Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.712
Filter
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(6): 669-672, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38991971

ABSTRACT

Acute high altitude disease (AHAD) is a general term for a series of clinical reactions that occur when the body fails to adapt to the low-pressure hypoxic environment of high altitudes. Mild cases can cause symptoms such as headache, nausea and vomiting, while more severe cases can lead to life-threatening conditions such as pulmonary edema, cerebral edema and other critical conditions that can be fatal. With the increasing demand for high altitudes deployment, understanding the common preventive measures of AHAD can reduce its morbidity or mortality to a certain extent, which is of great benefit to those who reside temporarily at high altitudes. In recent years, as people's health awareness has improved, there has been a growing attention towards non-pharmacological methods of disease prevention. At the same time, non-pharmacological therapy has significant therapeutic effects in preventing and treating high-altitude diseases, which has attracted the attention of researchers in this field. This review summarizes the major non-pharmacological preventive components of modern medicine and outlines the current non-pharmacological approaches to AHAD from the perspective of traditional Chinese medicine, intending to serve clinical purposes and improve the onset and prognosis of AHAD.


Subject(s)
Altitude Sickness , Medicine, Chinese Traditional , Humans , Altitude Sickness/prevention & control , Altitude Sickness/therapy , Medicine, Chinese Traditional/methods , Altitude
2.
Front Public Health ; 12: 1392696, 2024.
Article in English | MEDLINE | ID: mdl-39011334

ABSTRACT

Objective: To investigate the short-term changes in chest CT images of low-altitude populations after entering a high-altitude environment. Methods: Chest CT images of 3,587 people from low-altitude areas were obtained within one month of entering a high-altitude environment. Abnormal CT features and clinical symptoms were analyzed. Results: Besides acute high-altitude pulmonary edema, the incidence of soft tissue space pneumatosis was significantly higher than that in low-altitude areas. Pneumatosis was observed in the mediastinum, cervical muscle space, abdominal cavity, and spinal cord epidural space, especially the mediastinum. Conclusion: In addition to acute high-altitude pulmonary edema, spontaneous mediastinal emphysema often occurs when individuals in low-altitude areas adapt to the high-altitude environment of cold, low-pressure, and hypoxia. When the gas escapes to the abdominal cavity, it is easy to be misdiagnosed as gastrointestinal perforation. It is also not uncommon for gas accumulation to escape into the epidural space of the spinal cord. The phenomenon of gas diffusion into distant tissue space and the mechanism of gas escape needs to be further studied.


Subject(s)
Altitude Sickness , Altitude , Tomography, X-Ray Computed , Humans , Male , Female , Middle Aged , Adult , Altitude Sickness/diagnostic imaging , Aged , Mediastinal Emphysema/diagnostic imaging , Mediastinal Emphysema/etiology , Hypertension, Pulmonary/diagnostic imaging , China
3.
Emerg Med Clin North Am ; 42(3): 527-539, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925772

ABSTRACT

Altitude-related illness occurs as a result of inadequate acclimatization. The mainstay of prevention is a slow, graded ascent profile which gives the body time to respond to a low-oxygen environment. The diagnosis of these conditions is often difficult in resource-limited environments, so history and a physical exam are key in identifying patients who will require descent and evacuation. Treatment modalities such as supplemental oxygen, portable hyperbaric chambers, and medications, are all temporizing measures until the patient can be safely evacuated to a lower elevation.


Subject(s)
Altitude Sickness , Humans , Altitude Sickness/therapy , Altitude Sickness/diagnosis , Hyperbaric Oxygenation/methods , Altitude , Mountaineering
4.
Per Med ; 21(4): 227-241, 2024.
Article in English | MEDLINE | ID: mdl-38940394

ABSTRACT

High altitude pulmonary edema (HAPE) is a life-threatening form of non-cardiogenic pulmonary edema. In recent years, association studies have become the main method for identifying HAPE genetic loci. A genome-wide association study (GWAS) of HAPE risk-associated loci was performed in Chinese male Han individuals (164 HAPE cases and 189 healthy controls) by the Precision Medicine Diversity Array Chip with 2,771,835 loci (Applied Biosystems Axiom™). Eight overlapping candidate loci in CCNG2, RP11-445O3.2, NUPL1 and WWOX were finally selected. In silico functional analyses displayed the PPI network, functional enrichment and signal pathways related to CCNG2, NUPL1, WWOX and NRXN1. This study provides data supplements for HAPE susceptibility gene loci and new insights into HAPE susceptibility.


