Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 330
1.
Biochemistry ; 63(10): 1307-1321, 2024 May 21.
Article En | MEDLINE | ID: mdl-38688031

In this study, we investigated the trimerization mechanism and structure of heat shock factor 1 (HSF1) using western blotting, tryptophan (Trp) fluorescence spectroscopy, and molecular modeling. First, we examined the DNA-binding domains of human (Homo sapiens), goldfish (Carassius auratus), and walleye pollock (Gadus chalcogrammus) HSF1s by mutating key residues (36 and 103) that are thought to directly affect trimer formation. Human, goldfish, and walleye pollock HSF1s contain cysteine at residue 36 but cysteine (C), tyrosine (Y), and phenylalanine (F), respectively, at residue 103. The optimal trimerization temperatures for the wild-type HSF1s of each species were found to be 42, 37, and 20 °C, respectively. Interestingly, a mutation experiment revealed that trimerization occurred at 42 °C when residue 103 was cysteine, at 37 °C when it was tyrosine, and at 20 °C when it was phenylalanine, regardless of the species. In addition, it was confirmed that when residue 103 of the three species was mutated to alanine, trimerization did not occur. This suggests that in addition to trimerization via disulfide bond formation between the cysteine residues in human HSF1, trimerization can also occur via the formation of a different type of bond between cysteine and aromatic ring residues such as tyrosine and phenylalanine. We also confirmed that at least one cysteine is required for the trimerization of HSF1s, regardless of its position (residue 36 or 103). Additionally, it was shown that the trimer formation temperature is related to growth and survival in fish.


Amino Acids, Aromatic , Cysteine , Heat Shock Transcription Factors , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/chemistry , Heat Shock Transcription Factors/genetics , Cysteine/chemistry , Cysteine/metabolism , Humans , Animals , Amino Acids, Aromatic/metabolism , Amino Acids, Aromatic/chemistry , Protein Multimerization , Heat-Shock Response , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Goldfish/metabolism , Models, Molecular , Protein Domains
2.
Pestic Biochem Physiol ; 200: 105835, 2024 Mar.
Article En | MEDLINE | ID: mdl-38582597

Octanal was found to be able to reduce green mold incidence in citrus fruit by a defense response mechanism. However, the underlying mechanism remains largely unclear. Herein, the metabolomics, RNA-seq and biochemical analyses were integrated to explore the effect of octanal on disease resistance in harvested citrus fruit. Results showed that octanal fumigation at 40 µL L-1 was effective in controlling citrus green mold. Metabolomics analysis showed that octanal mainly led to the accumulation of some plant hormones including methyl jasmonate, abscisic acid, indole-3-butyric acid, indoleacetic acid (IAA), salicylic acid, and gibberellic acid and many phenylpropanoid metabolites including cinnamyl alcohol, hesperidin, dihydrokaempferol, vanillin, quercetin-3-O-malonylglucoside, curcumin, naringin, chrysin, coniferin, calycosin-7-O-ß-D-glucoside, trans-cinnamaldehyde, and 4',5,7-trihydroxy-3,6-dimethoxyflavone. Particularly, IAA and hesperidin were dramatically accumulated in the peel, which might be the contributors to the resistance response. Additionally, transcriptome analysis showed that octanal greatly activated the biosynthesis and metabolism of aromatic amino acids. This was further verified by the accumulation of some metabolites (shikimic acid, tryptophan, tyrosine, phenylalanine, IAA, total phenolics, flavonoids and lignin), increase in some enzyme activities (phenylalanine ammonia-lyase, tyrosine ammonia-lyase, 4-coumarate CoA ligase, cinnamic acid 4-hydroxylase, polyphenol oxidase, and peroxidase), up-regulation of some genes (tryptophan pyruvate aminotransferase, aldehyde dehydrogenase, shikimate kinase and shikimate dehydrogenase) expressions and molecular docking results. Thus, these results indicate that octanal is an efficient strategy for the control of postharvest green mold by triggering the defense response in citrus fruit.


