Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.745
Filter
1.
Nat Commun ; 15(1): 8219, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300175

ABSTRACT

New molecular technologies have helped unveil previously unexplored facets of the genome beyond the canonical proteome, including microproteins and short ORFs, products of alternative splicing, regulatory non-coding RNAs, as well as transposable elements, cis-regulatory DNA, and other highly repetitive regions of DNA. In this Review, we highlight what is known about this 'hidden genome' within the fungal kingdom. Using well-established model systems as a contextual framework, we describe key elements of this hidden genome in diverse fungal species, and explore how these factors perform critical functions in regulating fungal metabolism, stress tolerance, and pathogenesis. Finally, we discuss new technologies that may be adapted to further characterize the hidden genome in fungi.


Subject(s)
Fungi , Genome, Fungal , Genome, Fungal/genetics , Fungi/genetics , DNA Transposable Elements/genetics , Open Reading Frames/genetics , Alternative Splicing/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism
2.
Nat Commun ; 15(1): 8208, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294166

ABSTRACT

Germline and somatic TP53 variants play a crucial role during tumorigenesis. However, genetic variations that solely affect the alternatively spliced p53 isoforms, p53ß and p53γ, are not fully considered in the molecular diagnosis of Li-Fraumeni syndrome and cancer. In our search for additional cancer predisposing variants, we identify a heterozygous stop-lost variant affecting the p53ß isoforms (p.*342Serext*17) in four families suspected of an autosomal dominant cancer syndrome with colorectal, breast and papillary thyroid cancers. The stop-lost variant leads to the 17 amino-acid extension of the p53ß isoforms, which increases oligomerization to canonical p53α and dysregulates the expression of p53's transcriptional targets. Our study reveals the capacity of p53ß mutants to influence p53 signalling and contribute to the susceptibility of different cancer types. These findings underscore the significance of p53 isoforms and the necessity of comprehensive investigation into the entire TP53 gene in understanding cancer predisposition.


Subject(s)
Genetic Predisposition to Disease , Germ-Line Mutation , Li-Fraumeni Syndrome , Pedigree , Protein Isoforms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Female , Male , Li-Fraumeni Syndrome/genetics , Adult , Middle Aged , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Alternative Splicing/genetics , Neoplasms/genetics , Neoplasms/metabolism
3.
Nat Genet ; 56(9): 1851-1861, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39223315

ABSTRACT

Alternative splicing (AS) in human genes is widely viewed as a mechanism for enhancing proteomic diversity. AS can also impact gene expression levels without increasing protein diversity by producing 'unproductive' transcripts that are targeted for rapid degradation by nonsense-mediated decay (NMD). However, the relative importance of this regulatory mechanism remains underexplored. To better understand the impact of AS-NMD relative to other regulatory mechanisms, we analyzed population-scale genomic data across eight molecular assays, covering various stages from transcription to cytoplasmic decay. We report threefold more unproductive splicing compared with prior estimates using steady-state RNA. This unproductive splicing compounds across multi-intronic genes, resulting in 15% of transcript molecules from protein-coding genes being unproductive. Leveraging genetic variation across cell lines, we find that GWAS trait-associated loci explained by AS are as often associated with NMD-induced expression level differences as with differences in protein isoform usage. Our findings suggest that much of the impact of AS is mediated by NMD-induced changes in gene expression rather than diversification of the proteome.


Subject(s)
Alternative Splicing , Nonsense Mediated mRNA Decay , Humans , Alternative Splicing/genetics , Gene Expression Regulation , Genome-Wide Association Study , Quantitative Trait Loci , RNA, Messenger/genetics , RNA, Messenger/metabolism , Introns/genetics
4.
Cells ; 13(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39272982

