Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 138.368
1.
Eur. j. psychiatry ; 38(2): [100229], Apr.-Jun. 2024.
Article En | IBECS | ID: ibc-231864

Background and objectives Alterations in the molecular mechanisms of specific amino acids (AAs) may be implicated in the pathophysiology of schizophrenia (SZ). However, little is known about antipsychotic drugs influence on levels of AAs. This study aimed to further explore antipsychotics' effects on AAs and serum lipid levels in first-episode SZ. Methods Eighty subjects with the International Classification of Diseases, Tenth Edition (ICD-10) criteria-defined SZ were enrolled. The levels of 31 AAs were measured in plasma samples using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Results Ten AAs (i.e., citrulline, sarcosine, tyrosine, leucine, proline, hydroxyproline, kynurenine, tryptophan, valine and isoleucine) were observed to be higher and three AAs (i.e., GABA, aminobutyric acid and asparaginic acid) were lower in 80 patients with first-episode SZ after various antipsychotics treatment. In addition, there were 1 out of 31 AAs altered after olanzapine treatment and there were only 2 out of 31 AAs altered after risperidone treatment. Furthermore, serum triglyceride (TG) was markedly upregulated after olanzapine treatment, while Apolipoprotein A1 (ApoA1) was generally upregulated after risperidone treatment in patients with first-episode SZ. Conclusions Taken together, antipsychotic treatment can affect the plasma levels of AAs in patients with first-episode SZ, and olanzapine and risperidone have differential effects on the levels of AAs. (AU)


Humans , Male , Female , Adolescent , Young Adult , Adult , Middle Aged , Aged , Antipsychotic Agents/therapeutic use , Amino Acids , Schizophrenia/drug therapy , Prospective Studies
2.
J Sep Sci ; 47(9-10): e2400122, 2024 May.
Article En | MEDLINE | ID: mdl-38772731

In this study, several amino acids deep eutectic solvents were prepared using L-valine and L-leucine as hydrogen bond acceptors, and L-lactic acid and glycerol as hydrogen bond donors. These amino acids' deep eutectic solvents were first used as buffer additives to construct several synergistic systems along with maltodextrin in capillary electrophoresis for the enantioseparations of four racemic drugs. Compared with single maltodextrin system, the separations of model drugs in the synergistic systems were significantly improved. Some key parameters affecting chiral separation such as maltodextrin concentration, deep eutectic solvent concentration, buffer pH, and applied voltage were optimized. In order to further understand the specific mechanism of the amino acids deep eutectic solvents in improving chiral separation, we first calculated the binding constants of maltodextrin with enantiomers using the capillary electrophoresis method in the two separation modes, respectively. We also used molecular simulation to calculate the binding free energy of maltodextrin with enantiomers. It is the first time that amino acids deep eutectic solvents were used for enantioseparation in capillary electrophoresis, which will greatly promote the development of deep eutectic solvents in the field of chiral separation.


Amino Acids , Electrophoresis, Capillary , Polysaccharides , Stereoisomerism , Amino Acids/chemistry , Amino Acids/isolation & purification , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Deep Eutectic Solvents/chemistry , Hydrogen Bonding
3.
J Med Virol ; 96(5): e29637, 2024 May.
Article En | MEDLINE | ID: mdl-38773825

This study investigated the intricate interplay between Crimean-Congo hemorrhagic fever virus infection and alterations in amino acid metabolism. The primary aim is to elucidate the impact of Crimean-Congo hemorrhagic fever (CCHF) on specific amino acid concentrations and identify potential metabolic markers associated with viral infection. One hundred ninety individuals participated in this study, comprising 115 CCHF patients, 30 CCHF negative patients, and 45 healthy controls. Liquid chromatography-tandem mass spectrometry techniques were employed to quantify amino acid concentrations. The amino acid metabolic profiles in CCHF patients exhibit substantial distinctions from those in the control group. Patients highlight distinct metabolic reprogramming, notably characterized by arginine, histidine, taurine, glutamic acid, and glutamine metabolism shifts. These changes have been associated with the underlying molecular mechanisms of the disease. Exploring novel therapeutic and diagnostic strategies addressing specific amino acids may offer potential means to mitigate the severity of the disease.


