ABSTRACT
In recent years, multidrug resistance of Shigella strains associated with genetic elements like pathogenicity islands, have become a public health problem. The Shigella resistance locus pathogenicity island (SRL PAI) of S. flexneri 2a harbors a 16Kbp region that contributes to the multidrug resistance phenotype. However, there is not much information about other functions such as metabolic, physiologic or ecological ones. For that, wild type S. flexneri YSH6000 strain, and its spontaneous SRL PAI mutant, 1363, were used to study the contribution of the island in different growth conditions. Interestingly, when both strains were compared by the Phenotype Microarrays, the ability to metabolize D-aspartic acid as a carbon source was detected in the wild type strain but not in the mutant. When D-aspartate was added to minimal medium with other carbon sources such as mannose or mannitol, the SRL PAI-positive strain was able to metabolize it, while the SRL PAI-negative strain did not. In order to identify the genetic elements responsible for this phenotype, a bioinformatic analysis was performed and two genes belonging to SRL PAI were found: orf8, coding for a putative aspartate racemase, and orf9, coding for a transporter. Thus, it was possible to measure, by an indirect analysis of racemization activity in minimal medium supplemented only with D-aspartate, that YSH6000 strain was able to transform the D-form into L-, while the mutant was impaired to do it. When the orf8-orf9 region from SRL island was transformed into S. flexneri and S. sonnei SRL PAI-negative strains, the phenotype was restored. Although, when single genes were cloned into plasmids, no complementation was observed. Our results strongly suggest that the aspartate racemase and the transporter encoded in the SRL pathogenicity island are important for bacterial survival in environments rich in D-aspartate.
Subject(s)
Amino Acid Isomerases/metabolism , D-Aspartic Acid/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Genomic Islands , Shigella flexneri/genetics , Amino Acid Isomerases/genetics , Bacterial Proteins/metabolism , D-Aspartic Acid/analysis , Genes, Bacterial , Mannose/metabolism , Open Reading Frames/genetics , Phenotype , Shigella flexneri/enzymology , Shigella flexneri/growth & development , Shigella sonnei/geneticsABSTRACT
BACKGROUND: Proline racemase (PRAC) enzymes of Trypanosoma cruzi (TcPRAC), the agent of Chagas disease, and Trypanosoma vivax (TvPRAC), the agent of livestock trypanosomosis, have been implicated in the B-cells polyclonal activation contributing to immunosuppression and the evasion of host defences. The similarity to prokaryotic PRAC and the absence in Trypanosoma brucei and Trypanosoma congolense have raised many questions about the origin, evolution, and functions of trypanosome PRAC (TryPRAC) enzymes. FINDINGS: We identified TryPRAC homologs as single copy genes per haploid genome in 12 of 15 Trypanosoma species, including T. cruzi and T. cruzi marinkellei, T. dionisii, T. erneyi, T. rangeli, T. conorhini and T. lewisi, all parasites of mammals. Polymorphisms in TcPRAC genes matched T. cruzi genotypes: TcI-TcIV and Tcbat have unique genes, while the hybrids TcV and TcVI contain TcPRACA and TcPRACB from parental TcII and TcIII, respectively. PRAC homologs were identified in trypanosomes from anurans, snakes, crocodiles, lizards, and birds. Most trypanosomes have intact PRAC genes. T. rangeli possesses only pseudogenes, maybe in the process of being lost. T. brucei, T. congolense and their allied species, except the more distantly related T. vivax, have completely lost PRAC genes. CONCLUSIONS: The genealogy of TryPRAC homologs supports an evolutionary history congruent with the Trypanosoma phylogeny. This finding, together with the synteny of PRAC loci, the relationships with prokaryotic PRAC inferred by taxon-rich phylogenetic analysis, and the absence in trypanosomatids of any other genera or in bodonids or euglenids suggest that a common ancestor of Trypanosoma gained PRAC gene by a single and ancient horizontal gene transfer (HGT) from a Firmicutes bacterium more closely related to Gemella and other species of Bacilli than to Clostridium as previously suggested. Our broad phylogenetic study allowed investigation of TryPRAC evolution over long and short timescales. TryPRAC genes diverged to become species-specific and genotype-specific for T. cruzi and T. rangeli, with resulting genealogies congruent with those obtained using vertically inherited genes. The inventory of TryPRAC genes described here is the first step toward the understanding of the roles of PRAC enzymes in trypanosomes differing in life cycles, virulence, and infection and immune evasion strategies.
Subject(s)
Amino Acid Isomerases/genetics , Evolution, Molecular , Firmicutes/genetics , Gene Transfer, Horizontal , Phylogeny , Protozoan Proteins/genetics , Trypanosoma/genetics , Amino Acid Sequence , Firmicutes/enzymology , Immune Evasion , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Synteny , Trypanosoma/enzymology , Trypanosoma/immunologyABSTRACT
Brucellosis, a disease caused by the gram-negative bacterium Brucella spp., is a widespread zoonosis that inflicts important animal and human health problems, especially in developing countries. One of the hallmarks of Brucella infection is its capacity to establish a chronic infection, characteristic that depends on a wide repertoire of virulence factors among which are immunomodulatory proteins such as PrpA (encoding the proline racemase protein A or hydroxyproline-2-epimerase), involved in the establishment of the chronic phase of the infectious process that we have previously identified and characterized. We report here that, in vivo, Brucella abortus prpA is responsible for an increment in the B-cell number and in the specific antibody response and that these antibodies promote cell infection. We additionally found that Brucella alters the cytokine levels of IFN-γ, IL-10, TGFß1 and TNFα during the acute phase of the infectious process in a prpA dependent manner.
Subject(s)
Amino Acid Isomerases/immunology , Bacterial Proteins/immunology , Brucella abortus/enzymology , Brucellosis/immunology , Brucellosis/microbiology , Amino Acid Isomerases/genetics , Animals , Antibodies, Bacterial/immunology , B-Lymphocytes/immunology , Bacterial Proteins/genetics , Brucella abortus/genetics , Brucella abortus/immunology , Brucellosis/genetics , Female , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-10/metabolism , Mice , Mice, Inbred BALB C , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Virulence Factors/genetics , Virulence Factors/immunologyABSTRACT
Brucella spp. and Trypanosoma cruzi are two intracellular pathogens that have no evolutionary common origins but share a similar lifestyle as they establish chronic infections for which they have to circumvent the host immune response. Both pathogens have a virulence factor (prpA in Brucella and tcPrac in T. cruzi) that induces B-cell proliferation and promotes the establishment of the chronic phase of the infectious process. We show here that, even though PrpA promotes B-cell proliferation, it targets macrophages in vitro and is translocated to the cytoplasm during the intracellular replication phase. We observed that PrpA-treated macrophages induce the secretion of a soluble factor responsible for B-cell proliferation and identified nonmuscular myosin IIA (NMM-IIA) as a receptor required for binding and function of this virulence factor. Finally, we show that the Trypanosoma cruzi homologue of PrpA also targets macrophages to induce B-cell proliferation through the same receptor, indicating that this virulence strategy is conserved between a bacterial and a protozoan pathogen.
Subject(s)
B-Lymphocytes/immunology , Bacterial Proteins/immunology , Cell Proliferation , Macrophages/immunology , Virulence Factors/immunology , Amino Acid Isomerases/genetics , Amino Acid Isomerases/immunology , Amino Acid Isomerases/metabolism , Animals , B-Lymphocytes/cytology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Blotting, Western , Brucella abortus/immunology , Brucella abortus/metabolism , Brucella abortus/pathogenicity , Cell Line , Cells, Cultured , Female , Macrophages/parasitology , Macrophages/virology , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Nonmuscle Myosin Type IIA/immunology , Nonmuscle Myosin Type IIA/metabolism , Protein Binding , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Spleen/cytology , Spleen/immunology , Spleen/metabolism , Trypanosoma cruzi/immunology , Trypanosoma cruzi/metabolism , Trypanosoma cruzi/pathogenicity , Virulence/immunology , Virulence Factors/genetics , Virulence Factors/metabolismABSTRACT
Trypanosoma cruzi proline racemases (TcPRAC) are homodimeric enzymes that interconvert the L and D-enantiomers of proline. At least two paralogous copies of proline racemase (PR) genes are present per parasite haploid genome and they are differentially expressed during T. cruzi development. Non-infective epimastigote forms that overexpress PR genes differentiate more readily into metacyclic infective forms that are more invasive to host cells, indicating that PR participates in mechanisms of virulence acquisition. Using a combination of biochemical and enzymatic methods, we show here that, in addition to free D-amino acids, non-infective epimastigote and infective metacyclic parasite extracts possess peptides composed notably of D-proline. The relative contribution of TcPRAC to D-proline availability and its further assembly into peptides was estimated through the use of wild-type parasites and parasites over-expressing TcPRAC genes. Our data suggest that D-proline-bearing peptides, similarly to the mucopeptide layer of bacterial cell walls, may be of benefit to T. cruzi by providing resistance against host proteolytic mechanisms.
Subject(s)
Amino Acid Isomerases/genetics , Protozoan Proteins/chemistry , Trypanosoma cruzi/chemistry , Amino Acid Isomerases/metabolism , Gene Expression Regulation , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolismABSTRACT
Trypanosoma cruzi proline racemases (TcPRAC) are homodimeric enzymes that interconvert the L and D-enantiomers of proline. At least two paralogous copies of proline racemase (PR) genes are present per parasite haploid genome and they are differentially expressed during T. cruzi development. Non-infective epimastigote forms that overexpress PR genes differentiate more readily into metacyclic infective forms that are more invasive to host cells, indicating that PR participates in mechanisms of virulence acquisition. Using a combination of biochemical and enzymatic methods, we show here that, in addition to free D-amino acids, non-infective epimastigote and infective metacyclic parasite extracts possess peptides composed notably of D-proline. The relative contribution of TcPRAC to D-proline availability and its further assembly into peptides was estimated through the use of wild-type parasites and parasites over-expressing TcPRAC genes. Our data suggest that D-proline-bearing peptides, similarly to the mucopeptide layer of bacterial cell walls, may be of benefit to T. cruzi by providing resistance against host proteolytic mechanisms.
Subject(s)
Amino Acid Isomerases/genetics , Protozoan Proteins/chemistry , Trypanosoma cruzi/chemistry , Amino Acid Isomerases/metabolism , Gene Expression Regulation , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolismABSTRACT
Microbial pathogens with the ability to establish chronic infections have evolved strategies to actively modulate the host immune response. Brucellosis is a disease caused by a Gram-negative intracellular pathogen that if not treated during the initial phase of the infection becomes chronic as the bacteria persist for the lifespan of the host. How this pathogen and others achieve this action is a largely unanswered question. We report here the identification of a Brucella abortus gene (prpA) directly involved in the immune modulation of the host. PrpA belongs to the proline-racemase family and elicits a B lymphocyte polyclonal activation that depends on the integrity of its proline-racemase catalytic site. Stimulation of splenocytes with PrpA also results in IL-10 secretion. Construction of a B. abortus-prpA mutant allowed us to assess the contribution of PrpA to the infection process. Mice infected with B. abortus induced an early and transient nonresponsive status of splenocytes to both Escherichia coli LPS and ConA. This phenomenon was not observed when mice were infected with a B. abortus-prpA mutant. Moreover, the B. abortus-prpA mutant had a reduced capacity to establish a chronic infection in mice. We propose that an early and transient nonresponsive immune condition of the host mediated by this B cell polyclonal activator is required for establishing a successful chronic infection by Brucella.
Subject(s)
Amino Acid Isomerases/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Brucella abortus/metabolism , Brucellosis/pathology , Brucellosis/virology , Virulence Factors/metabolism , Amino Acid Isomerases/classification , Amino Acid Isomerases/genetics , Amino Acid Isomerases/immunology , Animals , B-Lymphocytes/virology , Binding Sites , Brucella abortus/genetics , Brucella abortus/immunology , Brucellosis/immunology , Female , Interleukin-10/metabolism , Membrane Fusion , Mice , Mice, Inbred BALB C , Mitosis , Spleen/cytology , Spleen/metabolism , Virulence Factors/classification , Virulence Factors/genetics , Virulence Factors/immunologyABSTRACT
Myelination in the CNS is accompanied by the differentiation of oligodendrocytes as well as the coordinate expression of a group of myelin-specific genes, including those encoding proteolipid protein and myelin basic protein. In order to compare the timing of the onset of myelin gene expression with the known sequence of oligodendrocyte maturation, we analyzed cerebral white matter cultures grown in the presence of platelet-derived growth factor for expression of the mRNAs encoding these myelin proteins, as well as for the numbers of oligodendrocytes and their precursors. Platelet-derived growth factor treatment increased the rate of oligodendrocyte precursor cell proliferation and the number of mature oligodendrocytes. Platelet-derived growth factor also produced a significant increase in oligodendrocyte precursors prior to an increase in their proliferation rate, suggesting that platelet-derived growth factor may also have an effect on oligodendrocyte precursor survival. Furthermore, steady-state levels of proteolipid protein and myelin basic protein mRNAs increased within 24 of the addition of platelet-derived growth factor, before any significant change in the numbers of oligodendrocytes or their precursors, demonstrating that platelet-derived growth factor also regulates myelin gene expression. At later times after platelet-derived growth factor addition, however, when the number of oligodendrocytes and their precursors was rapidly increasing, the increase in proteolipid protein and myelin basic protein mRNA levels was proportionally much greater than the increase in oligodendroglial lineage cells, suggesting that platelet-derived growth factor also increased the number of proteolipid protein and myelin basic protein transcripts per cell; this interpretation was confirmed by in situ hybridization analysis. Finally, by examining the co-expression of galactocerebroside using the epitopes recognized by the Ranscht monoclonal antibody and proteolipid protein mRNA in individual cells by a combination of in situ hybridization and immunohistochemistry, we demonstrated that oligodendrocytes express proteolipid protein and myelin basic protein mRNA. Oligodendrocyte maturation, as measured by surface galactocerebroside expression, is thus contemporaneous with the activation of myelin-specific gene expression.