Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.807
1.
Mikrochim Acta ; 191(6): 322, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730044

The first electrochemical sensor application in the literature is described for the sensitive and selective determination of the selective Janus kinase (JAK)-1 inhibitor abrocitinib (ABR). ABR is approved by the U.S. Food and Drug Administration (FDA) for the treatment of atopic dermatitis. The molecularly imprinted polymer (MIP)-based sensor was designed to incorporate zinc nanoflower (ZnNFs)-graphene oxide (GO) conjugate (ZnNFs@GO), synthesized from the root methanolic extract (RME) of the species Alkanna cappadocica Boiss. et Bal. to improve the porosity and effective surface area of the glassy carbon electrode (GCE). Furthermore, the MIP structure was prepared using ABR as a template molecule, 4-aminobenzoic acid (4-ABA) as a functional monomer, and other additional components. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the surface and structure of the synthesized nanomaterial and MIP-based surface. Among the electrochemical methods, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were preferred for detailed electrochemical characterization, and differential pulse voltammetry (DPV) was preferred for all other electrochemical measurements using 5.0 mM [Fe(CN)6]3-/4- solution as the redox probe. The MIP-based sensor, which was the result of a detailed optimization phase, gave a linear response in the 1.0 × 10-13 - 1.0 × 10-12 M range in standard solution and serum sample. The obtained limit of detection (LOD) and limit of quantification (LOQ) values and recovery studies demonstrated the sensitivity, accuracy, and applicability of the sensor. Selectivity, the most important feature of the MIP-based sensor, was verified by imprinting factor calculations using ibrutinib, ruxolitinib, tofacitinib, zonisamide, and acetazolamide.


Electrochemical Techniques , Limit of Detection , Molecularly Imprinted Polymers , Zinc , Molecularly Imprinted Polymers/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Zinc/chemistry , Graphite/chemistry , Humans , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/analysis , Aminoimidazole Carboxamide/blood , Aminoimidazole Carboxamide/chemistry , Nanostructures/chemistry , Electrodes
2.
Dev Comp Immunol ; 157: 105194, 2024 Aug.
Article En | MEDLINE | ID: mdl-38754572

In crustaceans, the steroid hormone 20-hydroxyecdysone (20E) initiates molting, and the molting process is also regulated by energy metabolism. AMPK is an energy sensor and plays a critical role in systemic energy balance. Here, the regulatory mechanism in the interaction between 20E and AMPK was investigated in Chinese mitten crab, Eriocheir sinensis. The results showed that the 20E concentration and the mRNA expression levels of 20E receptors in hepatopancreas were down-regulated post AMPK activator (AICAR) treatment, and were up-regulated after AMPK inhibitor (Compound C) injection in crabs. Besides, the molt-inhibiting hormone (MIH) gene expression in eyestalk showed the opposite patterns in response to the AICAR and Compound C treatment, respectively. Further investigation found that there was a significant reduction in 20E concentration post PI3K inhibitor (LY294002) treatment, and the phosphorylation level of PI3K was increased in hepatopancreas after AMPK inhibitor injection. On the other hand, the positive regulation of PI3K-mediated activation of AMPK was also observed, the phosphorylation levels of AMPKα, AMPKß and PI3K in hepatopancreas were significantly increased post 20E injection. In addition, the phosphorylation levels of AMPKα and AMPKß induced by 20E were decreased after the injection of PI3K inhibitor. Taken together, these results suggest that the regulatory cross-talk between 20E and AMPK is likely to act through PI3K pathway in E. sinensis, which appeared to be helpful for a better understanding in molting regulation.


AMP-Activated Protein Kinases , Brachyura , Ecdysterone , Hepatopancreas , Molting , Phosphatidylinositol 3-Kinases , Animals , Brachyura/immunology , Ecdysterone/metabolism , AMP-Activated Protein Kinases/metabolism , Hepatopancreas/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Invertebrate Hormones/metabolism , Chromones/pharmacology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Ribonucleotides/pharmacology , Morpholines/pharmacology , Arthropod Proteins/metabolism , Arthropod Proteins/genetics , Phosphorylation , Energy Metabolism
3.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720270

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


AMP-Activated Protein Kinases , Pulmonary Fibrosis , Silicon Dioxide , Simvastatin , Animals , Male , Rats , Acetophenones/pharmacology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , AMP-Activated Protein Kinases/metabolism , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lung/pathology , Lung/drug effects , Lung/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Pneumonia/chemically induced , Pneumonia/prevention & control , Pneumonia/drug therapy , Pneumonia/metabolism , Pneumonia/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Ribonucleotides/pharmacology , Signal Transduction/drug effects , Silicosis/drug therapy , Silicosis/pathology , Silicosis/metabolism , Simvastatin/pharmacology , Transforming Growth Factor beta1/metabolism
4.
Sci Rep ; 14(1): 12051, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802412