Subject(s)
Altitude Sickness , Asian People , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Male , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Asian People/genetics , China , Altitude Sickness/genetics , Polymorphism, Single Nucleotide/genetics , Hypertension, Pulmonary/genetics , Case-Control Studies , Genetic Loci/genetics , Adult , East Asian People
5.
Arch Biochem Biophys ; 758: 110078, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944139

ABSTRACT

About 140 million people worldwide live at an altitude above 2500 m. Studies have showed an increase of the incidence of hyperuricemia among plateau populations, but little is known about the possible mechanisms. This study aims to assess the effects of high altitude on hyperuricemia and explore the corresponding mechanisms at the histological, inflammatory and molecular levels. This study finds that intermittent hypobaric hypoxia (IHH) exposure results in an increase of serum uric acid level and a decrease of uric acid clearance rate. Compared with the control group, the IHH group shows significant increases in hemoglobin concentration (HGB) and red blood cell counts (RBC), indicating that high altitude hyperuricemia is associated with polycythemia. This study also shows that IHH exposure induces oxidative stress, which causes the injury of liver and renal structures and functions. Additionally, altered expressions of organic anion transporter 1 (OAT1) and organic cation transporter 1 (OCT1) of kidney have been detected in the IHH exposed rats. The adenosine deaminase (ADA) expression levels and the xanthione oxidase (XOD) and ADA activity of liver of the IHH exposure group have significantly increased compared with those of the control group. Furthermore, the spleen coefficients, IL-2, IL-1ß and IL-8, have seen significant increases among the IHH exposure group. TLR/MyD88/NF-κB pathway is activated in the process of IHH induced inflammatory response in joints. Importantly, these results jointly show that IHH exposure causes hyperuricemia. IHH induced oxidative stress along with liver and kidney injury, unusual expression of the uric acid synthesis/excretion regulator and inflammatory response, thus suggesting a potential mechanism underlying IHH-induced hyperuricemia.


Subject(s)
Hyperuricemia , Hypoxia , Kidney , Liver , Oxidative Stress , Hyperuricemia/metabolism , Animals , Male , Rats , Liver/metabolism , Liver/pathology , Hypoxia/metabolism , Hypoxia/complications , Kidney/metabolism , Kidney/pathology , Altitude , Uric Acid/blood , Uric Acid/metabolism , Rats, Sprague-Dawley , Xanthine Oxidase/metabolism , Altitude Sickness/metabolism , Altitude Sickness/complications , Altitude Sickness/physiopathology
6.
Nat Rev Dis Primers ; 10(1): 44, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902247
7.
Nat Rev Dis Primers ; 10(1): 43, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902312

ABSTRACT

Millions of people visit high-altitude regions annually and more than 80 million live permanently above 2,500 m. Acute high-altitude exposure can trigger high-altitude illnesses (HAIs), including acute mountain sickness (AMS), high-altitude cerebral oedema (HACE) and high-altitude pulmonary oedema (HAPE). Chronic mountain sickness (CMS) can affect high-altitude resident populations worldwide. The prevalence of acute HAIs varies according to acclimatization status, rate of ascent and individual susceptibility. AMS, characterized by headache, nausea, dizziness and fatigue, is usually benign and self-limiting, and has been linked to hypoxia-induced cerebral blood volume increases, inflammation and related trigeminovascular system activation. Disruption of the blood-brain barrier leads to HACE, characterized by altered mental status and ataxia, and increased pulmonary capillary pressure, and related stress failure induces HAPE, characterized by dyspnoea, cough and exercise intolerance. Both conditions are progressive and life-threatening, requiring immediate medical intervention. Treatment includes supplemental oxygen and descent with appropriate pharmacological therapy. Preventive measures include slow ascent, pre-acclimatization and, in some instances, medications. CMS is characterized by excessive erythrocytosis and related clinical symptoms. In severe CMS, temporary or permanent relocation to low altitude is recommended. Future research should focus on more objective diagnostic tools to enable prompt treatment, improved identification of individual susceptibilities and effective acclimatization and prevention options.