Amino Acids , Disease Progression , Hemorrhagic Fever, Crimean , Humans , Hemorrhagic Fever, Crimean/virology , Male , Female , Middle Aged , Adult , Tandem Mass Spectrometry , Chromatography, Liquid , Aged , Hemorrhagic Fever Virus, Crimean-Congo , Biomarkers
4.
J R Soc Interface ; 21(214): 20240014, 2024 May.
Article En | MEDLINE | ID: mdl-38715323

Prebiotic peptide synthesis has consistently been a prominent topic within the field of the origin of life. While research predominantly centres on the 20 classical amino acids, the synthesis process encounters significant thermodynamic barriers. Consequently, amino acid analogues are being explored as potential building blocks for prebiotic peptide synthesis. This review delves into the pathway of polypeptide formation, identifying specific amino acid analogues that might have existed on early Earth, potentially participating in peptide synthesis and chemical evolution. Moreover, considering the complexity and variability of the environment on early Earth, we propose the plausibility of coevolution between amino acids and their analogues.


Amino Acids , Evolution, Chemical , Peptides , Amino Acids/chemistry , Peptides/chemistry , Origin of Life , Prebiotics
5.
PLoS One ; 19(5): e0301092, 2024.
Article En | MEDLINE | ID: mdl-38718028

Globally, the rapid aging of the population is predicted to become even more severe in the second half of the 21st century. Thus, it is expected to establish a growing expectation for innovative, non-invasive health indicators and diagnostic methods to support disease prevention, care, and health promotion efforts. In this study, we aimed to establish a new health index and disease diagnosis method by analyzing the minerals and free amino acid components contained in hair shaft. We first evaluated the range of these components in healthy humans and then conducted a comparative analysis of these components in subjects with diabetes, hypertension, androgenetic alopecia, major depressive disorder, Alzheimer's disease, and stroke. In the statistical analysis, we first used a student's t test to compare the hair components of healthy people and those of patients with various diseases. However, many minerals and free amino acids showed significant differences in all diseases, because the sample size of the healthy group was very large compared to the sample size of the disease group. Therefore, we attempted a comparative analysis based on effect size, which is not affected by differences in sample size. As a result, we were able to narrow down the minerals and free amino acids for all diseases compared to t test analysis. For diabetes, the t test narrowed down the minerals to 15, whereas the effect size measurement narrowed it down to 3 (Cr, Mn, and Hg). For free amino acids, the t test narrowed it down to 15 minerals. By measuring the effect size, we were able to narrow it down to 7 (Gly, His, Lys, Pro, Ser, Thr, and Val). It is also possible to narrow down the minerals and free amino acids in other diseases, and to identify potential health indicators and disease-related components by using effect size.


Amino Acids , Hair , Humans , Hair/chemistry , Male , Amino Acids/analysis , Amino Acids/metabolism , Female , Middle Aged , Adult , Alopecia/diagnosis , Aged , Minerals/analysis , Minerals/metabolism , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Stroke , Hypertension , Depressive Disorder, Major/diagnosis , Diabetes Mellitus/diagnosis , Case-Control Studies
6.
Allergol Immunopathol (Madr) ; 52(3): 42-52, 2024.
Article En | MEDLINE | ID: mdl-38721954