GDM, as a metabolic disease during pregnancy, regulates GLUT3 translocation by AMPK, thereby affecting glucose uptake in trophoblasts. It provides a new research idea and therapeutic target for alleviating intrauterine hyperglycemia in GDM. STZ was used to construct GDM mice, inject AICAR into pregnant mice, and observe fetal and placental weight; flow cytometry was employed for the detection of glucose uptake by primary trophoblast cells; immunofluorescence was applied to detect the localization of GLUT3 and AMPK in placental tissue; Cocofal microscope was used to detect the localization of GLUT3 in trophoblast cells;qRT-PCR and Western blot experiments were carried out to detect the expression levels of GLUT3 and AMPK in placental tissue; CO-IP was utilized to detect the interaction of GLUT3 and AMPK. Compared with the normal pregnancy group, the weight of the fetus and placenta of GDM mice increased (P < 0.001), and the ability of trophoblasts to take up glucose decreased (P < 0.001). In addition, AMPK activity in trophoblasts and membrane localization of GLUT3 in GDM mice were down-regulated compared with normal pregnant mice (P < 0.05). There is an interaction between GLUT3 and AMPK. Activating AMPK in trophoblasts can up-regulate the expression of GLUT3 membrane protein in trophoblasts of mice (P < 0.05) and increase the glucose uptake of trophoblasts (P < 0.05). We speculate that inhibition of AMPK activity in GDM mice results in aberrant localization of GLUT3, which in turn attenuates glucose uptake by placental trophoblast cells. AICAR activates AMPK to increase the membrane localization of GLUT3 and improve the glucose uptake capacity of trophoblasts.


AMP-Activated Protein Kinases , Diabetes, Gestational , Glucose Transporter Type 3 , Glucose , Signal Transduction , Trophoblasts , Animals , Trophoblasts/metabolism , Female , Pregnancy , Glucose/metabolism , Mice , AMP-Activated Protein Kinases/metabolism , Glucose Transporter Type 3/metabolism , Glucose Transporter Type 3/genetics , Diabetes, Gestational/metabolism , Placenta/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Ribonucleotides/pharmacology
5.
Phytopathology ; 114(4): 770-779, 2024 Apr.
Article En | MEDLINE | ID: mdl-38598410

Gray mold caused by Botrytis cinerea is among the 10 most serious fungal diseases worldwide. Fludioxonil is widely used to prevent and control gray mold due to its low toxicity and high efficiency; however, resistance caused by long-term use has become increasingly prominent. Therefore, exploring the resistance mechanism of fungicides provides a theoretical basis for delaying the occurrence of diseases and controlling gray mold. In this study, fludioxonil-resistant strains were obtained through indoor drug domestication, and the mutation sites were determined by sequencing. Strains obtained by site-directed mutagenesis were subjected to biological analysis, and the binding modes of fludioxonil and iprodione to Botrytis cinerea Bos1 BcBos1 were predicted by molecular docking. The results showed that F127S, I365S/N, F127S + I365N, and I376M mutations on the Bos1 protein led to a decrease in the binding energy between the drug and BcBos1. The A1259T mutation did not lead to a decrease in the binding energy, which was not the cause of drug resistance. The biological fitness of the fludioxonil- and point mutation-resistant strains decreased, and their growth rate, sporulation rate, and pathogenicity decreased significantly. The glycerol content of the sensitive strains was significantly lower than that of the resistant strains and increased significantly after treatment with 0.1 µg/ml of fludioxonil, whereas that of the resistant strains decreased. The osmotic sensitivity of the resistant strains was significantly lower than that of the sensitive strains. Positive cross-resistance was observed between fludioxonil and iprodione. These results will help to understand the resistance mechanism of fludioxonil in Botrytis cinerea more deeply.


Aminoimidazole Carboxamide/analogs & derivatives , Botrytis , Dioxoles , Drug Resistance, Fungal , Fungal Proteins , Fungicides, Industrial , Histidine Kinase , Hydantoins , Pyrroles , Botrytis/genetics , Botrytis/drug effects , Botrytis/enzymology , Dioxoles/pharmacology , Fungicides, Industrial/pharmacology , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydantoins/pharmacology , Pyrroles/pharmacology , Pyrroles/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Plant Diseases/microbiology , Molecular Docking Simulation , Mutation , Mutagenesis, Site-Directed
6.
Virology ; 595: 110080, 2024 Jul.
Article En | MEDLINE | ID: mdl-38631099

AMP-activated protein kinase (AMPK) is a cellular energy sensor regulating metabolic homeostasis. In this study, we investigated the role of AMPK in response to human herpesvirus 6A (HHV-6A) infection. We show that HHV-6A infection significantly downregulates the active phosphorylated state of AMPK in infected T cells. Pharmacological activation of AMPK highly attenuated HHV-6A propagation. Mechanistically, we found that the activation of AMPK by AICAR blocked HHV-6-induced glycolysis by inhibiting glucose metabolism and lactate secretion, as well as decreasing expressions of key glucose transporters and glycolytic enzymes. In addition, mTOR signaling has been inactivated in HHV-6A infected T cells by AICAR treatment. We also showed that HHV-6A infection of human umbilical cord blood mononuclear cells (CBMCs) reduced AMPK activity whereas the activation of AMPK by metformin drastically reduced HHV-6A DNA replication and virions production. Taken together, this study demonstrates that AMPK is a promising antiviral therapeutic target against HHV-6A infection.


