Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.428
Filter
1.
PLoS One ; 19(6): e0299155, 2024.
Article in English | MEDLINE | ID: mdl-38917074

ABSTRACT

Factors associated with upper limb prosthesis adoption are not well understood. In this study, we explored how prosthesis usability experience relates to the extent of prosthesis adoption through the development of a structural equation model (SEM). First, items related to prosthesis usability were developed and refined using cognitive testing and pilot testing and employed in a survey of 402 prosthesis users (mean age 61.7 (sd 14.4), 77.1% Veterans). The SEM examined two unidimensional latent constructs: Prosthesis Usability Experience and Prosthesis Adoption-and each had multiple measured indicators. SEMs tested direct as well as moderating and mediating effects between the latent constructs and covariates related to demographics and prosthesis type. SEM found a significant positive association between Prosthesis Usability Experience and Extent of Prosthesis Adoption. Several covariates had direct effects on prosthesis adoption: 1) Extent of Prosthesis Adoption was lower for those with transhumeral and shoulder amputation, and higher for those with bilateral amputation, compared to the reference group with unilateral transradial amputation and 2) Myoelectric multiple degree of freedom (multi-DOF) prosthesis use was associated with lower Extent of Prosthesis Adoption, compared to body-powered prosthesis use. Myoelectric multi-DOF use also modified the effect of Prosthesis Usability Experience on Extent of Prosthesis Adoption. For those with bilateral ULA, the strength of the relationship between Prosthesis Usability Experience and Extent of Prosthesis Adoption was reduced. Findings suggest that in order to increase prosthesis adoption, prosthetics developers and rehabilitation providers should focus on implementing strategies to improve prosthesis usability experience. New Prosthesis Usability Experience measures could be used to identify persons at greater risk for poor prosthesis adoption and target interventions to increase prosthesis use.


Subject(s)
Artificial Limbs , Upper Extremity , Humans , Artificial Limbs/psychology , Male , Female , Middle Aged , Upper Extremity/surgery , Upper Extremity/physiopathology , Aged , Latent Class Analysis , Prosthesis Design , Amputation, Surgical/rehabilitation , Amputation, Surgical/psychology , Amputees/psychology , Amputees/rehabilitation , Adult , Surveys and Questionnaires
2.
Prosthet Orthot Int ; 48(3): 337-343, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38857166

ABSTRACT

BACKGROUND: Hip- and pelvic-level amputations are devastating injuries that drastically alter patient function and quality of life. This study examined the experience of military beneficiaries with a hip- or pelvic-level amputation to better characterize their challenges and specific needs and to optimize treatment in the future. METHODS: We conducted a retrospective review of the Military Health System and identified 118 patients with a history of one or more amputation(s) at the hip or pelvic level between October 2001 and September 2017. Surviving participants (n = 97) were mailed a letter which explained the details of the study and requested participation in a telephonic interview. A total of six individuals (one female, five males) participated in structured interviews. RESULTS: The study group included four participants with hip disarticulations and two participants with hemipelvectomies (one internal, one external). All six participants reported significant challenges with activities related to prosthetic use, mobility, residual limb health, pain, gastrointestinal and genitourinary function, psychiatric health, and sexual function. CONCLUSIONS: These interviews highlight the unique needs of individuals with hip- and pelvic-level amputations and may improve access to higher echelons of care that would enhance the function and quality of life for these participants.


Subject(s)
Artificial Limbs , Military Personnel , Quality of Life , Humans , Male , Female , Retrospective Studies , Adult , Middle Aged , Military Personnel/psychology , Amputation, Surgical/rehabilitation , Amputation, Surgical/psychology , Hemipelvectomy , Amputees/psychology , Amputees/rehabilitation , United States , Pelvis
3.
Sci Rep ; 14(1): 13456, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38862558

ABSTRACT

The agonist-antagonist myoneural interface (AMI) is an amputation surgery that preserves sensorimotor signaling mechanisms of the central-peripheral nervous systems. Our first neuroimaging study investigating AMI subjects conducted by Srinivasan et al. (2020) focused on task-based neural signatures, and showed evidence of proprioceptive feedback to the central nervous system. The study of resting state neural activity helps non-invasively characterize the neural patterns that prime task response. In this study on resting state functional magnetic resonance imaging in AMI subjects, we compared functional connectivity in patients with transtibial AMI (n = 12) and traditional (n = 7) amputations (TA). To test our hypothesis that we would find significant neurophysiological differences between AMI and TA subjects, we performed a whole-brain exploratory analysis to identify a seed region; namely, we conducted ANOVA, followed by t-test statistics to locate a seed in the salience network. Then, we implemented a seed-based connectivity analysis to gather cluster-level inferences contrasting our subject groups. We show evidence supporting our hypothesis that the AMI surgery induces functional network reorganization resulting in a neural configuration that significantly differs from the neural configuration after TA surgery. AMI subjects show significantly less coupling with regions functionally dedicated to selecting where to focus attention when it comes to salient stimuli. Our findings provide researchers and clinicians with a critical mechanistic understanding of the effect of AMI amputation on brain networks at rest, which has promising implications for improved neurorehabilitation and prosthetic control.