INTRODUCTION AND OBJECTIVES: Food allergy has several negative nutritional consequences and may persist beyond the first year of lives. This study aimed to assess the role of a complete oral amino acid-based supplement in the diet of children on cow's milk protein elimination diet because of food allergy. MATERIALS AND METHODS: This study included two groups of children aged 1-5 years paired by age and socioeconomic status: (1) study group, on cow's milk protein elimination diet plus an oral amino acid-based supplement, and (2) control group, on cow's milk protein elimination diet. Sociodemographic, clinical, anthropometric, and dietary data were obtained through online interviews. Two 24-h dietary recalls were collected on nonconsecutive days. Both groups comprised mostly boys. RESULTS: The study group presented lower values of body mass index. The frequency of feeding difficulties was similar between groups. The study group had a higher intake of energy, protein, carbohydrates, calcium, iron, zinc, phosphorus, magnesium, copper, selenium, vitamins D, E, B1, B2, B6, and B12, niacin, and folic acid compared to the control group. A higher proportion of children in the study group had adequate intake according to the recommendations made for energy, carbohydrates, iron, phosphorus, selenium, vitamins A, D, E, B1, B2, and B6, and folic acid. CONCLUSIONS: The use of a complete oral amino acid-based supplement has a positive effect on the diet quality of preschoolers on cow's milk elimination diet because of food allergy, promoting higher intake of energy, calcium, vitamin D, and other essential nutrients.


Amino Acids , Dietary Supplements , Milk Hypersensitivity , Humans , Child, Preschool , Male , Female , Animals , Cross-Sectional Studies , Infant , Amino Acids/administration & dosage , Milk/immunology , Cattle , Milk Proteins/administration & dosage , Milk Proteins/immunology , Diet , Elimination Diets
7.
Cell Host Microbe ; 32(5): 630-632, 2024 May 08.
Article En | MEDLINE | ID: mdl-38723600

The gut microbiota has the capacity to metabolize food-derived molecules. In this issue of Cell Host & Microbe, Li et al. explore how some bacterial species of the gut microbiota can deplete amino acids in the gut lumen, modulating the amino acid landscape and energy metabolism of the host.


Amino Acids , Energy Metabolism , Gastrointestinal Microbiome , Gastrointestinal Microbiome/physiology , Amino Acids/metabolism , Humans , Bacteria/metabolism , Bacteria/genetics , Animals , Host Microbial Interactions , Gastrointestinal Tract/microbiology
8.
Molecules ; 29(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731439

The production of peanut oil in the industrial sector necessitates the utilization of diverse raw materials to generate consistent batches with stable flavor profiles, thereby leading to an increased focus on understanding the correlation between raw materials and flavor characteristics. In this study, sensory evaluations, headspace solid-phase micro-extraction gas chromatography mass spectrometry (HS-SPME-GC-MS), odor activity value (OAV) calculations, and correlation analysis were employed to investigate the flavors and main contributing amino acids of hot-pressed oils derived from different peanut varieties. The results confirmed that the levels of alcohols, aldehydes, and heterocyclic compounds in peanut oil varied among nine different peanut varieties under identical processing conditions. The OAVs of 25 key aroma compounds, such as methylthiol, 3-ethyl-2,5-dimethylpyrazine, and 2,3-glutarone, exceeded a value of 1. The sensory evaluations and flavor content analysis demonstrated that pyrazines significantly influenced the flavor profile of the peanut oil. The concentrations of 11 amino acids showed a strong correlation with the levels of pyrazines. Notably, phenylalanine, lysine, glutamic acid, arginine, and isoleucine demonstrated significant associations with both pyrazine and nut flavors. These findings will provide valuable insights for enhancing the sensory attributes of peanut oil and selecting optimal raw peanuts for its production.


Amino Acids , Arachis , Gas Chromatography-Mass Spectrometry , Odorants , Peanut Oil , Amino Acids/analysis , Amino Acids/chemistry , Arachis/chemistry , Odorants/analysis , Peanut Oil/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Flavoring Agents/chemistry , Flavoring Agents/analysis , Pyrazines/chemistry , Pyrazines/analysis , Solid Phase Microextraction , Taste , Hot Temperature
9.
Molecules ; 29(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731506

