Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Haematol ; 205(1): 175-188, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38736325

ABSTRACT

B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) blasts strictly depend on the transport of extra-cellular asparagine (Asn), yielding a rationale for L-asparaginase (ASNase) therapy. However, the carriers used by ALL blasts for Asn transport have not been identified yet. Exploiting RS4;11 cells as BCP-ALL model, we have found that cell Asn is lowered by either silencing or inhibition of the transporters ASCT2 or SNAT5. The inhibitors V-9302 (for ASCT2) and GluγHA (for SNAT5) markedly lower cell proliferation and, when used together, suppress mTOR activity, induce autophagy and cause a severe nutritional stress, leading to a proliferative arrest and a massive cell death in both the ASNase-sensitive RS4;11 cells and the relatively ASNase-insensitive NALM-6 cells. The cytotoxic effect is not prevented by coculturing leukaemic cells with primary mesenchymal stromal cells. Leukaemic blasts of paediatric ALL patients express ASCT2 and SNAT5 at diagnosis and undergo marked cytotoxicity when exposed to the inhibitors. ASCT2 expression is positively correlated with the minimal residual disease at the end of the induction therapy. In conclusion, ASCT2 and SNAT5 are the carriers exploited by ALL cells to transport Asn, and ASCT2 expression is associated with a lower therapeutic response. ASCT2 may thus represent a novel therapeutic target in BCP-ALL.


Subject(s)
Amino Acid Transport System ASC , Asparagine , Cell Survival , Minor Histocompatibility Antigens , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/genetics , Asparagine/metabolism , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Survival/drug effects , Amino Acid Transport System A/metabolism , Amino Acid Transport System A/genetics , Cell Line, Tumor , Asparaginase/pharmacology , Asparaginase/therapeutic use , Cell Proliferation/drug effects , Child
2.
Biochem Biophys Res Commun ; 716: 150039, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38701556

ABSTRACT

The objective of this study was to better characterize the role of the glutamine transporter SLC38A1 in cervical cancer and explore the underlying mechanisms. Data from public databases and clinical cervical cancer tissue samples were used to assess the expression of SLC38A1 and its prognostic significance. Immunohistochemical staining, qRT-PCR, and Western blotting were used to evaluate the expression of relevant genes and proteins. Cell viability, cell cycle, apoptosis, and intracellular glutamine content were measured using CCK-8, flow cytometry, and biochemical assays. Additionally, the RNA immunoprecipitation (RIP) assay was used to examine the impact of METTL3/IGF2BP3 on the m6A modification of the SLC38A1 3'UTR. Both cervical cancer specimens and cells showed significantly increased expression of SLC38A1 and its expression correlated with an unfavorable prognosis. Knockdown of SLC38A1 inhibited cell viability and cell cycle progression, induced apoptosis, and suppressed tumor growth in vivo. Glutaminase-1 inhibitor CB-839 reversed the effects of SLC38A1 overexpression. METTL3 promoted m6A modification of SLC38A1 and enhanced its mRNA stability through IGF2BP3 recruitment. Moreover, METTL3 silencing inhibited cell viability, cell cycle progression, intracellular glutamine content, and induced apoptosis, but these effects were reversed by SLC38A1 overexpression. In conclusion, METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer progression. SLC38A1 inhibition is a potential therapeutic strategy for cervical cancer.


Subject(s)
Amino Acid Transport System A , Methyltransferases , RNA Methylation , Uterine Cervical Neoplasms , Animals , Female , Humans , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Amino Acid Transport System A/metabolism , Amino Acid Transport System A/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Gene Expression Regulation, Neoplastic , Methylation , Methyltransferases/metabolism , Methyltransferases/genetics , Mice, Nude , Prognosis , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , RNA Methylation/genetics
3.
J Oral Pathol Med ; 53(7): 458-467, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38802300