Subject(s)
Altitude Sickness , Altitude , Humans , Altitude Sickness/physiopathology , Altitude Sickness/epidemiology , Altitude Sickness/complications , Acclimatization/physiology , Brain Edema/physiopathology , Brain Edema/etiology , Brain Edema/epidemiology , Pulmonary Edema/physiopathology , Pulmonary Edema/etiology , Pulmonary Edema/epidemiology , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/epidemiology , Hypertension, Pulmonary/etiology , Hypoxia/physiopathology , Hypoxia/complications , Hypoxia/etiology
8.
Nutrients ; 16(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794703

ABSTRACT

Acute mountain sickness (AMS) is a common ailment in high-altitude areas caused by the body's inadequate adaptation to low-pressure, low-oxygen environments, leading to organ edema, oxidative stress, and impaired intestinal barrier function. The gastrointestinal tract, being the first to be affected by ischemia and hypoxia, is highly susceptible to injury. This study investigates the role of Lactobacillus delbrueckii subsp. bulgaricus in alleviating acute hypoxic-induced intestinal and tissue damage from the perspective of daily consumed lactic acid bacteria. An acute hypoxia mouse model was established to evaluate tissue injury, oxidative stress, inflammatory responses, and intestinal barrier function in various groups of mice. The results indicate that strain 4L3 significantly mitigated brain and lung edema caused by hypoxia, improved colonic tissue damage, and effectively increased the content of tight junction proteins in the ileum, reducing ileal permeability and alleviating mechanical barrier damage in the intestines due to acute hypoxia. Additionally, 4L3 helped to rebalance the intestinal microbiota. In summary, this study found that Lactobacillus delbrueckii subsp. bulgaricus strain 4L3 could alleviate acute intestinal damage caused by hypoxia, thereby reducing hypoxic stress. This suggests that probiotic lactic acid bacteria that exert beneficial effects in the intestines may alleviate acute injury under hypoxic conditions in mice, offering new insights for the prevention and treatment of AMS.


Subject(s)
Disease Models, Animal , Gastrointestinal Microbiome , Hypoxia , Lactobacillus delbrueckii , Oxidative Stress , Probiotics , Animals , Mice , Hypoxia/complications , Probiotics/pharmacology , Male , Altitude Sickness/microbiology , Altitude Sickness/complications , Tight Junction Proteins/metabolism
9.
BMC Complement Med Ther ; 24(1): 190, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750550