ABSTRACT

BACKGROUND: Periostin (POSTN) is a type of matrix protein that functions by binding to other matrix proteins, cell surface receptors, or other molecules, such as cytokines and proteases. POSTN has four major splicing variants (PN1-4), which are primarily expressed in fibroblasts and cancer. We have reported that we should inhibit pathological POSTN (PN1-3), but not physiological POSTN (PN4). In particular, pathological POSTN with exon 17 is present in both stroma and cancer, but it is unclear whether the stroma or cancer pathological POSTN should be suppressed. METHODS AND RESULTS: We transplanted 4T1 cells (breast cancer) secreting POSTN with exon 17 into 17KO mice lacking POSTN exon 17 to suppress stromal POSTN with exon 17. The results show that 17KO mice had smaller primary tumors and fewer metastases. Furthermore, to suppress cancer POSTN with exon 17, 4T1 cells transfected with POSTN exon 17 skipping oligo or control oligo were transplanted from the tail vein into the lungs. The results show that POSTN exon 17 skipping oligo significantly suppressed lung metastasis. CONCLUSIONS: These findings suggest that it is important to suppress POSTN exon 17 in both stroma and cancer. Antibody targeting POSTN exon 17 may be a therapeutic candidate for breast cancer.


Subject(s)
Cell Adhesion Molecules , Exons , Stromal Cells , Animals , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Exons/genetics , Mice , Female , Cell Line, Tumor , Stromal Cells/metabolism , Stromal Cells/pathology , Humans , Alternative Splicing/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Mice, Knockout , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Periostin
5.
Int J Mol Sci ; 25(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39273516

ABSTRACT

The contribution of splicing variants to molecular diagnostics of inherited diseases is reported to be less than 10%. This figure is likely an underestimation due to several factors including difficulty in predicting the effect of such variants, the need for functional assays, and the inability to detect them (depending on their locations and the sequencing technology used). The aim of this study was to assess the utility of Nanopore sequencing in characterizing and quantifying aberrant splicing events. For this purpose, we selected 19 candidate splicing variants that were identified in patients affected by inherited retinal dystrophies. Several in silico tools were deployed to predict the nature and estimate the magnitude of variant-induced aberrant splicing events. Minigene assay or whole blood-derived cDNA was used to functionally characterize the variants. PCR amplification of minigene-specific cDNA or the target gene in blood cDNA, combined with Nanopore sequencing, was used to identify the resulting transcripts. Thirteen out of nineteen variants caused aberrant splicing events, including cryptic splice site activation, exon skipping, pseudoexon inclusion, or a combination of these. Nanopore sequencing allowed for the identification of full-length transcripts and their precise quantification, which were often in accord with in silico predictions. The method detected reliably low-abundant transcripts, which would not be detected by conventional strategies, such as RT-PCR followed by Sanger sequencing.


Subject(s)
High-Throughput Nucleotide Sequencing , Nanopore Sequencing , Retinal Dystrophies , Humans , Retinal Dystrophies/genetics , Retinal Dystrophies/diagnosis , Nanopore Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Alternative Splicing/genetics , RNA Splicing/genetics , Exons/genetics
6.
BMC Bioinformatics ; 25(1): 293, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237879

ABSTRACT

BACKGROUND: Gene expression and alternative splicing are strictly regulated processes that shape brain development and determine the cellular identity of differentiated neural cell populations. Despite the availability of multiple valuable datasets, many functional implications, especially those related to alternative splicing, remain poorly understood. Moreover, neuroscientists working primarily experimentally often lack the bioinformatics expertise required to process alternative splicing data and produce meaningful and interpretable results. Notably, re-analyzing publicly available datasets and integrating them with in-house data can provide substantial novel insights. However, such analyses necessitate developing harmonized data handling and processing pipelines which in turn require considerable computational resources and in-depth bioinformatics expertise. RESULTS: Here, we present Cortexa-a comprehensive web portal that incorporates RNA-sequencing datasets from the mouse cerebral cortex (longitudinal or cell-specific) and the hippocampus. Cortexa facilitates understandable visualization of the expression and alternative splicing patterns of individual genes. Our platform provides SplicePCA-a tool that allows users to integrate their alternative splicing dataset and compare it to cell-specific or developmental neocortical splicing patterns. All standardized gene expression and alternative splicing datasets can be downloaded for further in-depth downstream analysis without the need for extensive preprocessing. CONCLUSIONS: Cortexa provides a robust and readily available resource for unraveling the complexity of gene expression and alternative splicing regulatory processes in the mouse brain. The data portal is available at https://cortexa-rna.com/.