The mechanism of ammonia formation during the pyrolysis of proteins in biomass is currently unclear. To further investigate this issue, this study employed the AMS 2023.104 software to select proteins (actual proteins) as the model compounds and the amino acids contained within them (assembled amino acids) as the comparative models. ReaxFF molecular dynamics simulations were conducted to explore the nitrogen transformation and NH3 generation mechanisms in three-phase products (char, tar, and gas) during protein pyrolysis. The research results revealed several key findings. Regardless of whether the model compounds are actual proteins or assembled amino acids, NH3 is the primary nitrogen-containing product during pyrolysis. However, as the temperature rises to higher levels, such as 2000 K and 2500 K, the amount of NH3 decreases significantly in the later stages of pyrolysis, indicating that it is being converted into other nitrogen-bearing species, such as HCN and N2. Simultaneously, we also observed significant differences between the pyrolysis processes of actual proteins and assembled amino acids. Notably, at 2000 K, the amount of NH3 generated from the pyrolysis of assembled amino acids was twice that of actual proteins. This discrepancy mainly stems from the inherent structural differences between proteins and amino acids. In proteins, nitrogen is predominantly present in a network-like structure (NH-N), which shields it from direct external exposure, thus requiring more energy for nitrogen to participate in pyrolysis reactions, making it more difficult for NH3 to form. Conversely, assembled amino acids can release NH3 through a simpler deamination process, leading to a significant increase in NH3 production during their pyrolysis.


Ammonia , Molecular Dynamics Simulation , Proteins , Pyrolysis , Ammonia/chemistry , Proteins/chemistry , Amino Acids/chemistry , Nitrogen/chemistry
10.
Molecules ; 29(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38731521

Lactate dehydrogenase A (LDHA) primarily catalyzes the conversion between lactic acid and pyruvate, serving as a key enzyme in the aerobic glycolysis pathway of sugar in tumor cells. LDHA plays a crucial role in the occurrence, development, progression, invasion, metastasis, angiogenesis, and immune escape of tumors. Consequently, LDHA not only serves as a biomarker for tumor diagnosis and prognosis but also represents an ideal target for tumor therapy. Although LDHA inhibitors show great therapeutic potential, their development has proven to be challenging. In the development of LDHA inhibitors, the key active sites of LDHA are emphasized. Nevertheless, there is a relative lack of research on the amino acid residues around the active center of LDHA. Therefore, in this study, we investigated the amino acid residues around the active center of LDHA. Through structure comparison analysis, five key amino acid residues (Ala30, Met41, Lys131, Gln233, and Ala259) were identified. Subsequently, the effects of these five residues on the enzymatic properties of LDHA were investigated using site-directed mutagenesis. The results revealed that the catalytic activities of the five mutants varied to different degrees in both the reaction from lactic acid to pyruvate and pyruvate to lactic acid. Notably, the catalytic activities of LDHAM41G and LDHAK131I were improved, particularly in the case of LDHAK131I. The results of the molecular dynamics analysis of LDHAK131I explained the reasons for this phenomenon. Additionally, the optimum temperature of LDHAM41G and LDHAQ233M increased from 35 °C to 40 °C, whereas in the reverse reaction, the optimum temperature of LDHAM41G and LDHAK131I decreased from 70 °C to 60 °C. These findings indicate that Ala30, Met41, Lys131, Gln233, and Ala259 exert diverse effects on the catalytic activity and optimum temperature of LHDA. Therefore, these amino acid residues, in addition to the key catalytic site of the active center, play a crucial role. Considering these residues in the design and screening of LDHA inhibitors may lead to the development of more effective inhibitors.


Catalytic Domain , Enzyme Inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Amino Acids/chemistry , Amino Acids/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/chemistry , Lactate Dehydrogenase 5/metabolism , Lactate Dehydrogenase 5/antagonists & inhibitors , Lactate Dehydrogenase 5/chemistry , Pyruvic Acid/metabolism , Pyruvic Acid/chemistry , Mutagenesis, Site-Directed , Molecular Dynamics Simulation
11.
J Med Life ; 17(1): 24-27, 2024 Jan.
Article En | MEDLINE | ID: mdl-38737662

Neurological disorders, ranging from acute forms such as stroke and traumatic brain injury to neurodegenerative diseases like dementia, are the leading cause of disability-adjusted life years (DALYs) worldwide. A promising approach to address these conditions and promote nervous system regeneration is the use of the neuropeptide preparation Cerebrolysin, which has been shown to be effective in both clinical and preclinical studies. Despite claims of similar clinical efficacy and safety by several peptide preparations, concerns regarding their generic composition and efficacy have been previously raised. Based on these reports, we analyzed the peptide composition and neurotrophic activity of several peptide preparations allegedly similar to Cerebrolysin and approved in some countries for treating neurological diseases. Our results demonstrate that these preparations lack relevant biological activity and that the peptide composition is significantly different from Cerebrolysin. peptide.