AMP-Activated Protein Kinases , Glycolysis , Herpesvirus 6, Human , Signal Transduction , TOR Serine-Threonine Kinases , Virus Replication , Herpesvirus 6, Human/physiology , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/metabolism , Humans , Virus Replication/drug effects , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Roseolovirus Infections/virology , Roseolovirus Infections/metabolism , Metformin/pharmacology , Ribonucleotides/pharmacology , Phosphorylation
7.
J Mol Cell Cardiol ; 191: 12-22, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643934

Doxorubicin (DOX) is a widely used chemotherapeutic agent that can cause serious cardiotoxic side effects, leading to heart failure (HF). Impaired mitochondrial function is thought to be key factor driving progression into HF. We have previously shown in a rat model of DOX-HF that heart failure with reduced ejection fraction correlates with mitochondrial loss and dysfunction. Adenosine monophosphate-dependent kinase (AMPK) is a cellular energy sensor, regulating mitochondrial biogenesis and energy metabolism, including fatty acid oxidation. We hypothesised that AMPK activation could restore mitochondrial function and therefore be a novel cardioprotective strategy for the prevention of DOX-HF. Consequently, we set out to assess whether 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR), an activator of AMPK, could prevent cardiac functional decline in this chronic intravenous rat model of DOX-HF. In line with our hypothesis, AICAR improved cardiac systolic function. AICAR furthermore improved cardiac mitochondrial fatty acid oxidation, independent of mitochondrial number, and in the absence of observable AMPK-activation. In addition, we found that AICAR prevented loss of myocardial mass. RNAseq analysis showed that this may be driven by normalisation of pathways associated with ribosome function and protein synthesis, which are impaired in DOX-treated rat hearts. AICAR furthermore prevented dyslipidemia and excessive body-weight loss in DOX-treated rats, which may contribute to preservation of myocardial mass. Though it is unclear whether AICAR exerted its cardioprotective effect through cardiac or extra-cardiac AMPK-activation or via an AMPK-independent effect, these results show promise for the use of AICAR as a cardioprotective agent in DOX-HF to both preserve cardiac function and mass.


AMP-Activated Protein Kinases , Aminoimidazole Carboxamide , Cardiotonic Agents , Doxorubicin , Heart Failure , Ribonucleotides , Animals , Doxorubicin/adverse effects , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Heart Failure/chemically induced , Heart Failure/prevention & control , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/drug therapy , Ribonucleotides/pharmacology , Male , Cardiotonic Agents/pharmacology , Rats , AMP-Activated Protein Kinases/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Myocardium/metabolism , Myocardium/pathology , Fatty Acids/metabolism , Disease Models, Animal
8.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141015, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38615986

The bifunctional enzyme, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/inosine monophosphate (IMP) cyclohydrolase (ATIC) is involved in catalyzing penultimate and final steps of purine de novo biosynthetic pathway crucial for the survival of organisms. The present study reports the characterization of ATIC from Candidatus Liberibacer asiaticus (CLasATIC) along with the identification of potential inhibitor molecules and evaluation of cell proliferative activity. CLasATIC showed both the AICAR Transformylase (AICAR TFase) activity for substrates, 10-f-THF (Km, 146.6 µM and Vmax, 0.95 µmol/min/mg) and AICAR (Km, 34.81 µM and Vmax, 0.56 µmol/min/mg) and IMP cyclohydrolase (IMPCHase) activitiy (Km, 1.81 µM and Vmax, 2.87 µmol/min/mg). The optimum pH and temperature were also identified for the enzyme activity. In-silico study has been conducted to identify potential inhibitor molecules through virtual screening and MD simulations. Out of many compounds, HNBSA, diosbulbin A and lepidine D emerged as lead compounds, exhibiting higher binding energy and stability for CLasATIC than AICAR. ITC study reports higher binding affinities for HNBSA and diosbulbin A (Kd, 12.3 µM and 34.2 µM, respectively) compared to AICAR (Kd, 83.4 µM). Likewise, DSC studies showed enhanced thermal stability for CLasATIC in the presence of inhibitors. CD and Fluorescence studies revealed significant conformational changes in CLasATIC upon binding of the inhibitors. CLasATIC demonstrated potent cell proliferative, wound healing and ROS scavenging properties evaluated by cell-based bioassays using CHO cells. This study highlights CLasATIC as a promising drug target with potential inhibitors for managing CLas and its unique cell protective, wound-healing properties for future biotechnological applications.