Aldehydes , Citrus , Hesperidin , Citrus/chemistry , Citrus/genetics , Citrus/metabolism , Amino Acids, Aromatic/metabolism , Disease Resistance , Hesperidin/analysis , Hesperidin/metabolism , Hesperidin/pharmacology , Tryptophan/metabolism , Molecular Docking Simulation , Fruit
3.
J Agric Food Chem ; 72(11): 5766-5776, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38447044

The aromatic amino acids tryptophan, phenylalanine, and tyrosine are targets for oxidation during food processing. We investigated whether S. cerevisiae can use nonproteinogenic aromatic amino acids as substrates for degradation via the Ehrlich pathway. The metabolic fate of seven amino acids (p-, o-, m-tyrosine, 3,4-dihydroxyphenylalanine (DOPA), 3-nitrotyrosine, 3-chlorotyrosine, and dityrosine) in the presence of S. cerevisiae was assessed. All investigated amino acids except dityrosine were metabolized by yeast. The amino acids 3-nitrotyrosine and o-tyrosine were removed from the medium as fast as p-tyrosine, and m-tyrosine, 3-chlorotyrosine, and DOPA more slowly. In summary, 11 metabolites were identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). DOPA, 3-nitrotyrosine, and p-tyrosine were metabolized predominantly to the Ehrlich alcohols, whereas o-tyrosine and m-tyrosine were metabolized predominantly to α-hydroxy acids. Our results indicate that nonproteinogenic aromatic amino acids can be taken up and transaminated by S. cerevisiae quite effectively but that decarboxylation and reduction to Ehrlich alcohols as the final metabolites is hampered by hydroxyl groups in the o- or m-positions of the phenyl ring. The data on amino acid metabolism were substantiated by the analysis of five commercial beer samples, which revealed the presence of hydroxytyrosol (ca. 0.01-0.1 mg/L) in beer for the first time.


Amino Acids, Aromatic , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Amino Acids, Aromatic/metabolism , Tandem Mass Spectrometry , Tyrosine/metabolism , Amino Acids/metabolism , Dihydroxyphenylalanine/metabolism , Alcohols/metabolism
4.
Trends Plant Sci ; 29(5): 507-509, 2024 May.
Article En | MEDLINE | ID: mdl-38480091

Aromatic amino acids (AAAs) are essential for synthesis of proteins and numerous plant natural products, yet how plants maintain AAA homeostasis remains poorly understood. Wu et al. reported that the aminotransferase VAS1 plays a role in AAA homeostasis by transferring nitrogen from AAAs to non-proteinogenic amino acids, 3-carboxytyrosine and 3-carboxyphenylalanine.


Amino Acids, Aromatic , Homeostasis , Nitrogen , Amino Acids, Aromatic/metabolism , Nitrogen/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transaminases/metabolism
5.
J Biosci Bioeng ; 137(5): 344-353, 2024 May.
Article En | MEDLINE | ID: mdl-38365536

The mutants resistant to a phenylalanine analog, 4-fluorophenylalanine (4FP), were obtained for metabolic engineering of Corynebacterium glutamicum for producing aromatic amino acids synthesized through the shikimate pathway by adaptive laboratory evolution. Culture experiments of the C. glutamicum strains which carry the mutations found in the open reading frame from the 4FP-resistant mutants revealed that the mutations in the open reading frames of aroG (NCgl2098), pheA (NCgl2799) and aroP (NCgl1062) encoding 3-deoxy-d-arabino-heptulosonate-7-phosphate, prephenate dehydratase, and aromatic amino acid transporter are responsible for 4FP resistance and higher concentration of aromatic amino acids in their culture supernatants in the 4FP-resistant strains. It was expected that aroG and pheA mutations would release feedback inhibition of the enzymes involved in the shikimate pathway by phenylalanine and that aroP mutations would prevent intracellular uptake of aromatic amino acids. Therefore, we conducted metabolic engineering of the C. glutamicum wild-type strain for aromatic amino acid production and found that phenylalanine production at 6.11 ± 0.08 g L-1 was achieved by overexpressing the mutant pheA and aroG genes from the 4FP-resistant mutants and deleting aroP gene. This study demonstrates that adaptive laboratory evolution is an effective way to obtain useful mutant genes related to production of target material and to establish metabolic engineering strategies.


