ABSTRACT
Mayaro virus (MAYV) is the causative agent of Mayaro fever, which is characterized mainly by acute fever and long-term severe arthralgia, common manifestations of other arbovirus infections, making the correct diagnosis a challenge. Besides, MAYV infections have been reported in South America, especially in Brazil. However, the lack of vaccines or specific antiviral drugs to control these infections makes the search for new antivirals an urgent need. Herein, we evaluated the antiviral potential of synthetic ß-enaminoesters derivatives against MAYV replication and their pharmacokinetic and toxicological (ADMET) properties using in vitro and in silico strategies. For this purpose, Vero cells were infected with MAYV at an MOI of 0.1, treated with compounds (50 µM) for 24 h, and virus titers were quantified by plaque reduction assays. Compounds 2b (83.33%) and 2d (77.53%) exhibited the highest activity with inhibition rates of 83.33% and 77.53%, respectively. The most active compounds 2b (EC50 = 18.92 µM; SI > 52.85), and 2d (EC50 = 14.52 µM; SI > 68.87) exhibited higher potency and selectivity than the control drug suramin (EC50 = 38.97 µM; SI > 25.66). Then, we investigated the mechanism of action of the most active compounds. None of the compounds showed virucidal activity, neither inhibited virus adsorption, but compound 2b inhibited virus entry (62.64%). Also, compounds 2b and 2d inhibited some processes involved with the release of new virus particles. Finally, in silico results indicated good ADMET parameters of the most active compounds and reinforced their promising profile as drug candidates against MAYV.
Subject(s)
Alphavirus , Antiviral Agents , Esters , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorocebus aethiops , Animals , Vero Cells , Esters/pharmacology , Esters/chemistry , Alphavirus/drug effects , Virus Replication/drug effects , Computer Simulation , Brazil , Alphavirus Infections/drug therapy , Alphavirus Infections/virologyABSTRACT
Cryo-electron microscopy and tomography have allowed us to unveil the remarkable structure of icosahedral viruses. However, in the past few years, the idea that these viruses must have perfectly symmetric virions, but in some cases, it might not be true. This has opened the door to challenging paradigms in structural virology and raised new questions about the biological implications of "unusual" or "defective" symmetries and structures. Also, the continual improvement of these technologies, coupled with more rigorous sample purification protocols, improvements in data processing, and the use of artificial intelligence, has allowed solving the structure of sub-viral particles in highly heterogeneous samples and finding novel symmetries or structural defects. In this review, I initially analyzed the case of the symmetry and composition of hepatitis B virus-produced spherical sub-viral particles. Then, I focused on Alphaviruses as an example of "imperfect" icosahedrons and analyzed how structural biology has changed our understanding of the Alphavirus assembly and some biological implications arising from these discoveries.
Subject(s)
Alphavirus , Cryoelectron Microscopy , Hepatitis B virus , Virion , Virus Assembly , Cryoelectron Microscopy/methods , Hepatitis B virus/ultrastructure , Virion/ultrastructure , Alphavirus/ultrastructure , Alphavirus/physiology , Capsid/ultrastructure , Capsid/chemistry , Viruses/ultrastructure , Viruses/chemistry , HumansABSTRACT
Advances in diagnostic techniques coupled with ongoing environmental changes have resulted in intensified surveillance and monitoring of arbovirus circulation in the Amazon. This increased effort has resulted in increased detection of insect-specific viruses among hematophagous arthropods collected in the field. This study aimed to document the first isolation of Agua Salud alphavirus in mosquitoes collected within the Brazilian Amazon. Arthropods belonging to the family Culicidae were collected within a forest fragment located in the Environmental Protection Area of the metropolitan region of Belem. Subsequently, these specimens were meticulously identified to the species level. Afterward, the collected batches were macerated, and the resulting supernatant was then inoculated into C6/36 and Vero cell cultures to facilitate viral isolation. The presence of arboviruses within the inoculated cell cultures was determined through indirect immunofluorescence analysis. Furthermore, positive supernatant samples underwent nucleotide sequencing to precisely identify the viral strains present. Notably, a batch containing Culex (Melanoconion) mosquitoes was identified to be positive for the genus Alphavirus via indirect immunofluorescence. This study is the first report on insect-specific alphavirus isolation in Brazil and the first-ever description of Agua Salud alphavirus isolation within Amazon Forest remnants.