Amino Acids , Peptides , Amino Acids/pharmacology , Humans , Peptides/pharmacology , Neuroprotective Agents/pharmacology , Animals
12.
J Drugs Dermatol ; 23(5): 366-375, 2024 May 01.
Article En | MEDLINE | ID: mdl-38709706

OBJECTIVE:   This study aimed to investigate the ultraviolet (UV) protection/repair benefits of a patented Amino Acid Complex (AAComplex). METHODS: I) AAComplex was incubated with dermal fibroblasts, with/without UVA, and collagen I was measured with a GlasBoxPlus device. II) A lotion, with/without AAComplex (1%) was applied topically to skin explants, following UVA irradiation, and quantified for health-related biomarkers (TNFalpha, histamine, and MMP-1). III) A broad spectrum sunscreen with SPF 46 and a skincare serum containing AAComplex (2%) were assessed using epidermal equivalents, in the presence of UV irradiation, for effects on IL-1alpha, thymine dimers, Ki-67, filaggrin and Nrf2. RESULTS: I) Collagen I synthesis in dermal fibroblasts was significantly decreased after UVA compared to without UV. The presence of AAComplex prevented this decrease. II) UVA irradiation of skin explants increased histamine, TNFα, and MMP-1. Hydrocortisone aceponate cream significantly decreases all 3 biomarkers. AAComplex contained lotion also significantly decreased all 3 biomarkers, the no AAComplex control lotion only reduced histamine. III) With the regimen of sunscreen + AAComplex contained skincare serum, the significant reduction in IL-1alpha was observed along with a complete recovery of Ki-67 and stimulation of filaggrin and Nrf2T. No thymine dimer positive cell was observed indicating the most positive skin impact from the regiment.  Conclusion: This research using different human skin models demonstrated that AAComplex can provide protection and damage repair caused by UV, at the ingredient level also when formulated in a serum or lotion formula. Skin may be best protected from UV damage when the regimen is used.   J Drugs Dermatol. 2024;23(5):366-375. doi:10.36849/JDD.7916.


Fibroblasts , Filaggrin Proteins , Matrix Metalloproteinase 1 , NF-E2-Related Factor 2 , Tumor Necrosis Factor-alpha , Ultraviolet Rays , Humans , Ultraviolet Rays/adverse effects , Fibroblasts/drug effects , Fibroblasts/radiation effects , Fibroblasts/metabolism , Matrix Metalloproteinase 1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Skin/radiation effects , Skin/drug effects , Skin/metabolism , Sunscreening Agents/administration & dosage , Sunscreening Agents/chemistry , Sunscreening Agents/pharmacology , Amino Acids/administration & dosage , Amino Acids/pharmacology , Amino Acids/chemistry , Interleukin-1alpha/metabolism , Histamine/blood , Skin Cream/administration & dosage , Biomarkers/metabolism , Collagen Type I , Intermediate Filament Proteins/metabolism , Ki-67 Antigen/metabolism , Pyrimidine Dimers , Cells, Cultured
13.
J Med Virol ; 96(5): e29672, 2024 May.
Article En | MEDLINE | ID: mdl-38751159

This study investigated the intricate interplay between Crimean-Congo hemorrhagic fever virus (CCHFV) infection and alterations in amino acid metabolism. Our primary aim is to elucidate the impact of Crimean-Congo hemorrhagic fever (CCHF) on specific amino acid concentrations and identify potential metabolic markers associated with viral infection. One hundred ninety individuals participated in this study, comprising 115 CCHF patients, 30 CCHF negative patients, and 45 healthy controls. Liquid chromatography-tandem mass spectrometry techniques were employed to quantify amino acid concentrations. The amino acid metabolic profiles in CCHF patients exhibit substantial distinctions from those in the control group. Patients highlight distinct metabolic reprogramming, notably characterized by arginine, histidine, taurine, glutamic acid, and glutamine metabolism shifts. These changes have been associated with the underlying molecular mechanisms of the disease. Exploring novel therapeutic and diagnostic strategies addressing specific amino acids may offer potential means to mitigate the severity of the disease.