Subject(s)
Alternative Splicing , Brain , Animals , Alternative Splicing/genetics , Mice , Brain/metabolism , Computational Biology/methods , Software , Databases, Genetic , Sequence Analysis, RNA/methods , Cerebral Cortex/metabolism , Hippocampus/metabolism , Gene Expression Profiling/methods
7.
Int J Biol Sci ; 20(11): 4496-4512, 2024.
Article in English | MEDLINE | ID: mdl-39247833

ABSTRACT

The dysregulation of alternative splicing (AS) is increasingly recognized as a pivotal player in the pathogenesis, progression, and treatment resistance of B-cell acute lymphoblastic leukemia (B-ALL). Despite its significance, the clinical implications of AS events in B-ALL remain largely unexplored. This study developed a prognostic model based on 18 AS events (18-AS), derived from a meticulous integration of bioinformatics methodologies and advanced machine learning algorithms. The 18-AS signature observed in B-ALL distinctly categorized patients into different groups with significant differences in immune infiltration, V(D)J rearrangement, drug sensitivity, and immunotherapy outcomes. Patients classified within the high 18-AS group exhibited lower immune infiltration scores, poorer chemo- and immune-therapy responses, and worse overall survival, underscoring the model's potential in refining therapeutic strategies. To validate the clinical applicability of the 18-AS, we established an SF-AS regulatory network and identified candidate drugs. More importantly, we conducted in vitro cell proliferation assays to confirm our analysis, demonstrating that the High-18AS cell line (SUP-B15) exhibited significantly enhanced sensitivity to Dasatinib, Dovitinib, and Midostaurin compared to the Low-18AS cell line (REH). These findings reveal AS events as novel prognostic biomarkers and therapeutic targets, advancing personalized treatment strategies in B-ALL management.


Subject(s)
Alternative Splicing , Humans , Alternative Splicing/genetics , Prognosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Female , Cell Line, Tumor , Male , Computational Biology/methods
8.
Clin Transl Med ; 14(9): e1788, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39243148

ABSTRACT

BACKGROUND: Alternative splicing of pre-mRNA is a fundamental regulatory process in multicellular eukaryotes, significantly contributing to the diversification of the human proteome. RNA-binding fox-1 homologue 2 (RBFOX2), a member of the evolutionarily conserved RBFOX family, has emerged as a critical splicing regulator, playing a pivotal role in the alternative splicing of pre-mRNA. This review provides a comprehensive analysis of RBFOX2, elucidating its splicing activity through direct and indirect binding mechanisms. RBFOX2 exerts substantial influence over the alternative splicing of numerous transcripts, thereby shaping essential cellular processes such as differentiation and development. MAIN BODY OF THE ABSTRACT: Dysregulation of RBFOX2-mediated alternative splicing has been closely linked to a spectrum of cardiovascular diseases and malignant tumours, underscoring its potential as a therapeutic target. Despite significant progress, current research faces notable challenges. The complete structural characterisation of RBFOX2 remains elusive, limiting in-depth exploration beyond its RNA-recognition motif. Furthermore, the scarcity of studies focusing on RBFOX2-targeting drugs poses a hindrance to translating research findings into clinical applications. CONCLUSION: This review critically assesses the existing body of knowledge on RBFOX2, highlighting research gaps and limitations. By delineating these areas, this analysis not only serves as a foundational reference for future studies but also provides strategic insights for bridging these gaps. Addressing these challenges will be instrumental in unlocking the full therapeutic potential of RBFOX2, paving the way for innovative and effective treatments in various diseases.


Subject(s)
Neoplasms , RNA Splicing Factors , Humans , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Disease Progression , Alternative Splicing/genetics , RNA Splicing/genetics
9.
Cells ; 13(17)2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39273072