Subject(s)
Alphavirus , Culex , Animals , Alphavirus/isolation & purification , Alphavirus/genetics , Alphavirus/classification , Brazil , Vero Cells , Chlorocebus aethiops , Culex/virology , Mosquito Vectors/virology , Phylogeny , Arboviruses/isolation & purification , Arboviruses/genetics , Arboviruses/classificationABSTRACT
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Subject(s)
Alphavirus Infections , Alphavirus , Blood-Brain Barrier , Host-Pathogen Interactions , Immune Evasion , Humans , Alphavirus/pathogenicity , Alphavirus/immunology , Animals , Alphavirus Infections/immunology , Alphavirus Infections/virology , Host-Pathogen Interactions/immunology , Blood-Brain Barrier/immunology , Nervous System Diseases/immunology , Nervous System Diseases/virologyABSTRACT
The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized the phylogenetic relationship among virus strains. A phylogenetic analysis showed that sequences were grouped according to the genotypes L, D, and N. Genotype D sequences were closely related to sequences collected in adjacent years and from their respective countries, suggesting that isolates may have originated from circulating lineages. The coalescent analysis demonstrated similar results, indicating the continuous circulation of the virus between countries as well. An unidentified sequence from the USA was grouped with genotype D, suggesting the insertion of this genotype in the country. Furthermore, the recombination analysis detected homologous and three heterologous hybrids which presented an insertion into the nsP3 protein. Amino acid substitutions among sequences indicated selective pressure sites, suggesting viral adaptability. This also impacted the binding affinity between the E1-E2 protein complex and the Mxra8 receptor, associated with MAYV entry into human cells. These results provide information for a better understanding of genotypes circulating in the Americas.
Subject(s)
Evolution, Molecular , Genetic Variation , Genome, Viral , Genotype , Phylogeny , Americas/epidemiology , Humans , Alphavirus/genetics , Alphavirus/classification , Alphavirus/isolation & purification , Animals , Recombination, Genetic , Alphavirus Infections/virology , Alphavirus Infections/epidemiologyABSTRACT
INTRODUCTION: Mayaro fever is an emerging viral disease that manifests as an acute febrile illness. The disease is self-limiting, however joint pain can persist for months leading to chronic arthralgia. There is no specific treatment available, which ultimately leads to socioeconomic losses in populations at risk as well as strains to the public health systems. AREAS COVERED: We reviewed the candidate treatments proposed for Mayaro virus (MAYV) infection and disease, including antiviral compounds targeting viral or host mechanisms, and pathways involved in disease development and pathogenicity. We assessed compound screening technologies and experimental infection models used in these studies and indicated the advantages and limitations of available technologies and intended therapeutic strategies. EXPERT OPINION: Although several compounds have been suggested as candidate treatments against MAYV infection, notably those with antiviral activity, most compounds were assessed only in vitro. Compounds rarely progress toin vivo or preclinical studies, and such difficulty may be associated with limited experimental models. MAYV biology is largely inferred from related alphaviruses and reflected by few studies focusing on target proteins or mechanisms of action for MAYV. Therapeutic strategies targeting pathogenic inflammatory responses have shown potential against MAYV-induced disease in vivo, which might reduce long-term sequelae.
Subject(s)
Alphavirus Infections , Antiviral Agents , Drug Discovery , Animals , Antiviral Agents/pharmacology , Humans , Alphavirus Infections/drug therapy , Alphavirus Infections/virology , Alphavirus , Arthralgia/drug therapy , Drug Development , Molecular Targeted Therapy , Disease Models, AnimalABSTRACT
We detected Mayaro virus (MAYV) in 3.4% (28/822) of febrile patients tested during 2018-2021 from Roraima State, Brazil. We also isolated MAYV strains and confirmed that these cases were caused by genotype D. Improved surveillance is needed to better determine the burden of MAYV in the Amazon Region.