ABSTRACT

BACKGROUND: Bawei Chenxiang Wan (BCW) is among the most effective and widely used therapies for coronary heart disease and angina pectoris in Tibet. However, whether it confers protection through a right-ventricle (RV) myocardial metabolic mechanism is unknown. METHODS: Male Sprague-Dawley rats were orally administrated with BCW, which was injected concurrently with a bolus of Sugen5416, and subjected to hypoxia exposure (SuHx; 5000 m altitude) for 4 weeks. Right ventricular hypertrophy (RVH) in high-altitude heart disease (HAHD) was assessed using Fulton's index (FI; ratio of RV to left ventricle + septum weights) and heart-weight-to-body-weight ratio (HW/BW). The effect of therapeutic administration of BCW on the RVH hemodynamics was assessed through catheterization (mean right ventricular pressure and mean pulmonary artery pressure (mRVP and mPAP, respectively)). Tissue samples were used to perform histological staining, and confirmatory analyses of mRNA and protein levels were conducted to detect alterations in the mechanisms of RVH in HAHD. The protective mechanism of BCW was further verified via cell culture. RESULTS: BCW considerably reduced SuHx-associated RVH, as indicated by macro morphology, HW/BW ratio, FI, mPAP, mRVP, hypertrophy markers, heart function, pathological structure, and myocardial enzymes. Moreover, BCW can alleviate the disorder of glucose and fatty acid metabolism through upregulation of carnitine palmitoyltransferase1ɑ, citrate synthase, and acetyl-CoA and downregulation of glucose transport-4, phosphofructokinase, and pyruvate, which resulted in the reduced levels of free fatty acid and lactic acid and increased aerobic oxidation. This process may be mediated via the regulation of sirtuin 3 (SIRT3)-hypoxia-inducible factor 1α (HIF1α)-pyruvate dehydrogenase kinase (PDK)/pyruvate dehydrogenase (PDH) signaling pathway. Subsequently, the inhibition of SIRT3 expression by 3-TYP (a selective inhibitor of SIRT3) can reverse substantially the anti-RVH effect of BCW in HAHD, as indicated by hypertrophy marker and serum myocardial enzyme levels. CONCLUSIONS: BCW prevented SuHx-induced RVH in HAHD via the SIRT3-HIF1ɑ-PDK/PDH signaling pathway to alleviate the disturbance in fatty acid and glucose metabolism. Therefore, BCW can be used as an alternative drug for the treatment of RVH in HAHD.


Subject(s)
Drugs, Chinese Herbal , Hypertrophy, Right Ventricular , Hypoxia-Inducible Factor 1, alpha Subunit , Rats, Sprague-Dawley , Animals , Male , Rats , Drugs, Chinese Herbal/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypertrophy, Right Ventricular/drug therapy , Sirtuin 3/metabolism , Fatty Acids/metabolism , Signal Transduction/drug effects , Glucose/metabolism , Altitude Sickness/drug therapy , Disease Models, Animal , Pyruvate Dehydrogenase Acetyl-Transferring Kinase
10.
Sci Rep ; 14(1): 11585, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773195

ABSTRACT

High-altitude cerebral edema (HACE) is a severe neurological condition that can occur at high altitudes. It is characterized by the accumulation of fluid in the brain, leading to a range of symptoms, including severe headache, confusion, loss of coordination, and even coma and death. Exosomes play a crucial role in intercellular communication, and their contents have been found to change in various diseases. This study analyzed the metabolomic characteristics of blood exosomes from HACE patients compared to those from healthy controls (HCs) with the aim of identifying specific metabolites or metabolic pathways associated with the development of HACE conditions. A total of 21 HACE patients and 21 healthy controls were recruited for this study. Comprehensive metabolomic profiling of the serum exosome samples was conducted using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS). Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed to identify the metabolic pathways affected in HACE patients. Twenty-six metabolites, including ( +)-camphoric acid, choline, adenosine, adenosine 5'-monophosphate, deoxyguanosine 5'-monophosphate, guanosine, and hypoxanthine-9-ß-D-arabinofuranoside, among others, exhibited significant changes in expression in HACE patients compared to HCs. Additionally, these differentially abundant metabolites were confirmed to be potential biomarkers for HACE. KEGG pathway enrichment analysis revealed several pathways that significantly affect energy metabolism regulation (such as purine metabolism, thermogenesis, and nucleotide metabolism), estrogen-related pathways (the estrogen signaling pathway, GnRH signaling pathway, and GnRH pathway), cyclic nucleotide signaling pathways (the cGMP-PKG signaling pathway and cAMP signaling pathway), and hormone synthesis and secretion pathways (renin secretion, parathyroid hormone synthesis, secretion and action, and aldosterone synthesis and secretion). In patients with HACE, adenosine, guanosine, and hypoxanthine-9-ß-D-arabinofuranoside were negatively correlated with height. Deoxyguanosine 5'-monophosphate is negatively correlated with weight and BMI. Additionally, LPE (18:2/0:0) and pregnanetriol were positively correlated with age. This study identified potential biomarkers for HACE and provided valuable insights into the underlying metabolic mechanisms of this disease. These findings may lead to potential targets for early diagnosis and therapeutic intervention in HACE patients.