ABSTRACT

RNA sequencing (RNA-Seq) has become a widely adopted technique for studying gene expression. However, conventional RNA-Seq analyses rely on gene expression (GE) values that aggregate all the transcripts produced under a single gene identifier, overlooking the complexity of transcript variants arising from different transcription start sites or alternative splicing. Transcript variants may encode proteins with diverse functional domains, or noncoding RNAs. This study explored the implications of neglecting transcript variants in RNA-Seq analyses. Among the 1334 transcription factor (TF) genes expressed in mouse embryonic stem (ES) or trophoblast stem (TS) cells, 652 were differentially expressed in TS cells based on GE values (365 upregulated and 287 downregulated, ≥absolute 2-fold changes, false discovery rate (FDR) p-value ≤ 0.05). The 365 upregulated genes expressed 883 transcript variants. Further transcript expression (TE) based analyses identified only 174 (<20%) of the 883 transcripts to be upregulated. The remaining 709 transcripts were either downregulated or showed no significant changes. Meanwhile, the 287 downregulated genes expressed 856 transcript variants and only 153 (<20%) of the 856 transcripts were downregulated. The other 703 transcripts were either upregulated or showed no significant change. Additionally, the 682 insignificant TF genes (GE values < absolute 2-fold changes and/or FDR p-values > 0.05) between ES and TS cells expressed 2215 transcript variants. These included 477 (>21%) differentially expressed transcripts (276 upregulated and 201 downregulated, ≥absolute 2-fold changes, FDR p-value ≤ 0.05). Hence, GE based RNA-Seq analyses do not represent accurate expression levels due to divergent transcripts expression from the same gene. Our findings show that by including transcript variants in RNA-Seq analyses, we can generate a precise understanding of a gene's functional and regulatory landscape; ignoring the variants may result in an erroneous interpretation.


Subject(s)
Gene Expression Profiling , Transcriptome , Animals , Mice , Transcriptome/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Trophoblasts/metabolism , Sequence Analysis, RNA , Alternative Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation , Mouse Embryonic Stem Cells/metabolism
10.
Mol Biol Rep ; 51(1): 907, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141165

ABSTRACT

BACKGROUND: The ubiquitously expressed Guanine nucleotide exchange factor, RAPGEF1 (C3G), is essential for early development of mouse embryos. It functions to regulate gene expression and cytoskeletal reorganization, thereby controlling cell proliferation and differentiation. While multiple transcripts have been predicted, their expression in mouse tissues has not been investigated in detail. METHODS & RESULTS: Full length RAPGEF1 isoforms primarily arise due to splicing at two hotspots, one involving exon-3, and the other involving exons 12-14 incorporating amino acids immediately following the Crk binding region of the protein. These isoforms vary in expression across embryonic and adult organs. We detected the presence of unannotated, and unpredicted transcripts with incorporation of cassette exons in various combinations, specifically in the heart, brain, testis and skeletal muscle. Isoform switching was detected as myocytes in culture and mouse embryonic stem cells were differentiated to form myotubes, and embryoid bodies respectively. The cassette exons encode a serine-rich polypeptide chain, which is intrinsically disordered, and undergoes phosphorylation. In silico structural analysis using AlphaFold indicated that the presence of cassette exons alters intra-molecular interactions, important for regulating catalytic activity. LZerD based docking studies predicted that the isoforms with one or more cassette exons differ in interaction with their target GTPase, RAP1A. CONCLUSIONS: Our results demonstrate the expression of novel RAPGEF1 isoforms, and predict cassette exon inclusion as an additional means of regulating RAPGEF1 activity in various tissues and during differentiation.


Subject(s)
Exons , Guanine Nucleotide Exchange Factors , Protein Isoforms , Animals , Exons/genetics , Mice , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Organ Specificity/genetics , Cell Differentiation/genetics , Alternative Splicing/genetics , Gene Expression Regulation, Developmental/genetics , Male , Mouse Embryonic Stem Cells/metabolism
11.
Life Sci ; 356: 123013, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39182568