Subject(s)
Molecular Epidemiology , Humans , Brazil/epidemiology , Fever/virology , Fever/epidemiology , Male , Phylogeny , Adult , Alphavirus/genetics , Alphavirus/classification , Female , Genotype , Child , Middle Aged , Adolescent , Child, Preschool , History, 21st Century , Young Adult , Aged , Arenaviridae Infections/epidemiology , Arenaviridae Infections/virology , Alphavirus Infections/epidemiology , Alphavirus Infections/virology , InfantABSTRACT
BACKGROUND: The riverine communities of the Amazon comprise different social groups that inhabit the rural areas on the banks of rivers and lakes. Residents usually travel by river to rural and urban areas and are then exposed to urbanized diseases such as those caused by arbovirus infection. In Brazil, emerging diseases such as dengue, Zika, chikungunya, and those caused by infection with Oropouche and Mayaro viruses necessitate epidemiological surveillance. This study was aimed at determining the frequency of positivity for immunoglobulin (Ig)G and IgM antibodies against Zika, chikungunya, and dengue viruses and performing molecular analyses to detect viral RNA for the Zika, chikungunya, dengue virus, Oropouche, and Mayaro viruses, in the same serum samples obtained from riverside populations. METHODS: This cross-sectional study was conducted in a riverside population in the Humaitá municipality of the Brazilian Amazon. More than 80% of the local population participated in this study. Entomological samples were collected to identify local mosquito vectors. RESULTS: Analysis of 205 human serological samples revealed IgG antibodies against the dengue virus in 85 individuals. No molecular positivity was observed in human samples. Entomological analyses revealed 3,187 Diptera species, with Mansonia being the most frequent genus. Aedes aegypti and Aedes albopictus were not detected in the two collections. CONCLUSIONS: IgG antibodies against the dengue virus were highly prevalent, suggesting previous exposure. The absence of the arbovirus vectors Aedes aegypti and Aedes albopictus in the samples supports the hypothesis that the infections recorded likely occurred outside the riverside communities investigated.
Subject(s)
Aedes , Alphavirus , Arbovirus Infections , Chikungunya Fever , Dengue , Zika Virus Infection , Zika Virus , Animals , Humans , Chikungunya Fever/epidemiology , Brazil/epidemiology , Cross-Sectional Studies , Arbovirus Infections/epidemiology , Mosquito Vectors , Immunoglobulin GABSTRACT
Mayaro virus (MAYV; Alphavirus: Togaviridae) is an emerging pathogen in Latin America, causing fever and polyarthritis. Sporadic outbreaks of MAYV have occurred in the region, with reported human cases being imported to Europe and North America. Although primarily a risk for those residing in the Amazon basin's tropical forests, recent reports highlight that urbanization would increase the risk of MAYV transmission in Latin America. Urban emergence depends on human susceptibility and the ability of mosquitos like Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae) to transmit MAYV. Despite the absence of active MAYV transmission in Argentine, the risk of introduction is substantial due to human movement and the presence of Ae. aegypti in the region. This study aimed to evaluate the susceptibility of different Argentine Ae. aegypti populations to MAYV genotype L (MAYV-L) using dose-response assays and determine barriers to virus infection, dissemination and transmission. Immature mosquito stages were collected in Buenos Aires, Córdoba and Rosario cities. Female Ae. aegypti (F2) were orally infected by feeding on five concentrations of MAYV-L, ranging from 1.0 to 6.0 log10 PFU/mL. Abdomens, legs and saliva were analysed using viral plaque assays. Results revealed that MAYV-L between infection and dissemination were associated with viral doses rather than the population origin. Infection rates varied between 3% and 65%, with a 50% infectious dose >5.5 log10 PFU/mL. Dissemination occurred at 39%, with a 50% dissemination dose of ~6.0 log10 PFU/mL. Dissemination among infected mosquitoes ranged from 60% to 86%, and transmission from disseminated mosquitoes ranged from 11% to 20%. Argentine Ae. aegypti populations exhibited a need for higher viral doses of MAYV-L than those typically found in humans to become infected. In addition, only a small proportion of infected mosquitoes were capable of transmitting the virus. Understanding MAYV transmission in urban areas is crucial for public health interventions.