Subject(s)
Biomarkers , Brain Edema , Exosomes , Metabolomics , Humans , Male , Female , Adult , Metabolomics/methods , Brain Edema/blood , Brain Edema/metabolism , Brain Edema/etiology , Biomarkers/blood , Exosomes/metabolism , Tandem Mass Spectrometry , Altitude Sickness/blood , Altitude Sickness/metabolism , Middle Aged , Metabolic Networks and Pathways , Metabolome , Case-Control Studies , Altitude
11.
Sci Rep ; 14(1): 10206, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702334

ABSTRACT

Cardiovascular function and adipose metabolism were markedly influenced under high altitudes. However, the interplay between adipokines and heart under hypoxia remains to be elucidated. We aim to explore alterations of adipokines and underlying mechanisms in regulating cardiac function under high altitudes. We investigated the cardiopulmonary function and five adipokines in Antarctic expeditioners at Kunlun Station (4,087 m) for 20 days and established rats exposed to hypobaric hypoxia (5,000 m), simulating Kunlun Station. Antarctic expeditioners exhibited elevated heart rate, blood pressure, systemic vascular resistance, and decreased cardiac pumping function. Plasma creatine phosphokinase-MB (CK-MB) and platelet-endothelial cell adhesion molecule-1 (sPecam-1) increased, and leptin, resistin, and lipocalin-2 decreased. Plasma leptin significantly correlated with altered cardiac function indicators. Additionally, hypoxic rats manifested impaired left ventricular systolic and diastolic function, elevated plasma CK-MB and sPecam-1, and decreased plasma leptin. Chronic hypoxia for 14 days led to increased myocyte hypertrophy, fibrosis, apoptosis, and mitochondrial dysfunction, coupled with reduced protein levels of leptin signaling pathways in myocardial tissues. Cardiac transcriptome analysis revealed leptin was associated with downregulated genes involved in rhythm, Na+/K+ transport, and cell skeleton. In conclusion, chronic hypoxia significantly reduced leptin signaling pathways in cardiac tissues along with significant pathological changes, thus highlighting the pivotal role of leptin in regulation of cardiac function under high altitudes.


Subject(s)
Altitude , Hypoxia , Leptin , Signal Transduction , Leptin/metabolism , Leptin/blood , Animals , Rats , Male , Hypoxia/metabolism , Hypoxia/physiopathology , Humans , Altitude Sickness/metabolism , Altitude Sickness/physiopathology , Myocardium/metabolism , Myocardium/pathology , Adult , Heart/physiopathology
12.
Nat Commun ; 15(1): 3970, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730227

ABSTRACT

High-altitude hypoxia acclimatization requires whole-body physiological regulation in highland immigrants, but the underlying genetic mechanism has not been clarified. Here we use sheep as an animal model for low-to-high altitude translocation. We generate multi-omics data including whole-genome sequences, time-resolved bulk RNA-Seq, ATAC-Seq and single-cell RNA-Seq from multiple tissues as well as phenotypic data from 20 bio-indicators. We characterize transcriptional changes of all genes in each tissue, and examine multi-tissue temporal dynamics and transcriptional interactions among genes. Particularly, we identify critical functional genes regulating the short response to hypoxia in each tissue (e.g., PARG in the cerebellum and HMOX1 in the colon). We further identify TAD-constrained cis-regulatory elements, which suppress the transcriptional activity of most genes under hypoxia. Phenotypic and transcriptional evidence indicate that antenatal hypoxia could improve hypoxia tolerance in offspring. Furthermore, we provide time-series expression data of candidate genes associated with human mountain sickness (e.g., BMPR2) and high-altitude adaptation (e.g., HIF1A). Our study provides valuable resources and insights for future hypoxia-related studies in mammals.