Aminoimidazole Carboxamide , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/chemistry , Aminoimidazole Carboxamide/metabolism , Aminoimidazole Carboxamide/pharmacology , Phosphoribosylaminoimidazolecarboxamide Formyltransferase/metabolism , Phosphoribosylaminoimidazolecarboxamide Formyltransferase/chemistry , Molecular Docking Simulation , Ribonucleotides/metabolism , Ribonucleotides/chemistry , Kinetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Nucleotide Deaminases/metabolism , Nucleotide Deaminases/chemistry , Nucleotide Deaminases/genetics , Substrate Specificity , Cell Proliferation/drug effects , Hydroxymethyl and Formyl Transferases/metabolism , Hydroxymethyl and Formyl Transferases/chemistry , Hydroxymethyl and Formyl Transferases/genetics , Hydroxymethyl and Formyl Transferases/antagonists & inhibitors , Multienzyme Complexes
9.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 730-739, 2024 05 25.
Article En | MEDLINE | ID: mdl-38655617

Bronchial thermoplasty (BT), an effective treatment for severe asthma, requires heat to reach the airway to reduce the mass of airway smooth muscle cells (ASMCs). Autophagy is involved in the pathological process of airway remodeling in patients with asthma. However, it remains unclear whether autophagy participates in controlling airway remodeling induced by BT. In this study, we aim to elucidate the autophagy-mediated molecular mechanisms in BT. Our study reveal that the number of autophagosomes and the level of alpha-smooth muscle actin (α-SMA) fluorescence are significantly decreased in airway biopsy tissues after BT. As the temperature increased, BT causes a decrease in cell proliferation and a concomitant increase in the apoptosis of human airway smooth muscle cells (HASMCs). Furthermore, increase in temperature significantly downregulates cellular autophagy, autophagosome accumulation, the LC3II/LC3I ratio, and Beclin-1 expression, upregulates p62 expression, and inhibits the AMPK/mTOR pathway. Furthermore, cotreatment with AICAR (an AMPK agonist) or RAPA (an mTOR antagonist) abolishes the inhibition of autophagy and attenuates the increase in the apoptosis rate of HASMCs induced by the thermal effect. Therefore, we conclude that BT decreases airway remodeling by blocking autophagy induced by the AMPK/mTOR signaling pathway in HASMCs.


AMP-Activated Protein Kinases , Airway Remodeling , Apoptosis , Autophagy , Bronchial Thermoplasty , Myocytes, Smooth Muscle , Signal Transduction , TOR Serine-Threonine Kinases , TOR Serine-Threonine Kinases/metabolism , Humans , Autophagy/drug effects , AMP-Activated Protein Kinases/metabolism , Bronchial Thermoplasty/methods , Myocytes, Smooth Muscle/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Asthma/metabolism , Asthma/pathology , Male , Cells, Cultured , Bronchi/metabolism , Bronchi/pathology , Aminoimidazole Carboxamide/analogs & derivatives , Ribonucleotides
10.
Environ Sci Pollut Res Int ; 31(11): 17289-17298, 2024 Mar.
Article En | MEDLINE | ID: mdl-38340299

The present work explores the genotoxicity of the fungicides iprodione (IP) and tebuconazole (TB) using the Allium cepa assay as an in vivo biological model. Both short-term and long-term exposures were studied, revealing concentration- and time-dependent cytological and genotoxic effects. IP exhibited genotoxicity over a wider concentration range (5-50 µg/ml) and required 30 h of exposure, while TB showed genotoxicity at higher concentrations (10 and 30 µg/ml) within a 4-h exposure period. The study highlights the importance of assessing potential risks associated with fungicide exposure, including handling, disposal practices, and concerns regarding food residue. Moreover, the research underscores the genotoxic effects of IP and TB on plant cells and provides valuable insights into their concentration and time-response patterns.


Aminoimidazole Carboxamide/analogs & derivatives , Fungicides, Industrial , Hydantoins , Onions , Triazoles , Meristem , Fungicides, Industrial/toxicity , DNA Damage , Plant Roots , Chromosome Aberrations
11.
Nutr Res ; 124: 43-54, 2024 Apr.
Article En | MEDLINE | ID: mdl-38367426

Kimchi is a traditional fermented food that contains abundant nutrients and functional ingredients with various health benefits. We previously reported that kimchi active components suppress hepatic steatosis caused by endoplasmic reticulum (ER) stress in vitro and in vivo. Therefore, we assessed the effect of kimchi on the inhibition of hepatic steatosis caused by ER stress in HepG2 cells and C57BL/6N mice to verify the hypothesis that kimchi may potentially inhibit nonalcoholic fatty liver disease. We investigated the effect of kimchi on cell viability and triglyceride concentrations in cells and on lipid profile, lipid accumulation, and expression of related genes in cells and mice with hepatic steatosis. A mechanistic study was also performed using the liver X receptor α agonist T0901317 and the AMP-activated protein kinase agonist AICAR. Kimchi was noncytotoxic and effectively reduced triglyceride concentrations and suppressed hepatic steatosis-related gene expression in cells and mice. Additionally, kimchi recovered weight loss, lowered the serum and liver tissue lipid profiles, suppressed lipid accumulation, and reduced the effects of T0901317 and AICAR on lipogenic gene expression in tunicamycin-treated mice. Our results highlight that kimchi could prevent hepatic steatosis caused by ER stress in cells and mice.