Subject(s)
Aedes , Alphavirus , Mosquito Vectors , Animals , Aedes/virology , Aedes/physiology , Argentina , Mosquito Vectors/virology , Mosquito Vectors/physiology , Alphavirus/physiology , Female , Alphavirus Infections/transmission , Larva/virology , Larva/growth & developmentABSTRACT
Mayaro virus (MAYV), the etiological agent of Mayaro fever (MAYF), is an emergent arbovirus pathogen belonging to Togaviridae family. MAYF is characterized by high inflammatory component that can cause long-lasting arthralgia that persists for months. Macrophages are viral targets and reservoirs, key components of innate immunity and host response. Given the importance of this pathogen, our aim was to determine the inflammatory and antiviral response of human monocyte-derived macrophages (MDMs) infected with MAYV. First, we established the replication kinetics of the virus. Thereafter, we determined the expression of pattern recognition receptors, NF-ĸB complex, interferons (IFNs), two interleukin 27 (IL27) subunits, IFN-stimulated genes (ISGs), and the production of cytokines/chemokines. We found that human MDMs are susceptible to MAYV infection in vitro, with a peak of viral particles released between 24- and 48-hours post-infection (h.p.i) at MOI 0.5, and between 12 and 24 h.p.i at MOI 1. Interestingly, we observed a significant decline in the production of infectious viral particles at 72 h.p.i that was associated with the induction of antiviral response and high cytotoxic effect of MAYV infection in MDMs. We observed modulation of several genes after MAYV infection, as well, we noted the activation of antiviral detection and response pathways (Toll-like receptors, RIG-I/MDA5, and PKR) at 48 h.p.i but not at 6 h.p.i. Furthermore, MAYV-infected macrophages express high levels of the three types of IFNs and the two IL27 subunits at 48 h.p.i. Moreover, we found higher production of IL6, IL1ß, CXCL8/IL8, CCL2, and CCL5 at 48 h.p.i as compared to 6 h.p.i. A robust antiviral response (ISG15, APOBEC3A, IFITM1, and MX2) was observed at 48 but not at 6 h.p.i. The innate and antiviral responses of MAYV-infected MDMs differ at 6 and 48 h.p.i. We conclude that MAYV infection induces robust pro-inflammatory and antiviral responses in human primary macrophages.
Subject(s)
Alphavirus Infections , Alphavirus , Cytidine Deaminase , Interleukin-27 , Proteins , Humans , Interleukin-27/metabolism , Interleukin-27/pharmacology , Macrophages , Interferons , Antiviral Agents/pharmacologyABSTRACT
Mayaro virus (MAYV) is a mosquito-borne Alphavirus that is widespread in South America. MAYV infection often presents with non-specific febrile symptoms but may progress to debilitating chronic arthritis or arthralgia. Despite the pandemic threat of MAYV, its true distribution remains unknown. The objective of this study was to clarify the geographic distribution of MAYV using an established risk mapping framework. This consisted of generating evidence consensus scores for MAYV presence, modeling the potential distribution of MAYV in select countries across Central and South America, and estimating the population residing in areas suitable for MAYV transmission. We compiled a georeferenced compendium of MAYV occurrence in humans, animals, and arthropods. Based on an established evidence consensus framework, we integrated multiple information sources to assess the total evidence supporting ongoing transmission of MAYV within each country in our study region. We then developed high resolution maps of the disease's estimated distribution using a boosted regression tree approach. Models were developed using nine climatic and environmental covariates that are related to the MAYV transmission cycle. Using the output of our boosted regression tree models, we estimated the total population living in regions suitable for MAYV transmission. The evidence consensus scores revealed high or very high evidence of MAYV transmission in several countries including Brazil (especially the states of Mato Grosso and Goiás), Venezuela, Peru, Trinidad and Tobago, and French Guiana. According to the boosted regression tree models, a substantial region of South America is suitable for MAYV transmission, including north and central Brazil, French Guiana, and Suriname. Some regions (e.g., Guyana) with only moderate evidence of known transmission were identified as highly suitable for MAYV. We estimate that approximately 58.9 million people (95% CI: 21.4-100.4) in Central and South America live in areas that may be suitable for MAYV transmission, including 46.2 million people (95% CI: 17.6-68.9) in Brazil. Our results may assist in prioritizing high-risk areas for vector control, human disease surveillance and ecological studies.