Subject(s)
Altitude Sickness , Altitude , Gene Expression Regulation , Hypoxia , Animals , Altitude Sickness/genetics , Altitude Sickness/metabolism , Sheep , Hypoxia/genetics , Hypoxia/metabolism , Humans , Acclimatization/genetics , Transcription, Genetic , Single-Cell Analysis , Female , Multiomics
14.
Biomed Pharmacother ; 175: 116793, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776674

ABSTRACT

High-altitude myocardial injury (HAMI) represents a critical form of altitude illness for which effective drug therapies are generally lacking. Notoginsenoside R1, a prominent constituent derived from Panax notoginseng, has demonstrated various cardioprotective properties in models of myocardial ischemia/reperfusion injury, sepsis-induced cardiomyopathy, cardiac fibrosis, and myocardial injury. The potential utility of notoginsenoside R1 in the management of HAMI warrants prompt investigation. Following the successful construction of a HAMI model, a series of experimental analyses were conducted to assess the effects of notoginsenoside R1 at dosages of 50 mg/Kg and 100 mg/Kg. The results indicated that notoginsenoside R1 exhibited protective effects against hypoxic injury by reducing levels of CK, CK-MB, LDH, and BNP, leading to improved cardiac function and decreased incidence of arrhythmias. Furthermore, notoginsenoside R1 was found to enhance Nrf2 nuclear translocation, subsequently regulating the SLC7A11/GPX4/HO-1 pathway and iron metabolism to mitigate ferroptosis, thereby mitigating cardiac inflammation and oxidative stress induced by high-altitude conditions. In addition, the application of ML385 has confirmed the involvement of Nrf2 nuclear translocation in the therapeutic approach to HAMI. Collectively, the advantageous impacts of notoginsenoside R1 on HAMI have been linked to the suppression of ferroptosis via Nrf2 nuclear translocation signaling.


Subject(s)
Ferroptosis , Ginsenosides , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Signal Transduction , NF-E2-Related Factor 2/metabolism , Ginsenosides/pharmacology , Animals , Ferroptosis/drug effects , Signal Transduction/drug effects , Male , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Altitude Sickness/drug therapy , Altitude Sickness/metabolism , Rats , Altitude , Disease Models, Animal
15.
Med Intensiva (Engl Ed) ; 48(7): 411-420, 2024 07.
Article in English | MEDLINE | ID: mdl-38704303

ABSTRACT

Critical pregnancy at high altitudes increases morbidity and mortality from 2500 m above sea level. In addition to altitude, there are other influential factors such as social inequalities, cultural, prehospital barriers, and lack the appropriate development of healthcare infrastructure. The most frequent causes of critical pregnancy leading to admission to Intensive Care Units are pregnancy hypertensive disorders (native residents seem to be more protected), hemorrhages and infection/sepsis. In Latin America, there are 32 Intensive Care Units above 2500 m above sea level. Arterial blood gases at altitude are affected by changes in barometric pressure. The analysis of their values provides very useful information for the management of obstetric emergencies at very high altitude, especially respiratory and metabolic pathologies.


Subject(s)
Altitude , Pregnancy Complications , Humans , Pregnancy , Latin America/epidemiology , Female , Altitude Sickness , Hypertension, Pregnancy-Induced , Critical Illness , Intensive Care Units , Blood Gas Analysis
16.
Exp Physiol ; 109(7): 1080-1098, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38747161