Corynebacterium glutamicum , Polyhydroxyethyl Methacrylate/analogs & derivatives , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Metabolic Engineering , Phenylalanine , Shikimic Acid/metabolism , Amino Acids, Aromatic/genetics , Amino Acids, Aromatic/metabolism
6.
Poult Sci ; 103(4): 103536, 2024 Apr.
Article En | MEDLINE | ID: mdl-38364606

This study evaluated the impact of dietary digestible aromatic amino acid (DAAA) levels and stachyose on growth, nutrient utilization and cecal odorous compounds in broiler chickens. A 3×2 two-factor factorial design: Three dietary DAAA levels (1.40, 1.54, 1.68%) supplemented with either 5 g/kg of stachyose or without any stachyose were used to create 6 experimental diets. Each diet was fed to 6 replicates of 10 birds from d 22 to 42. Findings revealed that broilers receiving a diet with 1.54% DAAA levels supplemented with 5 g/kg stachyose exhibited a significant boost in average daily gain and improved utilization of crude protein, ether extract, tryptophan, and methionine compared to other diet treatments (P < 0.05). As the dietary DAAA levels increased, there was a significant rise in the concentrations of indole, skatole, p-methylphenol, and butyric acid in the cecum of broilers (P < 0.05). The addition of stachyose to diets reduced concentrations of indole, skatole, phenol, p-methylphenol, acetic acid and propionic acid in the cecum (P < 0.05). The lowest concentrations of indole, phenol, p-methylphenol, volatile fatty acids and pH in cecum of broilers were observed in the treatment which diet DAAA level was 1.40% with stachyose (P < 0.05). In conclusion, dietary DAAA levels and stachyose had significant interactions on the growth, main nutrient utilization and cecal odorous compounds in broilers. The dietary DAAA level was 1.54% with 5 g/kg of stachyose can improve the growth performance, nutrient utilization. However, the dietary DAAA level was 1.40% with stachyose was more beneficial to decrease the cecal odor compound composition in broilers.


Chickens , Odorants , Oligosaccharides , Animals , Skatole/metabolism , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Cresols/metabolism , Cecum , Nutrients , Amino Acids, Aromatic/metabolism , Animal Nutritional Physiological Phenomena
7.
Biotechnol Bioeng ; 121(2): 784-794, 2024 Feb.
Article En | MEDLINE | ID: mdl-37926950

Efficient co-utilization of mixed sugar feedstocks remains a biomanufacturing challenge, thus motivating ongoing efforts to engineer microbes for improved conversion of glucose-xylose mixtures. This study focuses on enhancing phenylalanine production by engineering Escherichia coli to efficiently co-utilize glucose and xylose. Flux balance analysis identified E4P flux as a bottleneck which could be alleviated by increasing the xylose-to-glucose flux ratio. A mutant copy of the xylose-specific activator (XylR) was then introduced into the phenylalanine-overproducing E. coli NST74, which relieved carbon catabolite repression and enabled efficient glucose-xylose co-utilization. Carbon contribution analysis through 13 C-fingerprinting showed a higher preference for xylose in the engineered strain (NST74X), suggesting superior catabolism of xylose relative to glucose. As a result, NST74X produced 1.76 g/L phenylalanine from a model glucose-xylose mixture; a threefold increase over NST74. Then, using biomass-derived sugars, NST74X produced 1.2 g/L phenylalanine, representing a 1.9-fold increase over NST74. Notably, and consistent with the carbon contribution analysis, the xylR* mutation resulted in a fourfold greater maximum rate of xylose consumption without significantly impeding the maximum rate of total sugar consumption (0.87 vs. 0.70 g/L-h). This study presents a novel strategy for enhancing phenylalanine production through the co-utilization of glucose and xylose in aerobic E. coli cultures, and highlights the potential synergistic benefits associated with using substrate mixtures over single substrates when targeting specific products.


Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Sugars/metabolism , Xylose/metabolism , Biomass , Fermentation , Glucose/metabolism , Amino Acids, Aromatic/metabolism , Phenylalanine/metabolism , Carbon/metabolism , Transcription Factors/genetics , Escherichia coli Proteins/metabolism
8.
Org Lett ; 25(47): 8469-8473, 2023 12 01.
Article En | MEDLINE | ID: mdl-37972311

By reshaping the substrate-binding pocket of ß-amino acid dehydrogenase (ß-AADH), some variants were obtained with up to 2560-fold enhanced activity toward the model substrates (S)-ß-homophenylalanine and (R)-ß-phenylalanine. A few aromatic ß-amino acids were prepared with >99% ee and high isolated yields via either kinetic resolution of racemates or reductive amination of the corresponding ß-keto acids. This work expands the catalytic capability of ß-AADHs and highlights their practical application in the synthesis of pharmaceutically relevant ß-amino acids.