Subject(s)
Alphavirus , Mosquito Vectors , Animals , Humans , Brazil , French Guiana , GuyanaABSTRACT
Mayaro virus (MAYV) is an emerging arbovirus member of the Togaviridae family and Alphavirus genus. MAYV infection causes an acute febrile illness accompanied by persistent polyarthralgia and myalgia. Understanding the mechanisms involved in arthritis caused by alphaviruses is necessary to develop specific therapies. In this work, we investigated the role of the CCL2/CCR2 axis in the pathogenesis of MAYV-induced disease. For this, wild-type (WT) C57BL/6J and CCR2-/- mice were infected with MAYV subcutaneously and evaluated for disease development. MAYV infection induced an acute inflammatory disease in WT mice. The immune response profile was characterized by an increase in the production of inflammatory mediators, such as IL-6, TNF, and CCL2. Higher levels of CCL2 at the local and systemic levels were followed by the significant recruitment of CCR2+ macrophages and a cellular response orchestrated by these cells. CCR2-/- mice showed an increase in CXCL-1 levels, followed by a replacement of the macrophage inflammatory infiltrate by neutrophils. Additionally, the absence of the CCR2 receptor protected mice from bone loss induced by MAYV. Accordingly, the silencing of CCL2 chemokine expression in vivo and the pharmacological blockade of CCR2 promoted a partial improvement in disease. Cell culture data support the mechanism underlying the bone pathology of MAYV, in which MAYV infection promotes a pro-osteoclastogenic microenvironment mediated by CCL2, IL-6, and TNF, which induces the migration and differentiation of osteoclast precursor cells. Overall, these data contribute to the understanding of the pathophysiology of MAYV infection and the identification future of specific therapeutic targets in MAYV-induced disease.IMPORTANCEThis work demonstrates the role of the CCL2/CCR2 axis in MAYV-induced disease. The infection of wild-type (WT) C57BL/6J and CCR2-/- mice was associated with high levels of CCL2, an important chemoattractant involved in the recruitment of macrophages, the main precursor of osteoclasts. In the absence of the CCR2 receptor, there is a mitigation of macrophage migration to the target organs of infection and protection of these mice against bone loss induced by MAYV infection. Much evidence has shown that host immune response factors contribute significantly to the tissue damage associated with alphavirus infections. Thus, this work highlights molecular and cellular targets involved in the pathogenesis of arthritis triggered by MAYV and identifies novel therapeutic possibilities directed to the host inflammatory response unleashed by MAYV.