ABSTRACT

AIMS: The RNA-binding protein LSM7 is essential for RNA splicing, acting as a key component of the spliceosome complex; however, its specific role in breast cancer (BC) has not been extensively investigated. MATERIALS AND METHODS: LSM7 expression in BC samples was evaluated through bioinformatics analysis and immunohistochemistry. The impact of LSM7 on promoting metastatic tumor characteristics was examined using transwell and wound healing assays, as well as an orthotopic xenograft model. Additionally, the involvement of LSM7 in alternative splicing of CD44 was explored via RNA immunoprecipitation and third-generation sequencing. The regulatory role of TCF3 in modulating LSM7 gene expression was further elucidated using luciferase reporter assays and chromatin immunoprecipitation. KEY FINDINGS: Our findings demonstrate that LSM7 was significantly overexpressed in metastatic BC tissues and was associated with poor prognostic outcomes in patients with BC. LSM7 overexpression markedly increased the migratory and invasive capabilities of BC cells in vitro and significantly promoted spontaneous lung metastasis in vivo. Furthermore, RIP-seq analysis revealed that LSM7 binded to CD44 RNA, enhancing the expression of its alternatively spliced isoform CD44s, thereby driving BC metastasis and invasion. Additionally, the transcription factor TCF3 was found to activate LSM7 transcription by directly binding to its promoter. SIGNIFICANCE: In summary, this study highlights the pivotal role of LSM7 in the production of the CD44s isoform and the promotion of breast cancer metastasis. Targeting the TCF3/LSM7/CD44s axis may offer a promising therapeutic strategy for breast cancer treatment.


Subject(s)
Alternative Splicing , Breast Neoplasms , Hyaluronan Receptors , RNA-Binding Proteins , Humans , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Alternative Splicing/genetics , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Animals , Mice , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Mice, Nude , Mice, Inbred BALB C , Neoplasm Metastasis , Cell Movement/genetics , Prognosis
12.
Aging (Albany NY) ; 16(15): 11656-11667, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39115871

ABSTRACT

Several aberrant alternative splicing (AS) events and their regulatory mechanisms are widely recognized in multiple sclerosis (MS). Yet the cell-type specific AS events have not been extensively examined. Here we assessed the diversity of AS events using web-based RNA-seq data of sorted CD15-CD11b+ microglia in white matter (WM) region from 10 patients with MS and 11 control subjects. The GSE111972 dataset was downloaded from GEO and ENA databases, aligned to the GRCh38 reference genome from ENSEMBL via STAR. rMATS was used to assess five types of AS events, alternative 3'SS (A3SS), alternative 5'SS (A5SS), skipped exon (SE), retained intron (RI) and mutually exclusive exons (MXE), followed by visualizing with rmats2sashimiplot and maser. Differential genes or transcripts were analyzed using the limma R package. Gene ontology (GO) analysis was performed with the clusterProfiler R package. 42,663 raw counts of AS events were identified and 132 significant AS events were retained based on the filtered criteria: 1) average coverage >10 and 2) delta percent spliced in (ΔPSI) >0.1. SE was the most common AS event (36.36%), followed by MXE events (32.58%), and RI (18.94%). Genes related to telomere maintenance and organization primarily underwent SE splicing, while genes associated with protein folding and mitochondrion organization were predominantly spliced in the MXE pattern. Conversely, genes experiencing RI were enriched in immune response and immunoglobulin production. In conclusion, we identified microglia-specific AS changes in the white matter of MS patients, which may shed light on novel pathological mechanisms underlying MS.


Subject(s)
Alternative Splicing , Microglia , Multiple Sclerosis , Humans , Alternative Splicing/genetics , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Microglia/metabolism , Microglia/pathology , Male , Female , White Matter/pathology , White Matter/metabolism , RNA-Seq , Adult , Middle Aged
13.
Cell Commun Signal ; 22(1): 407, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164737

ABSTRACT

Dysregulation of splicing factor expression plays a crucial role in the progression of hepatocellular carcinoma (HCC). Our research found that the expression level of splicing factor ZMAT2 was increased in HCC, promoting the proliferation of HCC cells. RNAseq data indicated that the absence of ZMAT2 induced skipping exon of mRNA, while RIPseq data further revealed the mRNA binding motifs of ZMAT2. A comprehensive analysis of RNAseq and RIPseq data indicateed that ZMAT2 played a crucial role in the maturation process of TRIM28 mRNA. Knocking down of ZMAT2 led to the deletion of 25 bases in exon 11 of TRIM28, ultimately resulting in nonsense-mediated decay (NMD). Our data revealed that ZMAT2 could regulate TRIM28 to reduce the accumulation of ROS in HCC cells, thereby promoting their proliferation. Our research also discovered that ZMAT2 was capable of undergoing phase separation, resulting in the formation of liquid droplet condensates within HCC cells. Additionally, it was found that ZMAT2 was able to form protein-nucleic acid condensates with TRIM28 mRNA. In summary, this study is the first to reveal that ZMAT2 and TRIM28 mRNA form protein-nucleic acid condensates, thereby regulating the splicing of TRIM28 mRNA. The increased expression of ZMAT2 in HCC leads to upregulated TRIM28 expression and reduced ROS accumulation, ultimately accelerating the proliferation of HCC cells.