ABSTRACT

High altitude (HA) ascent imposes systemic hypoxia and associated risk of acute mountain sickness. Acute hypoxia elicits a hypoxic ventilatory response (HVR), which is augmented with chronic HA exposure (i.e., ventilatory acclimatization; VA). However, laboratory-based HVR tests lack portability and feasibility in field studies. As an alternative, we aimed to characterize area under the curve (AUC) calculations on Fenn diagrams, modified by plotting portable measurements of end-tidal carbon dioxide ( P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) against peripheral oxygen saturation ( S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) to characterize and quantify VA during incremental ascent to HA (n = 46). Secondarily, these participants were compared with a separate group following the identical ascent profile whilst self-administering a prophylactic oral dose of acetazolamide (Az; 125 mg BID; n = 20) during ascent. First, morning P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ and S p O 2 ${S_{{\mathrm{p}}{{\mathrm{O}}_{\mathrm{2}}}}}$ measurements were collected on 46 acetazolamide-free (NAz) lowland participants during an incremental ascent over 10 days to 5160 m in the Nepal Himalaya. AUC was calculated from individually constructed Fenn diagrams, with a trichotomized split on ranked values characterizing the smallest, medium, and largest magnitudes of AUC, representing high (n = 15), moderate (n = 16), and low (n = 15) degrees of acclimatization. After characterizing the range of response magnitudes, we further demonstrated that AUC magnitudes were significantly smaller in the Az group compared to the NAz group (P = 0.0021), suggesting improved VA. These results suggest that calculating AUC on modified Fenn diagrams has utility in assessing VA in large groups of trekkers during incremental ascent to HA, due to the associated portability and congruency with known physiology, although this novel analytical method requires further validation in controlled experiments. HIGHLIGHTS: What is the central question of this study? What are the characteristics of a novel methodological approach to assess ventilatory acclimatization (VA) with incremental ascent to high altitude (HA)? What is the main finding and its importance? Area under the curve (AUC) magnitudes calculated from modified Fenn diagrams were significantly smaller in trekkers taking an oral prophylactic dose of acetazolamide compared to an acetazolamide-free group, suggesting improved VA. During incremental HA ascent, quantifying AUC using modified Fenn diagrams is feasible to assess VA in large groups of trekkers with ascent, although this novel analytical method requires further validation in controlled experiments.


Subject(s)
Acclimatization , Acetazolamide , Altitude Sickness , Altitude , Hypoxia , Acetazolamide/pharmacology , Humans , Acclimatization/physiology , Male , Adult , Altitude Sickness/physiopathology , Female , Hypoxia/physiopathology , Carbonic Anhydrase Inhibitors/pharmacology , Young Adult , Carbon Dioxide/metabolism , Oxygen Saturation/physiology , Oxygen Saturation/drug effects , Pulmonary Ventilation/drug effects , Pulmonary Ventilation/physiology
17.
J Proteomics ; 302: 105195, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38734407

ABSTRACT

Different populations exhibit varying pathophysiological responses to plateau environments. Therefore, it is crucial to identify molecular markers in body fluids with high specificity and sensitivity to aid in determination. Proteomics offers a fresh perspective for investigating protein changes linked to diseases. We utilize urine as a specific biomarker for early chronic mountain sickness (CMS) detection, as it is a simple-to-collect biological fluid. We collected urine samples from three groups: plains health, plateau health and CMS. Using DIA's proteomic approach, we found differentially expressed proteins between these groups, which will be used as a basis for future studies to identify protein markers. Compared with the healthy plain population, 660 altering proteins were identified in plateau health, which performed the resistance to altitude response function by boosting substance metabolism and reducing immune stress function. Compared to the healthy plateau population, the CMS group had 140 different proteins identified, out of which 8 were potential biomarkers for CMS. Our study has suggested that CMS may be closely related to increased thyroid hormone levels, oxidative damage to the mitochondria, impaired cell detoxification function and inhibited hydrolase activity. SIGNIFICANCE: Our team has compiled a comprehensive dataset of urine proteomics for AMS disease. We successfully identified differentially expressed proteins between healthy and AMS groups using the DIA proteomic approach. We discovered that 660 proteins were altered in plateau health compared to the healthy plain population, resulting in a heightened resistance to altitude response function by boosting substance metabolism and reducing immune stress function. Additionally, we pinpointed 140 different proteins in the AMS group compared to the healthy plateau population, with 8 showing potential as biomarkers for AMS. Our findings suggest that the onset of AMS may be closely linked to increased thyroid hormone levels, oxidative damage to the mitochondria, impaired cell detoxification function and inhibited hydrolase activity.