ABSTRACT

BACKGROUND: Radiotherapy (RT) can drive cancer cells to enter a state of cellular senescence in which cells can secrete senescence-associated secretory phenotype (SASP) and produce small extracellular vesicles (sEVs) to interact with cells in the tumor microenvironment (TME). Tumor-derived sEVs that are taken up by recipient cells contribute to cancer cell metabolic plasticity, resistance to anticancer therapy, and adaptation to the TME. However, how radiation-induced sEVs support oral squamous cell carcinoma (OSCC) progression remains unclear. METHODS: Beta-galactosidase staining and SASP mRNA expression analysis were used to evaluate the senescence-associated activity of OSCC cells after irradiation. Nanoparticle tracking analysis was performed to identify radiation-induced sEVs. Liquid chromatography-tandem mass spectrometry (LC-MS) was used to explore changes in the levels of proteins in radiation-induced sEVs. Cell Counting Kit-8 and colony formation assays were performed to investigate the function of radiation-induced SASP and sEVs in vitro. A xenograft tumor model was established to investigate the functions of radiation-induced sEVs and V-9302 in vivo as well as the underlying mechanisms. Bioinformatics analysis was performed to determine the relationship between glutamine metabolism and OSCC recurrence. RESULTS: We determined that the radiation-induced SASP triggered OSCC cell proliferation. Additionally, radiation-induced sEVs exacerbated OSCC cell malignancy. LC-MS/MS and bioinformatics analyses revealed that SLC1A5, which is a cellular receptor that participates in glutamine uptake, was significantly enriched in radiation-induced sEVs. In vitro and in vivo, inhibiting SLC1A5 could block the oncogenic effects of radiation-induced sEVs in OSCC. CONCLUSION: Radiation-induced sEVs might promote the proliferation of unirradiated cancer cells by enhancing glutamine metabolism; this might be a novel molecular mechanism underlying radiation resistance in OSCC patients.


Subject(s)
Carcinoma, Squamous Cell , Disease Progression , Exosomes , Glutamine , Mouth Neoplasms , Glutamine/metabolism , Humans , Mouth Neoplasms/radiotherapy , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Carcinoma, Squamous Cell/radiotherapy , Carcinoma, Squamous Cell/metabolism , Animals , Exosomes/metabolism , Cell Line, Tumor , Tumor Microenvironment , Mice , Minor Histocompatibility Antigens/metabolism , Mice, Nude , Cellular Senescence , Mice, Inbred BALB C , Amino Acid Transport System A/metabolism , Amino Acid Transport System ASC/metabolism
4.
PLoS One ; 19(4): e0301356, 2024.
Article in English | MEDLINE | ID: mdl-38635778

ABSTRACT

BACKGROUND: CircTADA2A has been demonstrated to play critical roles in the occurrence and development of human cancer. However, the expression pattern and biological mechanisms of circTADA2A in melanoma remains largely unknown. METHODS: CircTADA2A were detected by quantitative real-time RT-PCR (qRT-PCR) and validated by Sanger sequencing. Function of circTADA2A and its protein partner in melanoma cells was investigated using RNA interference and overexpression assays. Interaction of circTADA2A, CCHC-type zinc finger nucleic acid binding protein (CNBP) and solute carrier family 38 member 1 (SLC38A1) was confirmed by RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter assay. The expression of genes and proteins were detected by qRT-PCR and western blot assays. RESULTS: Data from the investigation showed that a novel circRNA (circTADA2A, hsa_circ_0043278) was markedly downregulated in melanoma cells. Functionally, circTADA2A repressed cell proliferation, migration, invasion in melanoma cells. Mechanistically, circTADA2A interacted with CNBP, acting to suppress the binding of CNBP to the SLC38A1 promoter and subsequently restrained SLC38A1 transcription, which resulting in repression of melanoma progression. CONCLUSIONS: CircTADA2A suppresses melanoma progression by regulating CNBP/SLC38A1 axis, indicating a potential therapeutic target in melanoma.