Subject(s)
Alternative Splicing , Carcinoma, Hepatocellular , Cell Proliferation , Liver Neoplasms , Reactive Oxygen Species , Tripartite Motif-Containing Protein 28 , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Proliferation/genetics , Reactive Oxygen Species/metabolism , Alternative Splicing/genetics , Tripartite Motif-Containing Protein 28/metabolism , Tripartite Motif-Containing Protein 28/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
14.
Cell Genom ; 4(9): 100641, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39216476

ABSTRACT

Colorectal cancer (CRC) ranks as the second leading cause of cancer deaths globally. In recent years, short-read single-cell RNA sequencing (scRNA-seq) has been instrumental in deciphering tumor heterogeneities. However, these studies only enable gene-level quantification but neglect alterations in transcript structures arising from alternative end processing or splicing. In this study, we integrated short- and long-read scRNA-seq of CRC samples to build an isoform-resolution CRC transcriptomic atlas. We identified 394 dysregulated transcript structures in tumor epithelial cells, including 299 resulting from various combinations of splicing events. Second, we characterized genes and isoforms associated with epithelial lineages and subpopulations exhibiting distinct prognoses. Among 31,935 isoforms with novel junctions, 330 were supported by The Cancer Genome Atlas RNA-seq and mass spectrometry data. Finally, we built an algorithm that integrated novel peptides derived from open reading frames of recurrent tumor-specific transcripts with mass spectrometry data and identified recurring neoepitopes that may aid the development of cancer vaccines.


Subject(s)
Colorectal Neoplasms , Single-Cell Analysis , Transcriptome , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Single-Cell Analysis/methods , Protein Isoforms/genetics , Sequence Analysis, RNA/methods , Gene Expression Regulation, Neoplastic , Alternative Splicing/genetics
15.
Int J Mol Sci ; 25(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39201349

ABSTRACT

Albinism is a genetically heterogeneous disease in which 21 genes are known so far. Its inheritance mode is autosomal recessive except for one X-linked form. The molecular analysis of exonic sequences of these genes allows for about a 70% diagnostic rate. About half (15%) of the unsolved cases are heterozygous for one pathogenic or probably pathogenic variant. Assuming that the missing variant may be located in non-coding regions, we performed sequencing for 122 such heterozygous patients of either the whole genome (27 patients) or our NGS panel (95 patients) that includes, in addition to all exons of the 21 genes, the introns and flanking sequences of five genes, TYR, OCA2, SLC45A2, GPR143 and HPS1. Rare variants (MAF < 0.01) in trans to the first variant were tested by RT-PCR and/or minigene assay. Of the 14 variants tested, nine caused either exon skipping or the inclusion of a pseudoexon, allowing for the diagnosis of 11 patients. This represents 9.8% (12/122) supplementary diagnosis for formerly unsolved patients and 75% (12/16) of those in whom the candidate variant was in trans to the first variant. Of note, one missense variant was demonstrated to cause skipping of the exon in which it is located, thus shedding new light on its pathogenic mechanism. Searching for non-coding variants and testing them for an effect on RNA splicing is warranted in order to increase the diagnostic rate.