Amino Acids , Disease Progression , Humans , Amino Acids/metabolism , Female , Male , Middle Aged , Adult , Tandem Mass Spectrometry , Chromatography, Liquid , Aged , Biomarkers
14.
J Agric Food Chem ; 72(19): 11111-11123, 2024 May 15.
Article En | MEDLINE | ID: mdl-38710026

Apoptotic cells may release specific metabolites to act as messengers during the apoptotic process. This study represents the first attempt to identify potential apoptotic metabolites in postmortem muscle. Ninety potential apoptotic metabolites in beef were selected and analyzed through targeted metabolomics, with 84 of them exhibiting significant differences over the postmortem time. Following the addition of the mitochondria-targeted antiapoptotic agent mitoquinone to postmortem muscle, metabolomic analysis revealed that 73 apoptotic metabolites still underwent significant changes, even against the backdrop of altered apoptosis. Of these 73 apoptotic metabolites, 54 exhibited similar trends at various treatment times with adding mitoquinone, including lipids (6), amino acids (27), nucleosides (11), and carbohydrate and energy metabolism (10). Mitoquinone significantly reduced the levels of most apoptotic metabolites, and inhibition of apoptosis resulted in a significant decrease in the levels of numerous apoptotic metabolites. Consequently, these apoptotic metabolites are considered complementary to apoptosis in postmortem muscle, with their increased levels potentially promoting apoptosis. Noteworthy apoptotic metabolites, such as glycerol 3-phosphate, serine, AMP, ATP, GMP, and creatine, were identified as active signaling molecules that attract and recruit phagocytes during apoptosis, assisting in recognizing apoptotic cells by phagocytes. This study provides, for the first time, insights into potential apoptotic metabolites in postmortem muscle, contributing to a better understanding of meat biochemistry.


Apoptosis , Metabolomics , Muscle, Skeletal , Animals , Cattle/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistry , Red Meat/analysis , Amino Acids/metabolism
15.
Org Biomol Chem ; 22(19): 3966-3978, 2024 05 15.
Article En | MEDLINE | ID: mdl-38690804

Amino acid and peptide radicals are of broad interest due to their roles in biochemical oxidative damage, pathogenesis and protein radical catalysis, among others. Using density functional theory (DFT) calculations at the ωB97X-D/def2-QZVPPD//ωB97X-D/def2-TZVPP level of theory, we systematically investigated the hydrogen bonding between water and fourteen α-amino acids (Ala, Asn, Cys, Gln, Gly, His, Met, Phe, Pro, Sel, Ser, Thr, Trp, and Tyr) in both neutral and radical cation forms. For all amino acids surveyed, stronger hydrogen-bonding interactions with water were observed upon single-electron oxidation, with the greatest increases in hydrogen-bonding strength occurring in Gly, Ala and His. We demonstrate that the side chain has a significant impact on the most favorable hydrogen-bonding modes experienced by amino acid radical cations. Our computations also explored the fragmentation of amino acid radical cations through the loss of a COOH radical facilitated by hydrogen bonding. The most favorable pathways provided stabilization of the resulting cationic fragments through hydrogen bonding, resulting in more favorable thermodynamics for the fragmentation process. These results indicate that non-covalent interactions with the environment have a profound impact on the structure and chemical fate of oxidized amino acids.


