using gas chromatography-mass spectrometry (GC-MS) analysis, namely, 2,4-di-tert-butylphenol, hexanal, and benzaldehyde. Transcriptomics and metabolomics analyses revealed their effects on glutathione metabolism pathways and specific gene expression. In summary, this study reveals the allelopathic interaction mechanism between C. oleifera and A. hypogaea, which helps to better understand the role of allelopathy in intercropping practices between trees and crops.


Allelopathy , Arachis , Arachis/chemistry , Agriculture/methods , Germination , Crops, Agricultural
20.
Harmful Algae ; 129: 102490, 2023 11.
Article En | MEDLINE | ID: mdl-37951604

Allelopathy is a biological mechanism that can promote harmful algal blooms (HAB) via the inhibition of sympatric phytoplankton. While nutrient loading can also promote HABs, the ability of allelopathy to stimulate HABs via the regeneration of nutrients has yet to be explored. To examine the impacts of allelopathically liberated N on HAB species, a series of experiments were performed using multiple allelopathic HAB species including the dinoflagellates Alexandrium catenella and Margalefidinium polykrikoides, and the pelagophyte, Aureoumbra lagunensis. These HAB species were paired with the cosmopolitan dinoflagellate, Akashiwo sanguinea, that was labeled with 15NO3- or 15NH4+, allowing the release and transfer of N to be traced as a time course during allelopathic interactions. During all experiments, the allelopathic inhibition of Akashiwo was accompanied by increases in cell densities, growth rates, and the δ15N content of the HAB species, evidencing the transfer of N liberated from Akashiwo. The cellular transfer of 15N and release of dissolved N was higher when Akashiwo was grown with 15NO3- compared to 15NH4+ suggesting a differential subcellular-compartmentalization of N sources. Regardless of the type of N, HAB species obtained 60 - 100% of their cellular N from lysed Akashiwo cells and there was an enrichment of the δ15N content of the dissolved NH4+ pool post-lysis of Akashiwo. Collectively, the results demonstrate that beyond facilitating species succession, allelopathy can supply HABs with N and, therefore, is likely important for promoting and sustaining HABs. Given that allelopathy is known to be a dose-dependent process, allelopathy may induce a positive feedback loop, whereby competitors are lysed, N is liberated, HABs are intensified and, in turn, become more strongly allelopathic.


Dinoflagellida , Harmful Algal Bloom , Harmful Algal Bloom/physiology , Allelopathy , Nitrogen , Dinoflagellida/physiology , Phytoplankton
...