Subject(s)
Albinism , Exons , Humans , Exons/genetics , Albinism/genetics , Albinism/diagnosis , Female , RNA Splicing , Male , Alternative Splicing/genetics , Mutation , Heterozygote , Introns/genetics
16.
Nat Commun ; 15(1): 6458, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095344

ABSTRACT

Increasing evidence suggests that alternative splicing plays an important role in Alzheimer's disease (AD) pathology. We used long-read sequencing in combination with a novel bioinformatics tool (FICLE) to profile transcript diversity in the entorhinal cortex of female transgenic (TG) mice harboring a mutant form of human tau. Our analyses revealed hundreds of novel isoforms and identified differentially expressed transcripts - including specific isoforms of Apoe, App, Cd33, Clu, Fyn and Trem2 - associated with the development of tau pathology in TG mice. Subsequent profiling of the human cortex from AD individuals and controls revealed similar patterns of transcript diversity, including the upregulation of the dominant TREM2 isoform in AD paralleling the increased expression of the homologous transcript in TG mice. Our results highlight the importance of differential transcript usage, even in the absence of gene-level expression alterations, as a mechanism underpinning gene regulation in the development of AD neuropathology.


Subject(s)
Alzheimer Disease , Entorhinal Cortex , Mice, Transgenic , Protein Isoforms , tau Proteins , Entorhinal Cortex/metabolism , Entorhinal Cortex/pathology , Animals , Humans , tau Proteins/metabolism , tau Proteins/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Female , Protein Isoforms/genetics , Protein Isoforms/metabolism , Mice , Disease Models, Animal , Alternative Splicing/genetics , Gene Expression Regulation
17.
Cell Rep ; 43(8): 114622, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39146182

ABSTRACT

Microsatellite instability-high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion and cell proliferation and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses the expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.


Subject(s)
Cell Cycle Proteins , Ribosomal Proteins , Humans , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Cell Line, Tumor , Alternative Splicing/genetics , Cell Proliferation/genetics , Animals , Exons/genetics , Mice , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Gene Expression Regulation, Neoplastic , Piperazines/pharmacology , Imidazoles/pharmacology
18.
Cells ; 13(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39195230

ABSTRACT

Tongue squamous cell carcinoma (TSCC) occurs frequently in the oral cavity, and because of its high proliferative and metastatic potential, it is necessary to develop a novel treatment for it. We have reported the importance of the inhibition of the periostin (POSTN) pathological splicing variant, including exon 21 (PN1-2), in various malignancies, but its influence is unclear in tongue cancer. In this study, we investigated the potential of POSTN exon 21-specific neutralizing antibody (PN21-Ab) as a novel treatment for TSCC. Human PN2 was transfected into the human TSCC (HSC-3) and cultured under stress, and PN2 was found to increase cell viability. PN2 induced chemotherapy resistance in HSC-3 via the phosphorylation of the cell survival signal Akt. In tissues from human TSCC and primary tumors of an HSC-3 xenograft model, PN1-2 was expressed in the tumor stroma, mainly from fibroblasts. The intensity of PN1-2 mRNA expression was positively correlated with malignancy. In the HSC-3 xenograft model, CDDP and PN21-Ab promoted CDPP's inhibition of tumor growth. These results suggest that POSTN exon 21 may be a biomarker for tongue cancer and that PN21-Ab may be a novel treatment for chemotherapy-resistant tongue cancer. The treatment points towards important innovations for TSCC, but many more studies are needed to extrapolate the results.


Subject(s)
Cell Adhesion Molecules , Drug Resistance, Neoplasm , Exons , Tongue Neoplasms , Humans , Tongue Neoplasms/pathology , Tongue Neoplasms/genetics , Tongue Neoplasms/drug therapy , Tongue Neoplasms/metabolism , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Animals , Exons/genetics , Cell Line, Tumor , Mice , Male , Mice, Nude , Xenograft Model Antitumor Assays , Female , Cisplatin/pharmacology , Cisplatin/therapeutic use , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Alternative Splicing/genetics , Alternative Splicing/drug effects , Middle Aged , Mice, Inbred BALB C , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Cell Survival/drug effects , Cell Survival/genetics , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Periostin
19.
Cell Rep ; 43(8): 114610, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39116201