Aminoimidazole Carboxamide/analogs & derivatives , Benzenesulfonamides , Endoplasmic Reticulum Stress , Fermented Foods , Fluorocarbons , Liver , Mice, Inbred C57BL , Triglycerides , Animals , Endoplasmic Reticulum Stress/drug effects , Humans , Hep G2 Cells , Triglycerides/blood , Triglycerides/metabolism , Male , Liver/metabolism , Liver/drug effects , Mice , Aminoimidazole Carboxamide/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/etiology , Sulfonamides/pharmacology , Ribonucleotides/pharmacology , AMP-Activated Protein Kinases/metabolism , Lipid Metabolism/drug effects , Cell Survival/drug effects , Liver X Receptors/metabolism , Tunicamycin/pharmacology , Lipogenesis/drug effects , Fatty Liver/drug therapy , Fatty Liver/prevention & control
12.
Eur J Pharmacol ; 974: 176373, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38341079

BACKGROUND: Oxidative stress and inflammatory cytokines in the hypothalamus paraventricular nucleus (PVN) have been implicated in sympathetic nerve activity and the development of hypertension, but the specific mechanisms underlying their production in the PVN remains to be elucidated. Previous studies have demonstrated that activation of nuclear transcription related factor-2 (Nrf2) in the PVN reduced the production of reactive oxygen species (ROS) and inflammatory mediators. Moreover, AMP-activated protein kinase (AMPK), has been observed to decrease ROS and inflammatory cytokine production when activated in the periphery. 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an AMPK agonist. However, little research has been conducted on the role of AMPK in the PVN during hypertension. Therefore, we hypothesized that AICAR in the PVN is involved in regulating AMPK/Nrf2 pathway, affecting ROS and inflammatory cytokine expression, influencing sympathetic nerve activity. METHODS: Adult male Sprague-Dawley rats were utilized to induce two-kidney, one-clip (2K1C) hypertension via constriction of the right renal artery. Bilateral PVN was microinjected with either artificial cerebrospinal fluid or AICAR once a day for 4 weeks. RESULTS: Compared to the SHAM group, the PVN of 2K1C hypertensive rats decreased p-AMPK and p-Nrf2 expression, increased Fra-Like, NAD(P)H oxidase (NOX)2, NOX4, tumor necrosis factor-α and interleukin (IL)-1ß expression, elevated ROS levels, decreased superoxide dismutase 1 and IL-10 expression, and elevated plasma norepinephrine levels. Bilateral PVN microinjection of AICAR significantly ameliorated these changes. CONCLUSION: These findings suggest that repeated injection of AICAR in the PVN suppresses ROS and inflammatory cytokine production through the AMPK/Nrf2 pathway, reducing sympathetic nerve activity and improving hypertension.


AMP-Activated Protein Kinases , Aminoimidazole Carboxamide , Hypertension , NF-E2-Related Factor 2 , Paraventricular Hypothalamic Nucleus , Rats, Sprague-Dawley , Reactive Oxygen Species , Ribonucleotides , Signal Transduction , Animals , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Male , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Aminoimidazole Carboxamide/administration & dosage , Ribonucleotides/pharmacology , Ribonucleotides/administration & dosage , AMP-Activated Protein Kinases/metabolism , Hypertension/drug therapy , Hypertension/metabolism , NF-E2-Related Factor 2/metabolism , Rats , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Blood Pressure/drug effects , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism , Oxidative Stress/drug effects , Cytokines/metabolism
13.
Appl Physiol Nutr Metab ; 49(5): 614-625, 2024 May 01.
Article En | MEDLINE | ID: mdl-38181403

We assessed the effects of two levels of calorie restriction (CR; eating either 15% or 35% less than ad libitum, AL, food intake for 8 weeks) by 24-month-old female and male rats on glucose uptake (GU) and phosphorylation of key signaling proteins (Akt; AMP-activated protein kinase, AMPK; Akt substrate of 160 kDa, AS160) measured in isolated skeletal muscles that underwent four incubation conditions (without either insulin or AICAR, an AMPK activator; with AICAR alone; with insulin alone; or with insulin and AICAR). Regardless of sex: (1) neither CR group versus the AL group had greater GU by insulin-stimulated muscles; (2) phosphorylation of Akt in insulin-stimulated muscles was increased in 35% CR versus AL rats; (3) prior AICAR treatment of muscle resulted in greater GU by insulin-stimulated muscles, regardless of diet; and (4) AICAR caused elevated phosphorylation of acetyl CoA carboxylase, an indicator of AMPK activation, in all diet groups. There was a sexually dimorphic diet effect on AS160 phosphorylation, with 35% CR exceeding AL for insulin-stimulated muscles in male rats, but not in female rats. Our working hypothesis is that the lack of a CR-effect on GU by insulin-stimulated muscles was related to the extended duration of the ex vivo incubation period (290 min compared to 40-50 min that was previously reported to be effective). The observed efficacy of prior treatment of muscles with AICAR to improve glucose uptake in insulin-stimulated muscles supports the strategy of targeting AMPK with the goal of improving insulin sensitivity in older females and males.