Subject(s)
Alphavirus Infections , Arthritis , Chemokine CCL2 , Receptors, CCR2 , Animals , Mice , Alphavirus , Alphavirus Infections/immunology , Arthritis/immunology , Arthritis/virology , Chemokine CCL2/immunology , Interleukin-6/immunology , Mice, Inbred C57BL , Receptors, CCR2/immunology , Mice, Knockout , Male , Bone Diseases/virologyABSTRACT
Arthritogenic alphaviruses are mosquito-borne viruses that cause a debilitating rheumatic disease characterized by fever, headache, rash, myalgia, and polyarthralgia with the potential to evolve into a severe and very prolonged illness. Although these viruses have been geographically restricted by vector hosts and reservoirs, recent epidemics have revealed the risks of their spread worldwide. In this review, we aim to discuss the protective and pathological roles of macrophages during the development of arthritis caused by alphaviruses. The progression to the chronic phase of the disease is related to the extension of viral replication and the maintenance of articular inflammation, in which the cellular infiltrate is predominantly composed of macrophages. We explore the possible implications of macrophage polarization to M1/M2 activation phenotypes, drawing a parallel between alphavirus arthritis and rheumatoid arthritis (RA), a chronic inflammatory disease that also affects articular tissues. In RA, it is well established that M1 macrophages contribute to tissue damage and inflammation, while M2 macrophages have a role in cartilage repair, so modulating the M1/M2 macrophage ratio is being considered as a strategy in the treatment of this disease. In the case of alphavirus-induced arthritis, the picture is more complex, as proinflammatory factors derived from M1 macrophages contribute to the antiviral response but cause tissue damage, while M2 macrophages may contribute to tissue repair but impair viral clearance.
Subject(s)
Alphavirus Infections , Alphavirus , Arthritis, Rheumatoid , Animals , Humans , Macrophages , InflammationABSTRACT
Eastern equine encephalitis virus (EEEV), Madariaga virus (MADV), and Venezuelan equine encephalitis virus complex (VEEV) are New World alphaviruses transmitted by mosquitoes. They cause febrile and sometimes severe neurological diseases in human and equine hosts. Detecting them during the acute phase is hindered by non-specific symptoms and limited diagnostic tools. We designed and clinically assessed real-time reverse transcription polymerase chain reaction assays (rRT-PCRs) for VEEV complex, MADV, and EEEV using whole-genome sequences. Validation involved 15 retrospective serum samples from 2015 to 2017 outbreaks, 150 mosquito pools from 2015, and 118 prospective samples from 2021 to 2022 surveillance in Panama. The rRT-PCRs detected VEEV complex RNA in 10 samples (66.7%) from outbreaks, with one having both VEEV complex and MADV RNAs. VEEV complex RNA was found in five suspected dengue cases from disease surveillance. The rRT-PCR assays identified VEEV complex RNA in three Culex (Melanoconion) vomerifer pools, leading to VEEV isolates in two. Phylogenetic analysis revealed the VEEV ID subtype in positive samples. Notably, 11.9% of dengue-like disease patients showed VEEV infections. Together, our rRT-PCR validation in human and mosquito samples suggests that this method can be incorporated into mosquito and human encephalitic alphavirus surveillance programs in endemic regions.
Subject(s)
Alphavirus , Culicidae , Dengue , Encephalitis Virus, Eastern Equine , Encephalomyelitis, Eastern Equine , Encephalomyelitis, Venezuelan Equine , Humans , Animals , Horses/genetics , Encephalitis Virus, Eastern Equine/genetics , Encephalomyelitis, Venezuelan Equine/diagnosis , Encephalomyelitis, Venezuelan Equine/epidemiology , Culicidae/genetics , Reverse Transcriptase Polymerase Chain Reaction , Phylogeny , Prospective Studies , Public Health Surveillance , Retrospective Studies , Alphavirus/genetics , RNAABSTRACT
Everglades virus (EVEV) is subtype II of the Venezuelan equine encephalitis virus (VEEV) complex (Togaviridae: Alphavirus), endemic to Florida, USA. EVEV belongs to a clade that includes both enzootic and epizootic/epidemic VEEV subtypes. Like other enzootic VEEV subtypes, muroid rodents are important vertebrate hosts for EVEV and certain mosquitoes are important vectors. The hispid cotton rat Sigmodon hispidus and cotton mouse Peromyscus gossypinus are important EVEV hosts, based on natural infection (virus isolation and high seropositivity), host competence (experimental infections), and frequency of contact with the vector. The mosquito Culex (Melanoconion) cecedei is the only confirmed vector of EVEV based upon high natural infection rates, efficient vector competence, and frequent feeding upon muroid rodents. Human disease attributed to EVEV is considered rare. However, cases of meningitis and encephalitis are recorded from multiple sites, separated by 250 km or more. Phylogenetic analyses indicate that EVEV is evolving, possibly due to changes in the mammal community. Mutations in the EVEV genome are of concern, given that epidemic strains of VEEV (subtypes IAB and IC) are derived from enzootic subtype ID, the closest genetic relative of EVEV. Should epizootic mutations arise in EVEV, the abundance of Aedes taeniorhynchus and other epizootic VEEV vectors in southern Florida provides a conducive environment for widespread transmission. Other factors that will likely influence the distribution and frequency of EVEV transmission include the establishment of Culex panocossa in Florida, Everglades restoration, mammal community decline due to the Burmese python, land use alteration by humans, and climate change.