ABSTRACT

The tumor suppressor p53 and its antagonists MDM2 and MDM4 integrate stress signaling. For instance, dysbalanced assembly of ribosomes in nucleoli induces p53. Here, we show that the ribosomal protein L22 (RPL22; eL22), under conditions of ribosomal and nucleolar stress, promotes the skipping of MDM4 exon 6. Upon L22 depletion, more full-length MDM4 is maintained, leading to diminished p53 activity and enhanced cellular proliferation. L22 binds to specific RNA elements within intron 6 of MDM4 that correspond to a stem-loop consensus, leading to exon 6 skipping. Targeted deletion of these intronic elements largely abolishes L22-mediated exon skipping and re-enables cell proliferation, despite nucleolar stress. L22 also governs alternative splicing of the L22L1 (RPL22L1) and UBAP2L mRNAs. Thus, L22 serves as a signaling intermediate that integrates different layers of gene expression. Defects in ribosome synthesis lead to specific alternative splicing, ultimately triggering p53-mediated transcription and arresting cell proliferation.


Subject(s)
Alternative Splicing , Exons , RNA Precursors , Ribosomal Proteins , Tumor Suppressor Protein p53 , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Humans , Exons/genetics , RNA Precursors/metabolism , RNA Precursors/genetics , Alternative Splicing/genetics , Cell Nucleolus/metabolism , Cell Proliferation , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Protein Binding , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Ribosomes/metabolism , Stress, Physiological/genetics , RNA-Binding Proteins
20.
Exp Cell Res ; 442(1): 114186, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39098465

ABSTRACT

TGFß1 is a powerful regulator of fibrosis; secreted in a latent form, it becomes active after release from the latent complex. During tissue fibrosis, the EDA + isoform of cellular fibronectin is overexpressed. In pulmonary fibrosis it has been proposed that the fibronectin splice variant including an EDA domain (FN EDA+) activates latent TGFß. Our work investigates the potential of blocking the 'splicing in' of EDA with antisense oligonucleotides to inhibit TGFß1-induced EDA + fibronectin and to prevent the cascade of events initiated by TGFß1 in human renal proximal tubule cells (PTEC). Human primary PTEC were treated with TGFß1 for 48 h, medium removed and the cells transfected with RNase H-independent antisense oligonucleotides (ASO) designed to block EDA exon inclusion (ASO5). The efficacy of ASO to block EDA exon inclusion was assessed by EDA + fibronectin RNA and protein expression; the expression of TGFß, αSMA (α smooth muscle actin), MMP2 (matrix metalloproteinse-2), MMP9 (matrix metalloproteinse-9), Collagen I, K Cadherin and connexin 43 was analysed. Targeting antisense oligonucleotides designed to block EDA exon inclusion in fibronectin pre mRNA were effective in reducing the amount of TGFß1 -induced cellular EDA + fibronectin RNA and secreted EDA + fibronectin protein (assessed by western immunoblotting and immunocytochemistry) in human proximal tubule cells in an in vitro cell culture model. The effect was selective for EDA + exon with no effect on EDB + fibronectin RNA and total fibronectin mRNA. Exogenous TGFß1 induced endogenous TGFß, αSMA, MMP2, MMP9 and Col I mRNA. TGFß1 treatment for 48h reduced the expression of K-Cadherin and increased the expression of connexin-43. These TGFß1-induced pro-fibrotic changes were attenuated by ASO5 treatment. 48 h after the removal of exogenous TGFß, further increases in αSMA, MMP2, MMP9 was observed; ASO5 significantly inhibited this subsequent increase. ASO5 treatment also significantly inhibited ability of the cell culture medium harvested at the end of the experiment (96h) to stimulate SMAD3 reporter cells. The role of endogenous TGFß1 was confirmed by the use of a TGFß receptor inhibitor. Our results demonstrate a critical role of FN EDA+ in a cycle of TGFß driven pro-fibrotic responses in human PTEC and blocking its production with ASO technology offers a potential therapy to interrupt this vicious circle and hence limit the progression of renal fibrosis.


Subject(s)
Alternative Splicing , Epithelial Cells , Fibronectins , Fibrosis , Kidney Tubules, Proximal , Oligonucleotides, Antisense , Transforming Growth Factor beta1 , Humans , Fibronectins/metabolism , Fibronectins/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/cytology , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/genetics , Fibrosis/metabolism , Alternative Splicing/genetics , Transforming Growth Factor beta1/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/drug effects , Cells, Cultured , Autocrine Communication , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics
SELECTION OF CITATIONS
SEARCH DETAIL