AMP-Activated Protein Kinases , Aminoimidazole Carboxamide , Caloric Restriction , Glucose , Insulin , Muscle, Skeletal , Proteins , Proto-Oncogene Proteins c-akt , Ribonucleotides , Signal Transduction , Animals , Female , Male , Rats , Acetyl-CoA Carboxylase/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , GTPase-Activating Proteins/metabolism , Hypoglycemic Agents/pharmacology , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Ribonucleotides/pharmacology , Sex Factors , Signal Transduction/drug effects , Phosphoribosylaminoimidazolecarboxamide Formyltransferase/metabolism
14.
Ecotoxicol Environ Saf ; 270: 115911, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38181604

Iprodione is an effective and broad-spectrum fungicide commonly used for early disease control in fruit trees and vegetables. Due to rainfall, iprodione often finds its way into water bodies, posing toxicity risks to non-target organisms and potentially entering the human food chain. However, there is limited information available regarding the developmental toxicity of iprodione specifically on the liver in existing literature. In this study, we employed larval and adult zebrafish as models to investigate the toxicity of iprodione. Our findings revealed that iprodione exposure led to yolk sac edema and increased mortality in zebrafish. Notably, iprodione exhibited specific effects on zebrafish liver development. Additionally, zebrafish exposed to iprodione experienced an overload of reactive oxygen species, resulting in the upregulation of p53 gene expression. This, in turn, triggered hepatocyte apoptosis and disrupted carbohydrate/lipid metabolism as well as energy demand systems. These results demonstrated the substantial impact of iprodione on zebrafish liver development and function. Furthermore, the application of astaxanthin (an antioxidant) and p53 morpholino partially mitigated the liver toxicity caused by iprodione. To summarize, iprodione induces apoptosis through the upregulation of p53 mediated by oxidative stress signals, leading to liver toxicity in zebrafish. Our study highlights that exposure to iprodione can result in hepatotoxicity in zebrafish, and it may potentially pose toxicity risks to other aquatic organisms and even humans.


Aminoimidazole Carboxamide/analogs & derivatives , Chemical and Drug Induced Liver Injury , Hydantoins , Zebrafish , Animals , Humans , Zebrafish/metabolism , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Oxidative Stress , Chemical and Drug Induced Liver Injury/metabolism , Embryo, Nonmammalian/metabolism , Apoptosis
15.
PLoS One ; 17(9): e0272928, 2022.
Article En | MEDLINE | ID: mdl-36048820

BACKGROUND: Postoperative abdominal adhesion is one of most common complications after abdominal operations. 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) is an adenosine 5'-monophosphate activated protein kinase (AMPK) pathway agonist that inhibits inflammation, reduces cell fibrosis and cellular reactive oxygen species (ROS) injury, promotes autophagy and mitochondrial function. This study aimed to explore the mechanism of AICAR in inhibiting adhesion formation. MATERIALS AND METHODS: Forty rats were randomly divided into five groups. All of the rats except the sham group received cecal abrasion to establish an adhesion model. The rats in the sodium hyaluronate group were treated with 2 mL sodium hyaluronate before closing the peritoneal cavity. The AICAR 1 and 2 groups were treated with 100 mg/kg and 200 mg/kg AICAR, respectively. Seven days after the operation, all of the rats were euthanized, and the adhesion condition was evaluated by Nair's system. Inflammation was assessed by Eosin-hematoxylin (HE) staining and transforming growth factor-ß (TGF-ß1) detection. Oxidative stress effect was determined by ROS, nitric oxide (NO) level, superoxide dismutase (SOD), catalase, glutathione peroxidase (Gpx) and malondialdehyde (MDA) levels in adhesion tissue. Then, Sirius red picric acid staining was used to detect the fiber thickness. Immunohistochemical staining of cytokeratin-19 (CK-19), alpha-smooth muscle actin (α-SMA) and nuclear factor erythroid 2-related factor 2 (Nrf2) was also performed. Finally, HMrSV5 cells were treated with TGF-ß1 and AICAR, the mRNA expression of E-cadherin, α-SMA and vimentin was assessed by q-PCR and cellular immunofluorescent staining. RESULTS: The rats in the AICAR-treated group had fewer adhesion formation incidences and a reduced Nair's score. The inflammation was determined by HE staining and TGF-ß1 concentration. The ROS, SOD, Catalase, Gpx, MDA levels and fiber thickness were decreased by AICAR treatments compared to the control. However, the NO production, Nrf2 levels and peritoneal mesothelial cell integrity were promoted after AICAR treatments. In vitro work, AICAR treatments reduced E-cadherin, α-SMA and vimentin mRNA level compared to that in the TGF-ß1 group. CONCLUSION: AICAR can inhibit postoperative adhesion formation by reducing inflammation, decreasing oxidative stress response and promoting peritoneal mesothelial cell repair.