Subject(s)
Aedes , Alphavirus , Culex , Encephalitis Virus, Venezuelan Equine , Animals , Humans , Encephalitis Virus, Venezuelan Equine/genetics , Florida/epidemiology , Mammals , Mosquito Vectors , Peromyscus , Phylogeny , Rodentia , SigmodontinaeABSTRACT
Mayaro virus (MAYV), the etiologic agent of Mayaro fever, leads patients to severe myalgia and arthralgia, which can have a major impact on public health in all the countries where the virus circulates. The emergence and dissemination of new viruses have led the scientific community to develop new in vivo models that can help in the fight against new diseases. So far, mice have been the most used animal model in studies with MAYV and have proved to be an adequate model for recapitulating several aspects of the disease observed in humans. Mice are widely used in in vivo research and, therefore, are well known in the scientific community, which has allowed for different strains to be investigated in the study of MAYV. In this review, we summarize the main studies with MAYV using mice as an experimental model and discuss how they can contribute to the advancement of the understanding of its pathogenesis and the development of new drugs and vaccines.
Subject(s)
Alphavirus Infections , Alphavirus , Humans , Animals , Mice , Disease Models, AnimalABSTRACT
In May 2021, an agricultural worker originally from Trementinal, Argentina, sought treatment for febrile illness in Tarija, Bolivia, where he resided at the time of illness onset. The patient tested negative for hantavirus RNA, but next-generation sequencing of a serum sample yielded a complete genome for Rio Negro virus.
Subject(s)
Alphavirus , Virus Diseases , Humans , Male , Alphavirus/genetics , Alphavirus/isolation & purification , Argentina/ethnology , Bolivia , Virus Diseases/blood , Virus Diseases/diagnosis , Virus Diseases/genetics , Virus Diseases/virology , Agriculture , Fever/etiology , Fever/therapy , Fever/virology , Genome, Viral , High-Throughput Nucleotide SequencingABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Mayaro virus (MAYV) is an arbovirus endemic to the Amazon region, which comprises the states of the North and Midwest region of Brazil and encompasses the largest tropical forest in the world, the Amazon Forest. The confirmation of its potential transmission by Aedes aegypti and recent cases in Brazil, mainly in large centers in the northern region, led to the classification of Mayaro fever as an emerging disease. Traditional medicine is commonly used to treat various diseases, mainly by local riverside populations. Some species of the genus Maytenus, which have similar morphologies, are popularly used to treat infections and inflammations. In this context, our research group has studied and confirmed the antiviral activity of several plant-derived compounds. However, several species of this same genus have not been studied and therefore deserve attention. AIM OF THE STUDY: This study aimed to demonstrate the effects of ethyl acetate extracts of leaves (LAE) and branches (TAE) of Maytenus quadrangulata against MAYV. MATERIALS AND METHODS: Mammalian cells (Vero cells) were used to evaluate the cytotoxicity of the extracts. After cell infection by MAYV and the treatment with the extracts, we evaluated the selectivity index (SI), the virucidal effect, viral adsorption and internalization, and the effect on viral gene expression. The antiviral action was confirmed by quantifying the viral genome using RT-qPCR and by analyzing the effect on virus yield in infected cells. The treatment was performed based on the effective concentration protective for 50% of the infected cells (EC50). RESULTS: The leaves (LAE; EC50 12.0 µg/mL) and branches (TAE; EC50 101.0 µg/mL) extracts showed significative selectivity against the virus, with SI values of 