Amino Acid Oxidoreductases , Amino Acids, Aromatic , Amino Acids, Aromatic/metabolism , Amino Acid Oxidoreductases/chemistry , Amino Acid Oxidoreductases/metabolism , Amino Acids/metabolism , Amination , Keto Acids , Substrate Specificity
9.
Nat Commun ; 14(1): 7242, 2023 11 09.
Article En | MEDLINE | ID: mdl-37945591

Vascular plants direct large amounts of carbon to produce the aromatic amino acid phenylalanine to support the production of lignin and other phenylpropanoids. Uniquely, grasses, which include many major crops, can synthesize lignin and phenylpropanoids from both phenylalanine and tyrosine. However, how grasses regulate aromatic amino acid biosynthesis to feed this dual lignin pathway is unknown. Here we show, by stable-isotope labeling, that grasses produce tyrosine >10-times faster than Arabidopsis without compromising phenylalanine biosynthesis. Detailed in vitro enzyme characterization and combinatorial in planta expression uncovered that coordinated expression of specific enzyme isoforms at the entry and exit steps of the aromatic amino acid pathway enables grasses to maintain high production of both tyrosine and phenylalanine, the precursors of the dual lignin pathway. These findings highlight the complex regulation of plant aromatic amino acid biosynthesis and provide novel genetic tools to engineer the interface of primary and specialized metabolism in plants.


Arabidopsis , Lignin , Lignin/metabolism , Poaceae/genetics , Poaceae/metabolism , Amino Acids, Aromatic/metabolism , Plants/metabolism , Phenylalanine/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Tyrosine/metabolism
10.
Hepatol Commun ; 7(11)2023 11 01.
Article En | MEDLINE | ID: mdl-37820283

BACKGROUND: Chronic alcohol consumption impairs gut barrier function and perturbs the gut microbiome. Although shifts in bacterial communities in patients with alcohol-associated liver disease (ALD) have been characterized, less is known about the interactions between host metabolism and circulating microbe-derived metabolites during the progression of ALD. METHODS: A large panel of gut microbiome-derived metabolites of aromatic amino acids was quantified by stable isotope dilution liquid chromatography with online tandem mass spectrometry in plasma from healthy controls (n = 29), heavy drinkers (n = 10), patients with moderate (n = 16) or severe alcohol-associated hepatitis (n = 40), and alcohol-associated cirrhosis (n = 10). RESULTS: The tryptophan metabolites, serotonin and indole-3-propionic acid, and tyrosine metabolites, p-cresol sulfate, and p-cresol glucuronide, were decreased in patients with ALD. Patients with severe alcohol-associated hepatitis and alcohol-associated cirrhosis had the largest decrease in concentrations of tryptophan and tyrosine-derived metabolites compared to healthy control. Western blot analysis and interrogation of bulk RNA sequencing data from patients with various liver pathologies revealed perturbations in hepatic expression of phase II metabolism enzymes involved in sulfonation and glucuronidation in patients with severe forms of ALD. CONCLUSIONS: We identified several metabolites decreased in ALD and disruptions of hepatic phase II metabolism. These results indicate that patients with more advanced stages of ALD, including severe alcohol-associated hepatitis and alcohol-associated cirrhosis, had complex perturbations in metabolite concentrations that likely reflect both changes in the composition of the gut microbiome community and the ability of the host to enzymatically modify the gut-derived metabolites.


Amino Acids, Aromatic , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Liver , Humans , Amino Acids, Aromatic/metabolism , Hepatitis/metabolism , Hepatitis/physiopathology , Liver Cirrhosis, Alcoholic/metabolism , Liver Cirrhosis, Alcoholic/physiopathology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/physiopathology , Tryptophan/metabolism , Tyrosine , Gastrointestinal Microbiome/physiology , Hepatitis, Alcoholic/metabolism , Hepatitis, Alcoholic/physiopathology , Liver/metabolism , Liver/physiopathology
12.
Gut Microbes ; 15(1): 2221426, 2023.
Article En | MEDLINE | ID: mdl-37357437

The development of the gut microbiota in early life is linked to metabolic, neuronal, and immunological development. Recent studies have shown that bacterial production of short-chain fatty acids (SCFAs) and aromatic amino acid (AAA) catabolites in the gut can mediate host-microbe interactions. However, the dynamics of these microbiota-derived metabolites and the key bacterial taxa producing AAA catabolites during infancy are largely unknown. Here, we investigated the longitudinal dynamics of the microbiota and microbiota-derived SCFAs and AAA catabolites in more than 200 fecal samples from 25 healthy breast- or mixed-fed Danish infants during the first 6 months of life. We found that the gut microbiota composition and metabolism were highly individual but showed significant development over time. SCFAs and specific groups of AAA catabolites showed distinct temporal abundance patterns. Furthermore, we identified bacterial taxa responsible for the generation of AAA catabolites by associating the dynamics of gut microbial taxa and AAA catabolites and subsequently validating these associations in vitro by cultivation of strains representing the associated taxa. In addition to specific Bifidobacterium species being the main producers of aromatic lactic acids, we identified Peptostreptococcus anaerobius as the main producer of aromatic propionic acids, Ruminococcus gnavus as a main producer of tryptamine, and Enterococcus species as main tyramine producers in infants' gut. Thus, our results showcase the temporal dynamics of key gut microbial metabolites in early life and demonstrate that the appearance and abundance of specific AAA catabolites result from the appearance and abundance of specific key bacterial taxa in infants' gut.


Gastrointestinal Microbiome , Humans , Infant , Gastrointestinal Microbiome/physiology , Bacteria/genetics , Bacteria/metabolism , Fatty Acids, Volatile/metabolism , Propionates/metabolism , Feces/microbiology , Amino Acids, Aromatic/analysis , Amino Acids, Aromatic/metabolism
13.
Eur Heart J ; 44(32): 3085-3096, 2023 08 22.
Article En | MEDLINE | ID: mdl-37342006

AIMS: Precision microbiome modulation as a novel treatment strategy is a rapidly evolving and sought goal. The aim of this study is to determine relationships among systemic gut microbial metabolite levels and incident cardiovascular disease risks to identify gut microbial pathways as possible targets for personalized therapeutic interventions. METHODS AND RESULTS: Stable isotope dilution mass spectrometry methods to quantitatively measure aromatic amino acids and their metabolites were used to examine sequential subjects undergoing elective diagnostic cardiac evaluation in two independent cohorts with longitudinal outcome data [US (n = 4000) and EU (n = 833) cohorts]. It was also used in plasma from humans and mice before vs. after a cocktail of poorly absorbed antibiotics to suppress gut microbiota. Multiple aromatic amino acid-derived metabolites that originate, at least in part, from gut bacteria are associated with incident (3-year) major adverse cardiovascular event (MACE) risks (myocardial infarction, stroke, or death) and all-cause mortality independent of traditional risk factors. Key gut microbiota-derived metabolites associated with incident MACE and poorer survival risks include: (i) phenylacetyl glutamine and phenylacetyl glycine (from phenylalanine); (ii) p-cresol (from tyrosine) yielding p-cresol sulfate and p-cresol glucuronide; (iii) 4-OH-phenyllactic acid (from tyrosine) yielding 4-OH-benzoic acid and 4-OH-hippuric acid; (iv) indole (from tryptophan) yielding indole glucuronide and indoxyl sulfate; (v) indole-3-pyruvic acid (from tryptophan) yielding indole-3-lactic acid and indole-3-acetyl-glutamine, and (vi) 5-OH-indole-3-acetic acid (from tryptophan). CONCLUSION: Key gut microbiota-generated metabolites derived from aromatic amino acids independently associated with incident adverse cardiovascular outcomes are identified, and thus will help focus future studies on gut-microbial metabolic outputs relevant to host cardiovascular health.


Gastrointestinal Microbiome , Myocardial Infarction , Humans , Mice , Animals , Amino Acids, Aromatic/metabolism , Tryptophan , Glutamine , Glucuronides , Indoles/metabolism , Disease Progression , Tyrosine
14.
Ann Nutr Metab ; 79(3): 291-300, 2023.
Article En | MEDLINE | ID: mdl-37339616