Ribonucleosides , Transforming Growth Factor beta1 , Aminoimidazole Carboxamide/analogs & derivatives , Animals , Cadherins/metabolism , Catalase/metabolism , Hyaluronic Acid , Inflammation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , RNA, Messenger/metabolism , Rats , Reactive Oxygen Species/metabolism , Ribonucleosides/metabolism , Ribonucleotides , Superoxide Dismutase/metabolism , Tissue Adhesions/drug therapy , Tissue Adhesions/prevention & control , Transforming Growth Factor beta1/metabolism , Vimentin/metabolism
16.
Chemosphere ; 307(Pt 2): 135894, 2022 Nov.
Article En | MEDLINE | ID: mdl-35926749

Iprodione is a well-known fungicide used in the cultivation of strawberries, tomatoes, grapes, and green beans. In recent studies, neurotoxicity, cardiotoxicity, and endocrine toxicity of iprodione have been reported. Although reproductive toxicity of iprodione has been identified in animal studies, its effects are limited to male fertility. Also, the toxic effects of iprodione on pregnancy, especially the implantation process, have not been elucidated. This study demonstrated a series of cytotoxic responses of iprodione along with the alteration of implantation-related gene expression in porcine trophectoderm (pTr) and luminal epithelium (pLE) cells. In this study, iprodione suppressed cell viability, proliferation, and migration of these cells. Iprodione induced G1 phase arrest and attenuated spheroid formation by pTr and pLE cells. Furthermore, iprodione caused mitochondrial dysfunction and excessive reactive oxygen species generation, which resulted in an increase in mitochondrial calcium levels. Consequently, DNA damage and apoptotic cell death were induced by iprodione treatment in pTr and pLE cells. This stress-induced cell death was mediated by alterations in intracellular signal transduction, including the PI3K/AKT and MAPK signaling pathways. This finding suggests the potential of iprodione to impair the implantation capacity by exerting cytotoxic effects on fetal and maternal cells.


Fungicides, Industrial , Phosphatidylinositol 3-Kinases , Aminoimidazole Carboxamide/analogs & derivatives , Animals , Apoptosis , Calcium/metabolism , Cell Proliferation , Epithelial Cells , Female , Fungicides, Industrial/metabolism , Hydantoins , Male , Mitochondria/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pregnancy , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Sus scrofa/metabolism , Swine
17.
Int Immunopharmacol ; 111: 109165, 2022 Oct.
Article En | MEDLINE | ID: mdl-35987144

Severe acute pancreatitis (SAP) is a condition characterized by highly fatal acute inflammation and is usually associated with multiple organ dysfunction syndrome. Acute lung injury (ALI) is the most common complications of SAP, which is the accelerator of other organ dysfunction caused by SAP and the primary cause of early death due to SAP. Acadesine, an adenosine analog and an AMPK activator, has been discovered to modulate glucose and lipid metabolism, and inhibit the production of pro-inflammatory cytokines and iNOS. However, its role in SAP-ALI and its mechanism remains unclear and need to be explored. Herein, we discovered that acadesine mitigated the generation of reactive oxygen species (ROS) in human pulmonary microvascular endothelial cells (HPMECs), alleviated apoptosis and recovered barrier integrity, thereby contributing to anti-inflammatory effects in vitro and in vivo. Moreover, Nrf2 deficiency partially eliminated the effects of acadesine-induced antioxidant effects and thus weakened the protective effects on cells and Nrf2-knockout (Nrf2-/-) mice. This study demonstrates that acadesine attenuated SAP-ALI associated inflammation and tissue damage by modulating the Nrf2-dependent antioxidant pathway by triggering AMPK. These findings are of great significance for the treatment of SAP-related lung injury.


Acute Lung Injury , Pancreatitis , AMP-Activated Protein Kinases/metabolism , Acute Disease , Acute Lung Injury/chemically induced , Aminoimidazole Carboxamide/analogs & derivatives , Animals , Antioxidants/pharmacology , Endothelial Cells/metabolism , Humans , Inflammation/metabolism , Mice , NF-E2-Related Factor 2/metabolism , Pancreatitis/complications , Ribonucleosides , Signal Transduction
18.
Brain Dev ; 44(9): 645-649, 2022 Oct.
Article En | MEDLINE | ID: mdl-35637059