Amino Acids , Cations , Density Functional Theory , Hydrogen Bonding , Amino Acids/chemistry , Cations/chemistry , Free Radicals/chemistry , Thermodynamics , Water/chemistry , Models, Molecular
16.
Biochem Biophys Res Commun ; 716: 150000, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38701554

Here we report two phase modulated NMR experiments: PM-2D HN(CACBHB) and PM-2D HN(HB), that use 1Hß chemical shifts to rapidly identify amino acid type in proteins. The magnetization on the 1Hß spins during the experiments is allowed to evolve for a fixed evolution period that results in phase modulation (positive or negative) of the cross peaks corresponding to various amino acid residues on their 2D HN projections, resembling a typical 2D [1H-15N]-HSQC spectrum. All amino acids except glycine can be categorized into three discernible groups based on their 1Hß chemical shifts, resulting in unique phase patterns at different fixed evolution periods for 1Hß, thus facilitating their identification. Remarkably, the PM-2D HN(HB) stands out among all amino acid type identification NMR techniques for its applicability with cost-effective and most routinely employed 15N-labeled protein samples for NMR studies. Furthermore, when combined effectively with the 13Cß chemical shift-based phase modulated NMR method (PM-2D HN(CACB)), these methods resolved the identification of large groups of amino acids into relatively smaller groups. Moreover, these techniques can accelerate the sequence-specific sequential resonance assignment (SSRA) process and would help in fast tracking of assigned NMR signals exhibiting chemical shift perturbation on the 2D [1H-15N]-HSQC spectrum of proteins during various experiments (e.g., temperature change, pH change, and protein or ligand or cofactor binding) as well as in site-directed mutagenesis.


Amino Acids , Nuclear Magnetic Resonance, Biomolecular , Proteins , Amino Acids/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry
17.
Nat Commun ; 15(1): 4029, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740745

Protein folds and the local environments they create can be compared using a variety of differently designed measures, such as the root mean squared deviation, the global distance test, the template modeling score or the local distance difference test. Although these measures have proven to be useful for a variety of tasks, each fails to fully incorporate the valuable chemical information inherent to atoms and residues, and considers these only partially and indirectly. Here, we develop the highly flexible local composition Hellinger distance (LoCoHD) metric, which is based on the chemical composition of local residue environments. Using LoCoHD, we analyze the chemical heterogeneity of amino acid environments and identify valines having the most conserved-, and arginines having the most variable chemical environments. We use LoCoHD to investigate structural ensembles, to evaluate critical assessment of structure prediction (CASP) competitors, to compare the results with the local distance difference test (lDDT) scoring system, and to evaluate a molecular dynamics simulation. We show that LoCoHD measurements provide unique information about protein structures that is distinct from, for example, those derived using the alignment-based RMSD metric, or the similarly distance matrix-based but alignment-free lDDT metric.


Molecular Dynamics Simulation , Proteins , Proteins/chemistry , Amino Acids/chemistry , Protein Conformation , Protein Folding , Algorithms , Computational Biology/methods
18.
Nutrients ; 16(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38732510

Amino acids are essential for normal pregnancy and fetal development. Disruptions in maternal amino acid metabolism have been associated with various adult diseases later in life, a phenomenon referred to as the developmental origins of health and disease (DOHaD). In this review, we examine the recent evidence highlighting the significant impact of amino acids on fetal programming, their influence on the modulation of gut microbiota, and their repercussions on offspring outcomes, particularly in the context of cardiovascular-kidney-metabolic (CKM) syndrome. Furthermore, we delve into experimental studies that have unveiled the protective effects of therapies targeting amino acids. These interventions have demonstrated the potential to reprogram traits associated with CKM in offspring. The discussion encompasses the challenges of translating the findings from animal studies to clinical applications, emphasizing the complexity of this process. Additionally, we propose potential solutions to overcome these challenges. Ultimately, as we move forward, future research endeavors should aim to pinpoint the most effective amino-acid-targeted therapies, determining the optimal dosage and mode of administration. This exploration is essential for maximizing the reprogramming effects, ultimately contributing to the enhancement of cardiovascular-kidney-metabolic health in offspring.


Amino Acids , Cardiovascular Diseases , Fetal Development , Gastrointestinal Microbiome , Kidney , Humans , Pregnancy , Female , Amino Acids/metabolism , Kidney/metabolism , Animals , Gastrointestinal Microbiome/physiology , Prenatal Exposure Delayed Effects , Kidney Diseases , Maternal Nutritional Physiological Phenomena
19.
Sci Rep ; 14(1): 10424, 2024 05 07.
Article En | MEDLINE | ID: mdl-38710752

The storage process has a significant impact on tea quality. Few is known about effect of storage on quality of oolong tea. This study aimed to assess the effect of different storage times on the key chemical components of oolong tea by measuring changes in catechin, free amino acid, and alkaloid content. Variation in the main substances was determined by principal component analysis and heat map analysis. The results revealed notable effects of the storage process on the levels of theanine, epigallocatechin gallate (EGCG), and glutamine. These findings suggest that these compounds could serve as indicators for monitoring changes in oolong tea quality during storage. Additionally, the study observed an increase in the antibacterial ability of tea over time. Correlation analysis indicated that the antibacterial ability against Micrococcus tetragenus and Escherichia coli was influenced by metabolites such as aspartic acid, threonine, serine, gamma-aminobutyric acid, ornithine, alanine, arginine, and EGCG. Overall, this study presents an approach for identifying key metabolites to monitor tea quality effectively with relatively limited data.


Alkaloids , Amino Acids , Anti-Bacterial Agents , Catechin , Tea , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Catechin/analysis , Tea/chemistry , Amino Acids/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Alkaloids/pharmacology , Alkaloids/analysis , Alkaloids/chemistry , Food Storage/methods , Escherichia coli/drug effects , Camellia sinensis/chemistry
20.
Sci Rep ; 14(1): 10388, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710760

Research into the molecular basis of disease trajectory and Long-COVID is important to get insights toward underlying pathophysiological processes. The objective of this study was to investigate inflammation-mediated changes of metabolism in patients with acute COVID-19 infection and throughout a one-year follow up period. The study enrolled 34 patients with moderate to severe COVID-19 infection admitted to the University Clinic of Innsbruck in early 2020. The dynamics of multiple laboratory parameters (including inflammatory markers [C-reactive protein (CRP), interleukin-6 (IL-6), neopterin] as well as amino acids [tryptophan (Trp), phenylalanine (Phe) and tyrosine (Tyr)], and parameters of iron and vitamin B metabolism) was related to disease severity and patients' physical performance. Also, symptom load during acute illness and at approximately 60 days (FU1), and one year after symptom onset (FU2) were monitored and related with changes of the investigated laboratory parameters: During acute infection many investigated laboratory parameters were elevated (e.g., inflammatory markers, ferritin, kynurenine, phenylalanine) and enhanced tryptophan catabolism and phenylalanine accumulation were found. At FU2 nearly all laboratory markers had declined back to reference ranges. However, kynurenine/tryptophan ratio (Kyn/Trp) and the phenylalanine/tyrosine ratio (Phe/Tyr) were still exceeding the 95th percentile of healthy controls in about two thirds of our cohort at FU2. Lower tryptophan concentrations were associated with B vitamin availability (during acute infection and at FU1), patients with lower vitamin B12 levels at FU1 had a prolonged and more severe impairment of their physical functioning ability. Patients who had fully recovered (ECOG 0) presented with higher concentrations of iron parameters (ferritin, hepcidin, transferrin) and amino acids (phenylalanine, tyrosine) at FU2 compared to patients with restricted ability to work. Persistent symptoms at FU2 were tendentially associated with IFN-γ related parameters. Women were affected by long-term symptoms more frequently. Conclusively, inflammation-mediated biochemical changes appear to be related to symptoms of patients with acute and Long Covid.


Biomarkers , COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , Female , Male , Middle Aged , Biomarkers/blood , SARS-CoV-2/isolation & purification , Aged , Adult , Physical Functional Performance , Interleukin-6/blood , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Inflammation , Tryptophan/blood , Tryptophan/metabolism , Neopterin/blood , Phenylalanine/blood , Phenylalanine/metabolism , Amino Acids/blood
...