INTRODUCTION: The aim of this study was to explore associations of aromatic amino acids (AAA) in early pregnancy with gestational diabetes mellitus (GDM), and whether high AAA and gut microbiota-related metabolites had interactive effects on GDM risk. METHODS: We conducted a 1:1 case-control study (n = 486) nested in a prospective cohort of pregnant women from 2010 to 2012. According to the International Association of Diabetes and Pregnancy Study Group's criteria, 243 women were diagnosed with GDM. Binary conditional logistic regression was performed to examine associations of AAA with GDM risk. Interactions between AAA and gut microbiota-related metabolites for GDM were examined using additive interaction measures. RESULTS: High phenylalanine and tryptophan were associated with increased GDM risk (OR: 1.72, 95% CI: 1.07-2.78 and 1.66, 1.02-2.71). The presence of high trimethylamine (TMA) markedly increased the OR of high phenylalanine alone up to 7.95 (2.79-22.71), while the presence of low glycoursodeoxycholic acid (GUDCA) markedly increased the OR of high tryptophan alone up to 22.88 (5.28-99.26), both with significant additive interactions. Furthermore, high lysophosphatidylcholines (LPC18:0) mediated both interactive effects. CONCLUSIONS: High phenylalanine may have an additive interaction with high TMA, while high tryptophan may have an additive interaction with low GUDCA toward increased risk of GDM, both being mediated via LPC18:0.


Diabetes, Gestational , Gastrointestinal Microbiome , Female , Humans , Pregnancy , Amino Acids, Aromatic/metabolism , Case-Control Studies , Diabetes, Gestational/epidemiology , Diabetes, Gestational/metabolism , East Asian People , Gastrointestinal Microbiome/physiology , Phenylalanine , Prospective Studies , Tryptophan
15.
Infect Immun ; 91(6): e0005923, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-37184383

Histoplasma capsulatum yeasts reside and proliferate within the macrophage phagosome during infection. This nutrient-depleted phagosomal environment imposes challenges to Histoplasma yeasts for nutrition acquisition. Histoplasma yeasts require all 20 amino acids, which can be formed by de novo biosynthesis and/or acquired directly from the phagosomal environment. We investigated how Histoplasma obtains aromatic amino acids (i.e., phenylalanine, tyrosine, and tryptophan) within the phagosome during infection of macrophages. Depletion of key enzymes of the phenylalanine or tyrosine biosynthetic pathway neither impaired Histoplasma's ability to proliferate within macrophages nor resulted in attenuated virulence in vivo. However, loss of tryptophan biosynthesis resulted in reduced growth within macrophages and severely attenuated virulence in vivo. Together, these results indicate that phenylalanine and tyrosine, but not tryptophan, are available to Histoplasma within the macrophage phagosome. The herbicide glyphosate, which targets 5-enolpyruvylshikimate-3-phosphate synthase of the aromatic amino acid biosynthetic pathway, inhibited Histoplasma yeast growth, and this growth inhibition was partially reversed by aromatic amino acid supplementation or overexpression of ARO1. These results suggest that the aromatic amino acid biosynthetic pathway is a candidate drug target to develop novel antifungal therapeutics.


Histoplasma , Histoplasmosis , Macrophages/microbiology , Phagosomes/microbiology , Tyrosine/metabolism , Amino Acids, Aromatic/metabolism , Histoplasmosis/metabolism
16.
Aging Cell ; 22(6): e13821, 2023 06.
Article En | MEDLINE | ID: mdl-36951231

Aging biology entails a cell/tissue deregulated metabolism that affects all levels of biological organization. Therefore, the application of "omic" techniques that are closer to phenotype, such as metabolomics, to the study of the aging process should be a turning point in the definition of cellular processes involved. The main objective of the present study was to describe the changes in plasma metabolome associated with biological aging and the role of sex in the metabolic regulation during aging. A high-throughput untargeted metabolomic analysis was applied in plasma samples to detect hub metabolites and biomarkers of aging incorporating a sex/gender perspective. A cohort of 1030 healthy human adults (45.9% females, and 54.1% males) from 50 to 98 years of age was used. Results were validated using two independent cohorts (1: n = 146, 53% females, 30-100 years old; 2: n = 68, 70% females, 19-107 years old). Metabolites related to lipid and aromatic amino acid (AAA) metabolisms arose as the main metabolic pathways affected by age, with a high influence of sex. Globally, we describe changes in bioenergetic pathways that point to a decrease in mitochondrial ß-oxidation and an accumulation of unsaturated fatty acids and acylcarnitines that could be responsible for the increment of oxidative damage and inflammation characteristic of this physiological process. Furthermore, we describe for the first time the importance of gut-derived AAA catabolites in the aging process describing novel biomarkers that could contribute to better understand this physiological process but also age-related diseases.