BACKGROUND: AICA (5-aminoimidazole-4-carboxamide) ribosiduria is an inborn error in purine biosynthesis caused due to biallelic pathogenic variants in the 5-aminoimidazole-4-carboxamide ribonucleotide-formyltransferase/imp cyclohydrolase (ATIC) gene located on chromosome 2q35. ATIC codes for a bifunctional enzyme, AICAR transformylase and inosine monophosphate (IMP) cyclohydrolase, which catalyse the last two steps of de novo purine synthesis. This disorder has been previously reported in only 4 cases worldwide, and herein, we report the first from India. CASE REPORT: The proband presented with global developmental delay, developmental hip dysplasia (DDH), acyanotic heart disease and nystagmoid eye movements. Whole exome sequencing (WES) identified compound heterozygous pathogenic variants in the ATIC. A novel splice site variant; c.1321-2A > G and a previously reported missense variant; c.1277A > G (p.Lys426Arg) were identified. Segregation analysis of parents showed the father to be a heterozygous carrier for the splice site variant and the mother, a heterozygous carrier for the missense variant. CONCLUSION: This case of a rare genetic disorder of purine biosynthesis of ATIC deficiency is the first case reported from India. Early diagnosis lead to early interventional therapy and genetic counselling.


Hydroxymethyl and Formyl Transferases , Aminoimidazole Carboxamide/analogs & derivatives , Humans , Imidazoles , Purines , Ribonucleotides
19.
Lab Med ; 53(5): 465-474, 2022 Sep 01.
Article En | MEDLINE | ID: mdl-35397004

OBJECTIVE: The upregulation of 5-amino-4-imidazolecarboxamide ribonucleotide transformylase/IMP cyclohydrolase (ATIC) may affect tumorigenesis and multiple myeloma (MM) development. MATERIALS AND METHODS: A total of 97 patients with MM and 102 healthy control patients were included in the study. The SNaPshot technique was used to detect the ATIC gene polymorphisms. Linkage disequilibrium (LD) and haplotype analyses were conducted using SHEsis software. RESULTS: The genotype distribution or allele frequency of rs3772078 and rs16853834 was significantly different between the patients with MM and the healthy control patients (all P < .05). The rs16853834 A allele, rs3772078 CT genotype, and C allele were associated with a decreased risk of MM (all P < .05). Five single-nucleotide polymorphism combinations showed strong LD. Three haplotypes were associated with MM risk (all P < .05). We found that ATIC rs7604984 was significantly associated with serum lactate dehydrogenase levels (P = .050). CONCLUSION: We determined that the rs3772078 and rs16853834 polymorphisms are associated with a decreased risk of MM.


Hydroxymethyl and Formyl Transferases , Multiple Myeloma , Aminoimidazole Carboxamide/analogs & derivatives , Gene Frequency , Genetic Predisposition to Disease , Genotype , Haplotypes , Humans , Hydroxymethyl and Formyl Transferases/genetics , Multienzyme Complexes/genetics , Multiple Myeloma/genetics , Nucleotide Deaminases , Polymorphism, Single Nucleotide/genetics , Ribonucleotides
20.
Curr Cancer Drug Targets ; 22(3): 245-256, 2022.
Article En | MEDLINE | ID: mdl-35135451

BACKGROUND: Triple-negative breast cancer (TNBC) is known for Warburg effect and defects in the mitochondria. AMP-dependent kinase (AMPK) activates the downstream transcription factors PGC-1α, PGC-1ß, or FOXO1, which participate in mitochondrial biogenesis. 5- aminoimidazole-4-carboxamide riboside (AICAR) is an analog of adenosine monophosphate and is a direct activator of AMPK. OBJECTIVES: In the present study, we have made an attempt to understand the influence of AICAR on TNBC cells, MDA-MB-231, and the underlying changes in mitochondrial biogenesis, if any. METHODS: We investigated AICAR induced changes in cell viability, apoptosis, migratory potential, and changes in the sensitivity of doxorubicin. RESULTS: In response to the treatment of MDA-MB-231 breast cancer cells with 750 µM of AICAR for 72 hours, followed by 48 hours in fresh media without AICAR, we observed a decrease in viability via MTT assay, reduction in cell numbers along with the apoptotic appearance, increased cell death by ELISA, decreased lactate in conditioned medium and decrease in migration by scratch and transwell migration assays. These changes in the cancer phenotype were accompanied by an increase in mitochondrial biogenesis, as observed by increased mitochondrial DNA to nuclear DNA ratio, a decrease in lactic acid concentration, an increase in MitoTracker green and red staining, and increased expression of transcription factors PGC-1α, NRF-1, NRF-2, and TFAM, contributing to mitochondrial biogenesis. Pre-treatment of cells with AICAR for 72 hours followed by 48 hours treatment with 1 µM doxorubicin showed an increased sensitivity to doxorubicin as assessed by the MTT assay. CONCLUSION: Our results show that AICAR exerts beneficial effects on TNBC cells, possibly via switching off the Warburg effect and switching on the anti-Warburg effect through mitochondrial modulation.


Triple Negative Breast Neoplasms , AMP-Activated Protein Kinases/genetics , Aminoimidazole Carboxamide/analogs & derivatives , Doxorubicin/pharmacology , Humans , Imidazoles , Mitochondria , Ribonucleotides , Transcription Factors/genetics , Triple Negative Breast Neoplasms/drug therapy
...