Subject(s)
Melanoma , MicroRNAs , Humans , Melanoma/genetics , Melanoma/metabolism , RNA/genetics , RNA Interference , RNA, Circular/genetics , MicroRNAs/genetics , Cell Proliferation/genetics , Cell Movement , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Amino Acid Transport System A/genetics , Amino Acid Transport System A/metabolism
5.
Cancer Biol Ther ; 25(1): 2315651, 2024 12 31.
Article in English | MEDLINE | ID: mdl-38390840

ABSTRACT

Metabolic reprogramming plays a critical role in hepatocarcinogenesis. However, the mechanisms regulating metabolic reprogramming in primary liver cancer (PLC) are unknown. Differentially expressed miRNAs between PLC and normal tissues were identified using bioinformatic analysis. RT-qPCR was used to determine miR-10b-5p and SCL38A2 expression levels. IHC, WB, and TUNEL assays were used to assess the proliferation and apoptosis of the tissues. The proliferation, migration, invasion, and apoptosis of PLC cells were determined using the CCK-8 assay, Transwell assay, and flow cytometry. The interaction between miR-10b-5p and SLC38A2 was determined using dual-luciferase reporter assay. A PLC xenograft model in BALB/c nude mice was established, and tumorigenicity and SLC38A2 expression were estimated. Finally, liquid chromatography - mass spectrometry (LC-MS) untargeted metabolomics was used to analyze the metabolic profiles of xenograft PLC tissues in nude mice. miR-10b-5p was a key molecule in the regulation of PLC. Compared with para-carcinoma tissues, miR-10b-5p expression was increased in tumor tissues. miR-10b-5p facilitated proliferation, migration, and invasion of PLC cells. Mechanistically, miR-10b-5p targeted SLC38A2 to promote PLC tumor growth. Additionally, miR-10b-5p altered the metabolic features of PLC in vivo. Overexpression of miR-10b-5p resulted in remarkably higher amounts of lumichrome, folic acid, octanoylcarnitine, and Beta-Nicotinamide adenine dinucleotide, but lower levels of 2-methylpropanal, glycyl-leucine, and 2-hydroxycaproic acid. miR-10b-5p facilitates the metabolic reprogramming of PLC by targeting SLC38A2, which ultimately boosts the proliferation, migration, and invasion of PLC cells. Therefore, miR-10b-5p and SLC38A2 are potential targets for PLC diagnosis and treatment.


Subject(s)
Liver Neoplasms , MicroRNAs , Animals , Mice , Humans , Mice, Nude , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Carcinogenesis , Cell Proliferation , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Apoptosis , Amino Acid Transport System A/metabolism
6.
Cell Signal ; 117: 111110, 2024 05.
Article in English | MEDLINE | ID: mdl-38382691

ABSTRACT

Glutamine addiction is a significant hallmark of metabolic reprogramming in tumors and is crucial to the progression of cancer. Nevertheless, the regulatory mechanisms of glutamine metabolism in endometrial cancer (EC) remains elusive. In this research, we found that elevated expression of CENPA and solute carrier family 38 member 1 (SLC38A1) were firmly associated with worse clinical stage and unfavorable outcomes in EC patients. In addition, ectopic overexpression or silencing of CENPA could either enhance or diminish glutamine metabolism and tumor progression in EC. Mechanistically, CENPA directly regulated the transcriptional activity of the target gene, SLC38A1, leading to enhanced glutamine uptake and metabolism, thereby promoting EC progression. Notably, a prognostic model utilizing the expression levels of CENPA and SLC38A1 genes independently emerged as a prognostic factor for EC. More importantly, CENPA and SLC38A1 were significantly elevated and positively correlated, as well as indicative of poor prognosis in multiple cancers. In brief, our study confirmed that CENPA is a critical transcription factor involved in glutamine metabolism and tumor progression through modulating SLC38A1. This revelation suggests that targeting CENPA could be an appealing therapeutic approach to address pan-cancer glutamine addiction.


Subject(s)
Amino Acid Transport System A , Centromere Protein A , Endometrial Neoplasms , Glutamine , Female , Humans , Amino Acid Transport System A/genetics , Amino Acid Transport System A/metabolism , Cell Cycle Proteins/metabolism , Cell Proliferation , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Glutamine/metabolism , Histones , Transcription Factors/metabolism , Centromere Protein A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL