Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 340
Filter
1.
Nat Commun ; 15(1): 5612, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987280

ABSTRACT

Natural selection can drive organisms to strikingly similar adaptive solutions, but the underlying molecular mechanisms often remain unknown. Several amphibians have independently evolved highly adhesive skin secretions (glues) that support a highly effective antipredator defence mechanism. Here we demonstrate that the glue of the Madagascan tomato frog, Dyscophus guineti, relies on two interacting proteins: a highly derived member of a widespread glycoprotein family and a galectin. Identification of homologous proteins in other amphibians reveals that these proteins attained a function in skin long before glues evolved. Yet, major elevations in their expression, besides structural changes in the glycoprotein (increasing its structural disorder and glycosylation), caused the independent rise of glues in at least two frog lineages. Besides providing a model for the chemical functioning of animal adhesive secretions, our findings highlight how recruiting ancient molecular templates may facilitate the recurrent evolution of functional innovations.


Subject(s)
Anura , Skin , Animals , Skin/metabolism , Anura/genetics , Anura/metabolism , Phylogeny , Amphibians/metabolism , Amphibians/genetics , Evolution, Molecular , Glycoproteins/metabolism , Glycoproteins/genetics , Galectins/metabolism , Galectins/genetics , Biological Evolution , Amphibian Proteins/metabolism , Amphibian Proteins/genetics
2.
ACS Infect Dis ; 10(7): 2403-2418, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38848266

ABSTRACT

Staphylococcus aureus, a bacterium resistant to multiple drugs, is a significant cause of illness and death worldwide. Antimicrobial peptides (AMPs) provide an excellent potential strategy to cope with this threat. Recently, we characterized a derivative of the frog-skin AMP esculentin-1a, Esc(1-21) (1) that is endowed with potent activity against Gram-negative bacteria but poor efficacy against Gram-positive strains. In this study, three analogues of peptide 1 were designed by replacing Gly8 with α-aminoisobutyric acid (Aib), Pro, and dPro (2-4, respectively). The single substitution Gly8 → Aib8 in peptide 2 makes it active against the planktonic form of Gram-positive bacterial strains, especially Staphylococcus aureus, including multidrug-resistant clinical isolates, with an improved biostability without resulting in cytotoxicity to mammalian cells. Moreover, peptide 2 showed a higher antibiofilm activity than peptide 1 against both reference and clinical isolates of S. aureus. Peptide 2 was also able to induce rapid bacterial killing, suggesting a membrane-perturbing mechanism of action. Structural analysis of the most active peptide 2 evidenced that the improved biological activity of peptide 2 is the consequence of a combination of higher biostability, higher α helical content, and ability to reduce membrane fluidity and to adopt a distorted helix, bent in correspondence of Aib8. Overall, this study has shown how a strategic single amino acid substitution is sufficient to enlarge the spectrum of activity of the original peptide 1, and improve its biological properties for therapeutic purposes, thus paving the way to optimize AMPs for the development of new broad-spectrum anti-infective agents.


Subject(s)
Amino Acid Substitution , Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Staphylococcus aureus , Biofilms/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Humans , Amphibian Proteins/pharmacology , Amphibian Proteins/chemistry , Amphibian Proteins/genetics , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Animals , Drug Resistance, Bacterial
3.
J Biotechnol ; 390: 50-61, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38789049

ABSTRACT

To reduce food spoilage and deterioration caused by microbial contamination, antimicrobial peptides (AMPs) have gradually gained attention as a biological preservative. Odorranain-C1 is an α-helical cationic antimicrobial peptide extracted from the skin of frogs with broad-spectrum antimicrobial activity. In this study, we achieved the expression of Odorranain-C1 in Pichia pastoris (P. pastoris) (also known as Komagataella phaffii) by employing DNA recombination technology. The recombinant Odorranain-C1 showed broad-spectrum antibacterial activity and displayed a minimum inhibitory concentration within the range of 8-12 µg.mL-1. Meanwhile, Odorranain-C1 exhibited superior stability and lower hemolytic activity. Mechanistically, Odorranain-C1 disrupted the bacterial membrane's integrity, ultimately causing membrane rupture and subsequent cell death. In tilapia fillets preservation, Odorranain-C1 inhibited the total colony growth and pH variations, while also reducing the production of total volatile basic nitrogen (TVB-N) and thiobarbituric acid (TBA). In conclusion, these studies demonstrated the efficient recombinant expression of Odorranain-C1 in P. pastoris, highlighting its promising utilization in food preservation.


Subject(s)
Food Preservation , Saccharomycetales , Animals , Saccharomycetales/genetics , Saccharomycetales/metabolism , Food Preservation/methods , Microbial Sensitivity Tests , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Antimicrobial Peptides/genetics , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/metabolism , Anti-Bacterial Agents/pharmacology , Hemolysis/drug effects , Pichia/genetics , Pichia/metabolism , Amphibian Proteins/genetics , Amphibian Proteins/pharmacology , Amphibian Proteins/metabolism , Anura/metabolism
4.
Med Oncol ; 41(6): 162, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767753

ABSTRACT

Dermaseptin B2 (DrsB2) is an antimicrobial peptide with anticancer and angiostatic properties. We aimed to assess the in vitro inhibitory effect of pDNA/DrsB2 on the growth of breast cancer cells and its impact on the expression of genes involved in the BAX/BBC3/AKT pathway. The nucleic acid sequence of DrsB2 was artificially synthesized and inserted into the pcDNA3.1( +) Mammalian Expression Plasmid. PCR testing and enzyme digesting procedures evaluated the accuracy of cloning. The vectors were introduced into cells using LipofectamineTM2000 transfection reagent. The breast cancer cells were assessed by flow cytometry, MTT assessment, soft agar colony method, and wound healing investigation. The gene's transcription was evaluated using real-time PCR with a significance level of P < 0.05. The recombinant plasmid harboring the pDNA/DrsB2 vector was effectively produced, and the gene sequence showed absolute homogeneity (100% similarity) with the DrsB2 gene. The transfection effectiveness of MCF-7 and MCF-10A cells was 79% and 68%, respectively. The findings are measured using the growth inhibition 50% (GI50) metric, which indicates the concentration of pDNA/DrsB2 that stops 50% of cell growth. The proportions of early apoptosis, late apoptosis, necrosis, and viable MCF-7 cells in the pDNA/DrsB2 group were 40.50%, 2.31%, 1.69%, and 55.50%, respectively. The results showed a 100% increase in gene expression in programmed cell death following treatment with pDNA/DrsB2 (**P < 0.01). To summarize, the results described in this work offer new possibilities for treating cancer by targeting malignancies via pDNA/DrsB2 and activating the BAX/BBC3/AKT signaling pathways.


Subject(s)
Breast Neoplasms , Cell Proliferation , Proto-Oncogene Proteins c-akt , Signal Transduction , bcl-2-Associated X Protein , Humans , Proto-Oncogene Proteins c-akt/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Female , Apoptosis , MCF-7 Cells , Amphibian Proteins/genetics , Amphibian Proteins/pharmacology , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antimicrobial Cationic Peptides/genetics , Transfection
5.
Article in English | MEDLINE | ID: mdl-38714098

ABSTRACT

As amphibians undergo thyroid hormone (TH)-dependent metamorphosis from an aquatic tadpole to the terrestrial frog, their innate immune system must adapt to the new environment. Skin is a primary line of defense, yet this organ undergoes extensive remodelling during metamorphosis and how it responds to TH is poorly understood. Temperature modulation, which regulates metamorphic timing, is a unique way to uncover early TH-induced transcriptomic events. Metamorphosis of premetamorphic tadpoles is induced by exogenous TH administration at 24 °C but is paused at 5 °C. However, at 5 °C a "molecular memory" of TH exposure is retained that results in an accelerated metamorphosis upon shifting to 24 °C. We used RNA-sequencing to identify changes in Rana (Lithobates) catesbeiana back skin gene expression during natural and TH-induced metamorphosis. During natural metamorphosis, significant differential expression (DE) was observed in >6500 transcripts including classic TH-responsive transcripts (thrb and thibz), heat shock proteins, and innate immune system components: keratins, mucins, and antimicrobial peptides (AMPs). Premetamorphic tadpoles maintained at 5 °C showed 83 DE transcripts within 48 h after TH administration, including thibz which has previously been identified as a molecular memory component in other tissues. Over 3600 DE transcripts were detected in TH-treated tadpoles at 24 °C or when tadpoles held at 5 °C were shifted to 24 °C. Gene ontology (GO) terms related to transcription, RNA metabolic processes, and translation were enriched in both datasets and immune related GO terms were observed in the temperature-modulated experiment. Our findings have implications on survival as climate change affects amphibia worldwide.


Subject(s)
Gene Expression Profiling , Immunity, Innate , Metamorphosis, Biological , Skin , Temperature , Thyroid Hormones , Transcriptome , Animals , Metamorphosis, Biological/drug effects , Immunity, Innate/drug effects , Skin/drug effects , Skin/metabolism , Thyroid Hormones/metabolism , Transcriptome/drug effects , Rana catesbeiana/genetics , Rana catesbeiana/growth & development , Larva/growth & development , Larva/genetics , Larva/drug effects , Amphibian Proteins/genetics
6.
BMC Vet Res ; 20(1): 164, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678277

ABSTRACT

BACKGROUND: Esculentin-1, initially discovered in the skin secretions of pool frogs (Pelophylax lessonae), has demonstrated broad-spectrum antimicrobial activity; however, its immunomodulatory properties have received little attention. RESULTS: In the present study, esculentin-1 cDNA was identified by analysing the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus). Esculentin-1 from this species (esculentin-1PN) encompasses a signal peptide, an acidic spacer peptide, and a mature peptide. Sequence alignments with other amphibian esculentins-1 demonstrated conservation of the peptide, and phylogenetic tree analysis revealed its closest genetic affinity to esculentin-1P, derived from the Fukien gold-striped pond frog (Pelophylax fukienensis). Esculentin-1PN transcripts were observed in various tissues, with the skin exhibiting the highest mRNA levels. Synthetic esculentin-1PN demonstrated antibacterial activity against various pathogens, and esculentin-1PN exhibited bactericidal activity by disrupting cell membrane integrity and hydrolyzing genomic DNA. Esculentin-1PN did not stimulate chemotaxis in RAW264.7, a murine leukemic monocyte/macrophage cell line. However, it amplified the respiratory burst and augmented the pro-inflammatory cytokine gene (TNF-α and IL-1ß) expression in RAW264.7 cells. CONCLUSIONS: This novel finding highlights the immunomodulatory activity of esculentin-1PN on immune cells.


Subject(s)
Amphibian Proteins , Anti-Bacterial Agents , Phylogeny , Ranidae , Animals , Amphibian Proteins/pharmacology , Amphibian Proteins/chemistry , Amphibian Proteins/genetics , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/genetics , Amino Acid Sequence , Skin/metabolism , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , RAW 264.7 Cells , Sequence Alignment
7.
Dev Comp Immunol ; 137: 104519, 2022 12.
Article in English | MEDLINE | ID: mdl-36041640

ABSTRACT

Brevinins exhibit a wide range of structural features and strong biological activities. Brevinin-2, derived from several amphibians, has shown antimicrobial activities. However, little is known about the wound-healing activity of brevinin-2. In this study, brevinin-2 cDNA was identified from the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus) and it comprises a signal peptide, a propeptide, and a mature peptide. Sequence alignment with brevinin-2 derived from other amphibians showed variability of the mature peptide, and the presence of a C-terminal cyclic heptapeptide domain (Cys-Lys-Xaa4-Cys) in the mature peptide. Dark-spotted frog brevinin-2 belonged to the brevinin-2 cluster and was closely related to brevinin-2HB1 from Pelophylax hubeiensis. Synthetic dark-spotted frog brevinin-2 mature peptide (brevinin-2PN) exhibited antibacterial activity against several pathogens by destroying cell membrane integrity and hydrolysis of genomic DNA. Brevinin-2PN exhibited significant wound-healing activity by accelerating the healing of human skin fibroblast cell scratches, influencing cell migration, and stimulating gene expression of growth factors.


Subject(s)
Amphibian Proteins , Antimicrobial Peptides , Amino Acid Sequence , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Anti-Bacterial Agents/metabolism , Antimicrobial Cationic Peptides/metabolism , Anura/genetics , DNA, Complementary/metabolism , Humans , Protein Sorting Signals , Ranidae/genetics , Skin/metabolism
8.
Dev Comp Immunol ; 129: 104347, 2022 04.
Article in English | MEDLINE | ID: mdl-35007654

ABSTRACT

The enzyme 2'-5'-oligoadenylate synthetase (OAS) is an antiviral protein induced by interferons (IFNs), which plays an important role in IFN-mediated antiviral signaling pathway. In this study, the OAS of Chinese Giant Salamander, Andrias davidianus (AdOAS) was identified for the first time, and the expression profiles in vivo and the antiviral activities in vitro were investigated. The open reading frame (ORF) of AdOAS gene is 1185 bp in length, encoding a putative protein of 394 amino acids, in which a Nucleotidyltransferase (NTase) domain (40-143 aa) and a conserved OAS1 C superfamily domain (165-341 aa) are included. qRT-PCR analysis revealed a broad expression of AdOAS in vivo, with the highest expression level in intestine and heart. After infection with Chinese giant salamander iridovirus (GSIV), the mRNA level of AdOAS in liver increased significantly at 24 h and 48 h post infection and reached the peak at 72 h compared with the control group. The AdOAS mRNA level in kidney increased slightly at 6 h and 12 h post infection, declined to the initial level at 24 h and peaked at 48 h post infection, while in spleen it was slightly up-regulated at 6 h, inhibited at 12 h, 24 h and 48 h, and then significantly increased to the peak at 72 h post infection. In vitro, AdOAS mRNA level in Chinese giant salamander muscle (GSM) cells was not noticeably up-regulated until 24 h and then peaked at 48 h post GSIV infection. In antiviral activity test, the mRNA transcription and protein level of virus major capsid protein (MCP) in AdOAS over-expressed cells was significantly reduced compared with that in control cells by qRT-PCR and western blot analysis. In addition, ddPCR results showed that lower MCP gene copy was found in AdOAS over-expressed cells compared with the control group. These results collectively suggest that AdOAS plays a crucial role against GSIV infection in Chinese giant salamander, and provide a solid base for the further studies on the mechanism of immune defense and the control of the disease in this animal.


Subject(s)
Antiviral Agents/metabolism , Adenine Nucleotides , Amino Acid Sequence , Amphibian Proteins/genetics , Animals , Apoptosis , Cell Line , China , Interferons/metabolism , Iridovirus/physiology , Kidney/metabolism , Ligases/genetics , Ligases/metabolism , Oligoribonucleotides , Open Reading Frames , Signal Transduction/genetics , Spleen/metabolism , Urodela/genetics
9.
Elife ; 112022 01 05.
Article in English | MEDLINE | ID: mdl-34984981

ABSTRACT

Vertebrates evolved mechanisms for sodium conservation and gas exchange in conjunction with migration from aquatic to terrestrial habitats. Epithelial Na+ channel (ENaC) function is critical to systems responsible for extracellular fluid homeostasis and gas exchange. ENaC is activated by cleavage at multiple specific extracellular polybasic sites, releasing inhibitory tracts from the channel's α and γ subunits. We found that proximal and distal polybasic tracts in ENaC subunits coevolved, consistent with the dual cleavage requirement for activation observed in mammals. Polybasic tract pairs evolved with the terrestrial migration and the appearance of lungs, coincident with the ENaC activator aldosterone, and appeared independently in the α and γ subunits. In summary, sites within ENaC for protease activation developed in vertebrates when renal Na+ conservation and alveolar gas exchange were required for terrestrial survival.


Subject(s)
Epithelial Sodium Channels/genetics , Evolution, Molecular , Fishes/genetics , Xenopus laevis/genetics , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Epithelial Sodium Channels/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Fishes/metabolism , Xenopus laevis/metabolism
10.
PLoS One ; 16(10): e0258594, 2021.
Article in English | MEDLINE | ID: mdl-34665841

ABSTRACT

Sri Lanka is an amphibian hotspot of global significance. Its anuran fauna is dominated by the shrub frogs of the genus Pseudophilautus. Except for one small clade of four species in Peninsular India, these cool-wet adapted frogs, numbering some 59 extant species, are distributed mainly across the montane and lowland rain forests of the island. With species described primarily by morphological means, the diversification has never yet been subjected to a molecular species delimitation analysis, a procedure now routinely applied in taxonomy. Here we test the species boundaries of Pseudophilautus in the context of the phylogenetic species concept (PSC). We use all the putative species for which credible molecular data are available (nDNA-Rag-1; mt-DNA- 12S rRNA, 16S rRNA) to build a well resolved phylogeny, which is subjected to species delimitation analyses. The ABGD, bPTP, mPTP and bGMYC species delimitation methods applied to the 16S rRNA frog barcoding gene (for all species), 12S rRNA and Rag-1 nDNA grouped P. procax and P. abundus; P. hallidayi and P. fergusonianus; P. reticulatus and P. pappilosus; P. pleurotaenia and P. hoipolloi; P. hoffmani and P. asankai; P. silvaticus and P. limbus; P. dilmah and P. hankeni; P. fulvus and P. silus.. Surprisingly, all analyses recovered 14 unidentified potential new species as well. The geophylogeny affirms a distribution across the island's aseasonal 'wet zone' and its three principal hill ranges, suggestive of allopatric speciation playing a dominant role, especially between mountain masses. Among the species that are merged by the delimitation analyses, a pattern leading towards a model of parapatric speciation emerges-ongoing speciation in the presence of gene flow. This delimitation analysis reinforces the species hypotheses, paving the way to a reasonable understanding of Sri Lankan Pseudophilautus, enabling both deeper analyses and conservation efforts of this remarkable diversification. http://zoobank.org/urn:lsid:zoobank.org:pub:DA869B6B-870A-4ED3-BF5D-5AA3F69DDD27.


Subject(s)
Anura/classification , DNA Barcoding, Taxonomic/methods , Homeodomain Proteins/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal/genetics , Amphibian Proteins/genetics , Animals , Anura/genetics , Databases, Genetic , India , Phylogeny , Phylogeography , Sequence Analysis, DNA
11.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34389675

ABSTRACT

To identify regulators of triple-negative breast cancer (TNBC), gene expression profiles of malignant parts of TNBC (mTNBC) and normal adjacent (nadj) parts of the same breasts have been compared. We are interested in the roles of estrogen receptor ß (ERß) and the cytochrome P450 family (CYPs) as drivers of TNBC. We examined by RNA sequencing the mTNBC and nadj parts of five women. We found more than a fivefold elevation in mTNBC of genes already known to be expressed in TNBC: BIRC5/survivin, Wnt-10A and -7B, matrix metalloproteinases (MMPs), chemokines, anterior gradient proteins, and lysophosphatidic acid receptor and the known basal characteristics of TNBC, sox10, ROPN1B, and Col9a3. There were two unexpected findings: 1) a strong induction of CYPs involved in activation of fatty acids (CYP4), and in inactivation of calcitriol (CYP24A1) and retinoic acid (CYP26A1); and 2) a marked down-regulation of FOS, FRA1, and JUN, known tethering partners of ERß. ERß is expressed in 20 to 30% of TNBCs and is being evaluated as a target for treating TNBC. We used ERß+ TNBC patient-derived xenografts in mice and found that the ERß agonist LY500703 had no effect on growth or proliferation. Expression of CYPs was confirmed by immunohistochemistry in formalin-fixed and paraffin-embedded (FFPE) TNBC. In TNBC cell lines, the CYP4Z1-catalyzed fatty acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) increased proliferation, while calcitriol decreased proliferation but only after inhibition of CYP24A1. We conclude that CYP-mediated pathways can be drivers of TNBC but that ERß is unlikely to be a tumor suppressor because the absence of its main tethering partners renders ERß functionless on genes involved in proliferation and inflammation.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Estrogen Receptor beta/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Triple Negative Breast Neoplasms/metabolism , Amphibian Proteins/genetics , Amphibian Proteins/metabolism , Animals , Benzopyrans/pharmacology , Calcitriol/pharmacology , Cytochrome P-450 Enzyme System/genetics , Down-Regulation , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Fatty Acids/metabolism , Female , Gene Expression Regulation, Neoplastic/physiology , Humans , Mice , Neoplasms, Experimental , Random Allocation , Survivin/genetics , Survivin/metabolism , Transcriptome , Tretinoin/pharmacology , Triple Negative Breast Neoplasms/genetics , Wnt Proteins/genetics , Wnt Proteins/metabolism
12.
Biosci Rep ; 41(8)2021 08 27.
Article in English | MEDLINE | ID: mdl-34282833

ABSTRACT

The Chinese giant salamander, Andrias davidianus, is the largest amphibian species in the world; it is thus an economically and ecologically important species. The skin of A. davidianus exhibits complex adaptive structural and functional adaptations to facilitate survival in aquatic and terrestrial ecosystems. Here, we report the first full-length amphibian transcriptome from the dorsal skin of A. davidianus, which was assembled using hybrid sequencing and the PacBio and Illumina platforms. A total of 153,038 transcripts were hybrid assembled (mean length of 2039 bp and N50 of 2172 bp), and 133,794 were annotated in at least one database (nr, Swiss-Prot, KEGG, KOGs, GO, and nt). A total of 58,732, 68,742, and 115,876 transcripts were classified into 24 KOG categories, 1903 GO term categories, and 46 KEGG pathways (level 2), respectively. A total of 207,627 protein-coding regions, 785 transcription factors, 27,237 potential long non-coding RNAs, and 8299 simple sequence repeats were also identified. The hybrid-assembled transcriptome recovered more full-length transcripts, had a higher N50 contig length, and a higher annotation rate of unique genes compared with that assembled in previous studies using next-generation sequencing. The high-quality full-length reference gene set generated in this study will help elucidate the genetic characteristics of A. davidianus skin and aid the identification of functional skin proteins.


Subject(s)
Amphibian Proteins/genetics , Gene Expression Profiling , Single-Cell Analysis , Skin/metabolism , Transcriptome , Urodela/genetics , Amphibian Proteins/metabolism , Animals , Databases, Genetic , Female , Gene Expression Regulation , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Skin/cytology , Transcription Factors/genetics , Transcription Factors/metabolism , Urodela/metabolism
13.
Amino Acids ; 53(9): 1405-1413, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34245370

ABSTRACT

Gene-encoded peptides with distinct potent bioactivities enable several animals to take advantage of fierce interspecific interaction, as seen in the skin secretion of amphibians. Unlike, most amphibian species that frequently switches terrestrial-aquatic habitats and hides easily from terrestrial predators, tree frogs of small body size are considered as the vulnerable prey in the arboreal habitat. Here, we show the structural and functional diversity of peptide families based on the skin transcriptome of Hyla japonica, which has evolved to be wrapped as an efficient chemical toolkit for defensive use in arboreal habitat. Generally, the presence of antimicrobial peptide and proteinase inhibitor families reveals the functional consistency of Hyla japonica skin compared to other amphibian species. Furthermore, we found that Anntoxin-like neurotoxins with high expression levels are species-specific in tree frogs. Interestingly, derivatives in the Anntoxin-like family exhibit multiple evolutionary traits in modifying the copy number, folding type, and three-dimensional architecture, which are considered essential for targeting the ion channels of terrestrial predators. Together, our study not only reveals the peptide diversity in the skin secretion of H. japonica, but also draws insights into the predator-deterring strategy for coping with arboreal habitat.


Subject(s)
Amphibian Proteins/metabolism , Antimicrobial Peptides/metabolism , Anura/physiology , Neurotoxins/metabolism , Predatory Behavior , Skin/metabolism , Transcriptome , Amino Acid Sequence , Amphibian Proteins/genetics , Animals , Antimicrobial Peptides/genetics , Anura/classification , Base Sequence , Phylogeny , Sequence Homology , Species Specificity
14.
J Immunol ; 207(3): 888-901, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34290105

ABSTRACT

Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that ßγ-crystallin fused aerolysin-like protein and trefoil factor complex (ßγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima, directly blocks enveloped virus invasion by interfering with cytoplasmic entry. ßγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, ßγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the ßγ-CAT-treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that ßγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the ßγ-CAT-treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of ßγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that ßγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs.


Subject(s)
Amphibian Proteins/metabolism , Antiviral Agents/metabolism , Cornea/pathology , Herpes Simplex/immunology , Herpesvirus 1, Human/physiology , Multiprotein Complexes/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Trefoil Factors/metabolism , Amphibian Proteins/genetics , Animals , Anura , Bacterial Toxins/genetics , Cornea/virology , Female , HeLa Cells , Host-Pathogen Interactions , Humans , Mice , Microscopy, Electron, Transmission , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Viral Envelope/metabolism , Viral Envelope/ultrastructure , Virus Internalization , gamma-Crystallins/chemistry
15.
Sci Rep ; 11(1): 14743, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34285310

ABSTRACT

Caudata is an order of amphibians with great variation in genome size, which can reach enormous dimensions in salamanders. In this work, we analysed the activity of transposable elements (TEs) in the transcriptomes obtained from female and male gonads of the Chinese fire-bellied newt, Cynops orientalis, a species with a genome about 12-fold larger than the human genome. We also compared these data with genomes of two basal sarcopterygians, coelacanth and lungfish. In the newt our findings highlighted a major impact of non-LTR retroelements and a greater total TE activity compared to the lungfish Protopterus annectens, an organism also characterized by a giant genome. This difference in TE activity might be due to the presence of young copies in newt in agreement also with the increase in the genome size, an event that occurred independently and later than lungfish. Moreover, the activity of 33 target genes encoding proteins involved in the TE host silencing mechanisms, such as Ago/Piwi and NuRD complex, was evaluated and compared between the three species analysed. These data revealed high transcriptional levels of the target genes in both newt and lungfish and confirmed the activity of NuRD complex genes in adults. Finally, phylogenetic analyses performed on PRDM9 and TRIM28 allowed increasing knowledge about the evolution of these two key genes of the NuRD complex silencing mechanism in vertebrates. Our results confirmed that the gigantism of the newt genomes may be attributed to the activity and accumulation of TEs.


Subject(s)
DNA Transposable Elements/genetics , Gene Silencing , Genome , Salamandridae/genetics , Amphibian Proteins/classification , Amphibian Proteins/genetics , Animals , Evolution, Molecular , Female , Gonads/metabolism , Histone-Lysine N-Methyltransferase/classification , Histone-Lysine N-Methyltransferase/genetics , Male , Phylogeny , Salamandridae/metabolism , Tripartite Motif-Containing Protein 28/classification , Tripartite Motif-Containing Protein 28/genetics , Urodela/genetics
16.
Front Immunol ; 12: 613365, 2021.
Article in English | MEDLINE | ID: mdl-34149681

ABSTRACT

Hyla annectans is a tree frog living in the southwestern plateau area of China where there is strong ultraviolet radiation and long duration of sunshine. So their naked skin may possess chemical defense components that protect it from acute photo-damage. However, no such peptide or components has been identified till to date. In the current work, two novel peptides (FW-1, FWPLI-NH2 and FW-2, FWPMI-NH2) were identified from the skin of the tree frog. Five copies of FW-1 and four copies of FW-2 are encoded by an identical gene and released from the same protein precursor, which possess 167 amino acid residues. FW-1 and -2 can exert significant anti-inflammatory functions by directly inhibiting Ultraviolet B irradiation (UVB)-induced secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). They may achieve this function by modulating the UV-induced stress signaling pathways such as Mitogen-activated protein kinases (MAPK) and Nuclear Factor Kappa B (NF-κB). Besides, FW-1 and -2 showed potential antioxidant effects on epidermis by attenuating the UVB-induced reactive oxygen species (ROS) production through an unknown mechanism. Considering small peptides' easy production, storage, and potential photo-protective activity, FW-1/2 might be exciting leading compounds or templates for the development of novel pharmacological agents for the suppression of UVB-induced skin inflammation. Moreover, this study might expand our knowledge on skin defensive mechanism of tree frog upon UVB irradiation.


Subject(s)
Amphibian Proteins/metabolism , Anti-Inflammatory Agents/metabolism , Keratinocytes/physiology , Peptides/metabolism , Skin/metabolism , Ultraviolet Rays/adverse effects , Amphibian Proteins/genetics , Animals , Antioxidants , Anura , China , Cloning, Molecular , Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Peptides/genetics , Reactive Oxygen Species/metabolism , Signal Transduction , Skin/pathology , Tumor Necrosis Factor-alpha/metabolism
17.
Cells ; 10(3)2021 03 03.
Article in English | MEDLINE | ID: mdl-33802526

ABSTRACT

Vertebrate postembryonic development is regulated by thyroid hormone (T3). Of particular interest is anuran metamorphosis, which offers several unique advantages for studying the role of T3 and its two nuclear receptor genes, TRα and TRß, during postembryonic development. We have recently generated TR double knockout (TRDKO) Xenopus tropicalis animals and reported that TR is essential for the completion of metamorphosis. Furthermore, TRDKO tadpoles are stalled at the climax of metamorphosis before eventual death. Here we show that TRDKO intestine lacked larval epithelial cell death and adult stem cell formation/proliferation during natural metamorphosis. Interestingly, TRDKO tadpole intestine had premature formation of adult-like epithelial folds and muscle development. In addition, T3 treatment of premetamorphic TRDKO tadpoles failed to induce any metamorphic changes in the intestine. Furthermore, RNA-seq analysis revealed that TRDKO altered the expression of many genes in biological pathways such as Wnt signaling and the cell cycle that likely underlay the inhibition of larval epithelial cell death and adult stem cell development caused by removing both TR genes. Our data suggest that liganded TR is required for larval epithelial cell degeneration and adult stem cell formation, whereas unliganded TR prevents precocious adult tissue morphogenesis such as smooth-muscle development and epithelial folding.


Subject(s)
Adult Stem Cells/metabolism , Amphibian Proteins/genetics , Epithelial Cells/metabolism , Intestines/cytology , Larva/genetics , Receptors, Thyroid Hormone/genetics , Thyroid Hormones/genetics , Xenopus/genetics , Adult Stem Cells/cytology , Adult Stem Cells/drug effects , Amphibian Proteins/classification , Amphibian Proteins/metabolism , Animals , Animals, Genetically Modified , Apoptosis/genetics , Cell Cycle/genetics , Cell Differentiation/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Gene Ontology , Gene Regulatory Networks , Intestines/drug effects , Intestines/growth & development , Larva/cytology , Larva/drug effects , Larva/growth & development , Metabolic Networks and Pathways/genetics , Metamorphosis, Biological , Molecular Sequence Annotation , Protein Isoforms/deficiency , Protein Isoforms/genetics , Receptors, Thyroid Hormone/deficiency , Thyroid Hormones/metabolism , Thyroid Hormones/pharmacology , Wnt Signaling Pathway/genetics , Xenopus/growth & development , Xenopus/metabolism
18.
J Pept Sci ; 27(8): e3330, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33843136

ABSTRACT

Maculatin 1.1 (Mac1) is an antimicrobial peptide (AMP) from an Australian tree frog and exhibits low micromolar activity against Gram-positive bacteria. The antimicrobial properties of Mac1 are linked to its disruption of bacterial lipid membranes, which has been studied extensively by in vitro nuclear magnetic resonance (NMR) spectroscopy and biophysical approaches. Although in vivo NMR has recently proven effective in probing peptide-lipid interplay in live bacterial cells, direct structural characterisation of AMPs has been prohibited by low sensitivity and overwhelming background noise. To overcome this issue, we report a recombinant expression protocol to produce isotopically enriched Mac1. We utilized a double-fusion construct to alleviate toxicity against the Escherichia coli host and generate the native N-free and C-amidated termini Mac1 peptide. The SUMO and intein tags allowed native N-terminus and C-terminal amidation, respectively, to be achieved in a one-pot reaction. The protocol yielded 0.1 mg/L of native, uniformly 15 N-labelled, Mac1, which possessed identical structure and activity to peptide obtained by solid-phase peptide synthesis.


Subject(s)
Amphibian Proteins/genetics , Antimicrobial Cationic Peptides/genetics , Amphibian Proteins/isolation & purification , Antimicrobial Cationic Peptides/isolation & purification
19.
Toxicol In Vitro ; 73: 105141, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33713820

ABSTRACT

Deiodinase enzymes are critical for tissue-specific and temporal control of activation or inactivation of thyroid hormones during vertebrate development, including amphibian metamorphosis. We previously screened ToxCast chemicals for inhibitory activity toward human recombinant Type 3 iodothyronine deiodinase enzyme (hDIO3) and subsequently produced Xenopus laevis recombinant dio3 enzyme (Xldio3) with the goals to identify specific chemical inhibitors of Xldio3, to evaluate cross-species sensitivity and explore whether the human assay results are predictive of the amphibian. We identified a subset of 356 chemicals screened against hDIO3 to test against Xldio3, initially at a single concentration (200 µM), and further tested 79 in concentration-response mode. Most chemicals had IC50 values lower for hDIO3 than for Xldio3 and many had steep Hill slopes (a potential indication of non-specific inhibition). However, eight of the most potent chemicals are likely specific inhibitors, with IC50 values of 14 µM or less, Hill slopes near -1 and curves not significantly different between species likely due to conservation of catalytically active amino acids. Controlling for assay conditions, human in vitro screening results can be predictive of activity in the amphibian assay. This study lays the groundwork for future studies using recombinant non-mammalian proteins to test cross-species sensitivity to chemicals. DISCLAIMER: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.


Subject(s)
Amphibian Proteins/antagonists & inhibitors , Biological Assay , Environmental Pollutants/toxicity , Enzyme Inhibitors/toxicity , Iodide Peroxidase/antagonists & inhibitors , Amphibian Proteins/genetics , Animals , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Iodide Peroxidase/genetics , Recombinant Proteins , Risk Assessment , Xenopus laevis
20.
Genome Biol Evol ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: mdl-33501944

ABSTRACT

Proteins encoded by antigen-processing genes (APGs) prepare antigens for presentation by the major histocompatibility complex class I (MHC I) molecules. Coevolution between APGs and MHC I genes has been proposed as the ancestral gnathostome condition. The hypothesis predicts a single highly expressed MHC I gene and tight linkage between APGs and MHC I. In addition, APGs should evolve under positive selection, a consequence of the adaptive evolution in MHC I. The presence of multiple highly expressed MHC I genes in some teleosts, birds, and urodeles appears incompatible with the coevolution hypothesis. Here, we use urodele amphibians to test two key expectations derived from the coevolution hypothesis: 1) the linkage between APGs and MHC I was studied in Lissotriton newts and 2) the evidence for adaptive evolution in APGs was assessed using 42 urodele species comprising 21 genera from seven families. We demonstrated that five APGs (PSMB8, PSMB9, TAP1, TAP2, and TAPBP) are tightly linked (<0.5 cM) to MHC I. Although all APGs showed some codons under episodic positive selection, we did not find a pervasive signal of positive selection expected under the coevolution hypothesis. Gene duplications, putative gene losses, and divergent allelic lineages detected in some APGs demonstrate considerable evolutionary dynamics of APGs in salamanders. Overall, our results indicate that if coevolution between APGs and MHC I occurred in urodeles, it would be more complex than envisaged in the original formulation of the hypothesis.


Subject(s)
Amphibian Proteins/genetics , Antigen Presentation/genetics , Evolution, Molecular , Genes, MHC Class I , Urodela/genetics , Amphibian Proteins/chemistry , Amphibian Proteins/classification , Animals , Gene Duplication , Genetic Linkage , Urodela/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...