Amino Acids, Aromatic , Metabolome , Male , Female , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Young Adult , Amino Acids, Aromatic/metabolism , Aging/metabolism , Metabolomics/methods , Biomarkers/metabolism
17.
mBio ; 14(2): e0333322, 2023 04 25.
Article En | MEDLINE | ID: mdl-36779765

Nutritional symbioses between insects and intracellular bacteria (endosymbionts) are a major force of adaptation, allowing animals to colonize nutrient-poor ecological niches. Many beetles feeding on tyrosine-poor substrates rely on a surplus of aromatic amino acids produced by bacterial endosymbionts. This surplus of aromatic amino acids is crucial for the biosynthesis of a thick exoskeleton, the cuticle, which is made of a matrix of chitin with proteins and pigments built from tyrosine-derived molecules, providing an important defensive barrier against biotic and abiotic stress. Other endosymbiont-related advantages for beetles include faster development and improved fecundity. The association between Sitophilus oryzae and the Sodalis pierantonius endosymbiont represents a unique case study among beetles: endosymbionts undergo an exponential proliferation in young adults concomitant with the cuticle tanning, and then they are fully eliminated. While endosymbiont clearance, as well as total endosymbiont titer, are host-controlled processes, the mechanism triggering endosymbiont exponential proliferation remains poorly understood. Here, we show that endosymbiont exponential proliferation relies on host carbohydrate intake, unlike the total endosymbiont titer or the endosymbiont clearance, which are under host genetic control. Remarkably, insect fecundity was preserved, and the cuticle tanning was achieved, even when endosymbiont exponential proliferation was experimentally blocked, except in the context of a severely unbalanced diet. Moreover, a high endosymbiont titer coupled with nutrient shortage dramatically impacted host survival, revealing possible environment-dependent disadvantages for the host, likely due to the high energy cost of exponentially proliferating endosymbionts. IMPORTANCE Beetles thriving on tyrosine-poor diet sources often develop mutualistic associations with endosymbionts able to synthesize aromatic amino acids. This surplus of aromatic amino acids is used to reinforce the insect's protective cuticle. An exceptional feature of the Sitophilus oryzae/Sodalis pierantonius interaction is the exponential increase in endosymbiotic titer observed in young adult insects, in concomitance with cuticle biosynthesis. Here, we show that host carbohydrate intake triggers endosymbiont exponential proliferation, even in conditions that lead to the detriment of the host survival. In addition, when hosts thrive on a balanced diet, endosymbiont proliferation is dispensable for several host fitness traits. The endosymbiont exponential proliferation is therefore dependent on the nutritional status of the host, and its consequences on host cuticle biosynthesis and survival depend on food quality and availability.


Coleoptera , Weevils , Animals , Weevils/genetics , Weevils/microbiology , Enterobacteriaceae/genetics , Symbiosis , Insecta , Amino Acids, Aromatic/metabolism , Tyrosine/metabolism , Carbohydrates , Cell Proliferation
18.
J Sci Food Agric ; 103(3): 1578-1587, 2023 Feb.
Article En | MEDLINE | ID: mdl-36207281

BACKGROUND: Time-restricted feeding (TRF) is an effective means that can efficiently regulate the metabolism and health of animals and humans. However, the effect of TRF on hypothalamic function remains unclear. RESULTS: Results showed that TRF significantly increased the activities of digestive enzymes lipase, maltase in the duodenum and lipase, trypsin in the pancreas whereas significantly decreased serum gastrointestinal hormones gastrin, glucagon-like peptide-1, cholecystokinin, peptide YY, and ghrelin. Metabolites related to amino acid metabolism, including citrulline, kynurenine, N-acetylleucine, l-tryptophan, and l-tyrosine, significantly increased in the TRF group. Differential metabolites were mainly enriched in phenylalanine, tyrosine, and tryptophan biosynthesis and tryptophan metabolism. Transcriptomic analysis of hypothalamus showed that a total of 462 differentially expressed genes (DEGs) were significantly changed by TRF. In particular, DEGs such as DDC, TH, GOT2, and DBH involved in aromatic amino acid metabolism pathways were significantly downregulated, whereas the expression of CYP1B1 was significantly upregulated. Moreover, DEGs (PDYN and PPP3CA) involved in amphetamine addiction and cocaine addiction were also downregulated in the TRF group. CONCLUSION: Taken together, these results suggested that TRF improved the digestion and absorption of nutrients and thus increased the accessibilities of aromatic amino acids. The increasing of circulating aromatic amino acids might mediate the regulatory neuroendocrine effects of TRF regimes on the hypothalamus functions, especially on drug addictions. This study reveals a possible mechanism underlying the effects of regulating feeding patterns on the function of the hypothalamus by altering aromatic amino acids metabolism. © 2022 Society of Chemical Industry.