Subject(s)
Altitude Sickness , Biomarkers , Proteomics , Humans , Altitude Sickness/urine , Biomarkers/urine , Proteomics/methods , Male , Adult , Chronic Disease , Young Adult , Female , Mass Spectrometry
18.
BMC Cardiovasc Disord ; 24(1): 223, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658849

ABSTRACT

BACKGROUND: Long-term exposure to a high altitude environment with low pressure and low oxygen could cause abnormalities in the structure and function of the heart. Myocardial strain is a sensitive indicator for assessing myocardial dysfunction, monitoring myocardial strain is of great significance for the early diagnosis and treatment of high altitude heart-related diseases. This study applies cardiac magnetic resonance tissue tracking technology (CMR-TT) to evaluate the changes in left ventricular myocardial function and structure in rats in high altitude environment. METHODS: 6-week-old male rats were randomized into plateau hypoxia rats (plateau group, n = 21) as the experimental group and plain rats (plain group, n = 10) as the control group. plateau group rats were transported from Chengdu (altitude: 360 m), a city in a plateau located in southwestern China, to the Qinghai-Tibet Plateau (altitude: 3850 m), Yushu, China, and then fed for 12 weeks there, while plain group rats were fed in Chengdu(altitude: 360 m), China. Using 7.0 T cardiac magnetic resonance (CMR) to evaluate the left ventricular ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV) and stroke volume (SV), as well as myocardial strain parameters including the peak global longitudinal (GLS), radial (GRS), and circumferential strain (GCS). The rats were euthanized and a myocardial biopsy was obtained after the magnetic resonance imaging scan. RESULTS: The plateau rats showed more lower left ventricular GLS and GRS (P < 0.05) than the plain rats. However, there was no statistically significant difference in left ventricular EDV, ESV, SV, EF and GCS compared to the plain rats (P > 0.05). CONCLUSIONS: After 12 weeks of exposure to high altitude low-pressure hypoxia environment, the left ventricular global strain was partially decreased and myocardium is damaged, while the whole heart ejection fraction was still preserved, the myocardial strain was more sensitive than the ejection fraction in monitoring cardiac function.


Subject(s)
Altitude , Stroke Volume , Ventricular Function, Left , Animals , Male , Rats, Sprague-Dawley , Altitude Sickness/physiopathology , Altitude Sickness/diagnostic imaging , Predictive Value of Tests , Magnetic Resonance Imaging, Cine , Magnetic Resonance Imaging , Time Factors , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Rats , Hypoxia/physiopathology
20.
Nitric Oxide ; 146: 58-63, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38583684

ABSTRACT

Nitric oxide was first identified as a novel and effective treatment for persistent pulmonary hypertension of the newborn (PPHN), and has since been found to be efficacious in treating acute respiratory distress syndrome (ARDS) and pulmonary hypertension. Physicians and researchers have also found it shows promise in resource-constrained settings, both within and outside of the hospital, such as in high altitude pulmonary edema (HAPE) and COVID-19. The treatment has been well tolerated in these settings, and is both efficacious and versatile when studied across a variety of clinical environments. Advancements in inhaled nitric oxide continue, and the gas is worthy of investigation as physicians contend with new respiratory and cardiovascular illnesses, as well as unforeseen logistical challenges.


Subject(s)
COVID-19 , Nitric Oxide , Humans , Nitric Oxide/administration & dosage , Nitric Oxide/metabolism , Nitric Oxide/therapeutic use , SARS-CoV-2 , Altitude Sickness/drug therapy , Persistent Fetal Circulation Syndrome/drug therapy , Hypertension, Pulmonary/drug therapy , Administration, Inhalation , Pulmonary Edema
SELECTION OF CITATIONS
SEARCH DETAIL
...