79.21 and 9.91, respectively, which were considered safe. Phytochemical analysis revealed that the antiviral action was associated with the presence of catechins, mainly in LAE. This extract was chosen for the subsequent studies since it reduced the viral cytopathic effect and virus production, even at high viral loads [MOI (multiplicity of infection) 1 and 5]. The effects of LAE resulted in a marked reduction in viral gene expression. The viral title was drastically reduced when LAE was added to the virus before infection or during replication stages, reducing virus production up to 5-log units compared to infected and untreated cells. CONCLUSION: Through kinetic replication, MAYV was not detected in Vero cells treated with LAE throughout the viral cycle. The virucidal effect of LAE inactivates the viral particle and can intercept the virus at the end of the cycle when it gains the extracellular environment. Therefore, LAE is a promising source of antiviral agents.
Subject(s)
Alphavirus , Catechin , Maytenus , Animals , Chlorocebus aethiops , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Catechin/pharmacology , Vero Cells , Alphavirus/genetics , MammalsABSTRACT
BACKGROUND: Arboviruses are a group of viruses transmitted to vertebrate hosts by certain blood-feeding arthropods. Among urban vectors of arboviruses, mosquitoes of the genus Aedes are the most common. However, other mosquitoes may be susceptible to infection and involved in the transmission, such as Mansonia spp. Therefore, this study aimed to investigate whether Mansonia humeralis can be infected with the Mayaro virus (MAYV). METHODS: These insects were collected from 2018 to 2020 in chicken coops of rural communities in Jaci Paraná in Porto Velho, Rondônia, Brazil, while performing blood-feeding on roosters. The mosquitoes were randomly grouped in pools from which the head and thorax were macerated and checked for the presence of MAYV by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The positive pools were used to infect the C6/36 cell line, and on different days post-infection, the supernatant of the infected cells was subjected to viral detection by RT-qPCR. RESULTS: A total of 183 pools of female mosquitoes were tested, of which 18% were positive for MAYV; some samples from insect pools inoculated into C6/36 cells showed in vitro multiplication capacity between 3 and 7 days post-infection. CONCLUSIONS: This is the first report of Ma. humeralis mosquitoes that are naturally infected by MAYV, indicating that these vectors may be potential transmitting agents of this arbovirus.
Subject(s)
Aedes , Alphavirus Infections , Alphavirus , Arboviruses , Culicidae , Animals , Male , Female , Chickens , Mosquito VectorsABSTRACT
The surveillance of arboviruses in mangrove mosquitoes is a neglected topic in Mexico. The Yucatan State is part of a peninsula and, therefore, is rich in mangroves along its coast. The purpose of the study was to identify alphavirus in the mosquito fauna of mangroves. Mosquitoes were captured in mangrove settings in seven communities in Yucatan between June 2019 and August 2021. From 1900 to 2200 h and from 0500 to 0800 h, mosquitoes were captured with a backpack-mounted aspirator. In total, 3,167 female mosquitoes of five genera and nine species were captured. Aedes taeniorhynchus and Anopheles crucians were the most abundant mosquitoes collected. Mosquitoes were sorted into 210 pools and tested by reverse transcription-polymerase chain reaction for alphavirus ribonucleic acid (RNA). Alphavirus RNA was found in Ae. taeniorhynchus, An. pseudopunctipennis, and An. crucians collected in the Celestun Mangrove. The community is part of the Ria Celestun Biosphere Reserve, and the presence arbovirus-infected mosquitoes could pose a health risk to residents and visitors alike in the area.