Amino Acids, Aromatic , Tryptophan , Humans , Animals , Swine/genetics , Amino Acids, Aromatic/metabolism , Tryptophan/metabolism , Transcriptome , Hypothalamus/metabolism , Feeding Behavior
19.
Yeast ; 39(10): 535-547, 2022 10.
Article En | MEDLINE | ID: mdl-36127846

The yeasts, Saccharomyces pastorianus, are hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus and have acquired traits from the combined parental genomes such as ability to ferment a range of sugars at low temperatures and to produce aromatic flavour compounds, allowing for the production of lager beers with crisp, clean flavours. The polyploid strains are sterile and have reached an evolutionary bottleneck for genetic variation. Here we describe an accelerated evolution approach to obtain lager yeasts with enhanced flavour profiles. As the relative expression of orthologous alleles is a significant contributor to the transcriptome during fermentation, we aimed to induce genetic variation by altering the S. cerevisiae to S. eubayanus chromosome ratio. Aneuploidy was induced through the temporary inhibition of the cell's stress response and strains with increased production of aromatic amino acids via the Shikimate pathway were selected by resistance to amino acid analogues. Genomic changes such as gross chromosomal rearrangements, chromosome loss and chromosome gain were detected in the characterised mutants, as were single-nucleotide polymorphisms in ARO4, encoding for DAHP synthase, the catalytic enzyme in the first step of the Shikimate pathway. Transcriptome analysis confirmed the upregulation of genes encoding enzymes in the Ehrlich pathway and the concomitant increase in the production of higher alcohols and esters such as 2-phenylethanol, 2-phenylethyl acetate, tryptophol, and tyrosol. We propose that the polyploid nature of S. pastorianus genomes is an advantageous trait supporting opportunities for genetic alteration in otherwise sterile strains.


Phenylethyl Alcohol , Saccharomyces cerevisiae , 3-Deoxy-7-Phosphoheptulonate Synthase/genetics , 3-Deoxy-7-Phosphoheptulonate Synthase/metabolism , Amino Acids/metabolism , Amino Acids, Aromatic/genetics , Amino Acids, Aromatic/metabolism , Beer , Fermentation , Genome, Fungal , Genomics , Macrolides , Phenylethyl Alcohol/metabolism , Polyploidy , Saccharomyces , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sugars/metabolism
20.
NanoImpact ; 27: 100412, 2022 07.
Article En | MEDLINE | ID: mdl-35934234

Nanoplastics finds its presence in most of the consumer products. Their chance of coming in contact with human cells and components is rampant. This study focuses on the interaction of polystyrene nanoplastics (PSNPs) with human serum albumin (HSA), ultimately causing structural and functional properties of the protein. Fluorescence and UV-Visible spectroscopic studies reported that PSNPs form a spontaneous ground-state complex with HSA, by hydrogen bonding, van der waal's, and hydrophobic force of attraction. This causes changes in the environment around major aromatic amino acids, especially tryptophan-214, which has a strong affinity with PSNPs. Further docking analysis confirmed hydrophobic interactions between PSNPs and aromatic amino acids in subdomain IIA of HSA. A shift in amide bands in HSA, as determined by FTIR analysis confirmed the disturbances in its secondary structure followed by reordering which will lead to the unfolding of HSA. Besides, PSNPs reduce the esterase activity of HSA by competitive inhibition. This molecular-level information such as binding energy, binding site, binding forces, reversible or irreversible binding, and structural changes of protein will shed light on the extent of toxicity in humans. This study will emphasize the urgent need for regulation of the use of nanoplastics (NPs) in consumer products, as well as the need for more research to determine the fate of NPs in the biological system.


Microplastics , Serum Albumin, Human , Amino Acids, Aromatic/metabolism , Circular Dichroism , Humans , Molecular Docking Simulation , Protein Binding , Serum Albumin, Human/chemistry , Thermodynamics
...