Subject(s)
Amputation, Surgical , Magnetic Resonance Imaging , Humans , Male , Female , Adult , Middle Aged , Rest/physiology , Tibia/surgery , Tibia/physiopathology , Brain/physiopathology , Brain/diagnostic imaging , Brain/physiology , Neurophysiology/methods , Amputees/rehabilitation , Brain Mapping/methods
4.
J Biomech ; 170: 112177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838496

ABSTRACT

This study investigates the differences in peak plantar pressure between the amputated and intact limbs of transfemoral amputees when walking outdoors. Ten non-amputees (aged 24.4 ± 2.0 years, 176.9 ± 2.5 cm, 72.3 ± 7.9 kg) and six transfemoral amputees (48.5 ± 6.3 years, 173.8 ± 4.2 cm, 82.0 ± 11.9 kg) participated in the study. Over approximately 1.6 km, the participants encountered various obstacles, including stairs, uneven surfaces, hills, and level ground, both indoors and outdoors. Throughout the walking session, the peak plantar pressure in both feet was monitored using wearable insole sensors. For all terrains, the percentage asymmetry was determined. Significant changes in peak plantar pressure asymmetry were found between the intact and amputated limbs, particularly when walking on level ground indoors, uneven terrains, descending stairs, and on steep slopes outdoors (all p < 0.05). These findings highlight the greater peak plantar pressure asymmetry in transfemoral amputees when walking outside. In addition, this study revealed that not all terrains contribute uniformly to this asymmetry.


Subject(s)
Amputees , Foot , Pressure , Walking , Humans , Walking/physiology , Amputees/rehabilitation , Male , Adult , Middle Aged , Foot/physiology , Female , Biomechanical Phenomena , Femur/surgery , Femur/physiology , Artificial Limbs , Young Adult
5.
Gait Posture ; 112: 59-66, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744022

ABSTRACT

BACKGROUND: Transhumeral (TH) limb loss leads to loss of body mass and reduced shoulder range of motion. Despite most owning a prosthesis, prosthesis abandonment is common. The consequence of TH limb loss and prosthesis use and disuse during gait may be compensation in the upper body, contributing to back pain or injury. Understanding the impact of not wearing a TH prosthesis on upper body asymmetries and spatial-temporal aspects of gait will inform how TH prosthesis use and disuse affects the body. RESEARCH QUESTION: Does TH limb loss alter upper body asymmetries and spatial-temporal parameters during gait when wearing and not wearing a prosthesis compared to able-bodied controls? METHODS: Eight male TH limb loss participants and eight male control participants completed three gait trials at self-selected speeds. The TH limb loss group performed trials with and without their prosthesis. Arm swing, trunk angular displacement, trunk-pelvis moment, and spatial-temporal aspects were compared using non-parametric statistical analyses. RESULTS: Both TH walking conditions showed greater arm swing in the intact limb compared to the residual (p≤0.001), resulting in increased asymmetry compared to the control group (p≤0.001). Without the prosthesis, there was less trunk flexion and lateral flexion compared to the control group (p≤0.001). Maximum moments between the trunk and pelvis were higher in the TH group than the control group (p≤0.05). Spatial-temporal parameters of gait did not differ between the control group and either TH limb loss condition. SIGNIFICANCE: Prosthesis use affects upper body kinematics and kinetics, but does not significantly impact spatial-temporal aspects of gait, suggesting these are compensatory actions. Wearing a prosthesis helps achieve more normative upper body kinematics and kinetics than not wearing a prosthesis, which may help limit back pain. These findings emphasize the importance of encouraging at least passive use of prostheses for individuals with TH limb loss.


Subject(s)
Artificial Limbs , Gait , Humans , Male , Biomechanical Phenomena , Gait/physiology , Adult , Range of Motion, Articular/physiology , Humerus/physiology , Middle Aged , Amputees/rehabilitation , Upper Extremity/physiology , Case-Control Studies
6.
Sci Rep ; 14(1): 11168, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750086

ABSTRACT

It is essential that people with limb amputation maintain proper prosthetic socket fit to prevent injury. Monitoring and adjusting socket fit, for example by removing the prosthesis to add prosthetic socks, is burdensome and can adversely affect users' function and quality-of-life. This study presents results from take-home testing of a motor-driven adaptive socket that automatically adjusted socket size during walking. A socket fit metric was calculated from inductive sensor measurements of the distance between the elastomeric liner surrounding the residual limb and the socket's inner surface. A proportional-integral controller was implemented to adjust socket size. When tested on 12 participants with transtibial amputation, the controller was active a mean of 68% of the walking time. In general, participants who walked more than 20 min/day demonstrated greater activity, less doff time, and fewer manual socket size adjustments for the adaptive socket compared with a locked non-adjustable socket and a motor-driven socket that participants adjusted with a smartphone application. Nine of 12 participants reported that they would use a motor-driven adjustable socket if it were available as it would limit their socket fit issues. The size and weight of the adaptive socket were considered the most important variables to improve.


Subject(s)
Amputation, Surgical , Artificial Limbs , Prosthesis Design , Tibia , Walking , Humans , Male , Female , Middle Aged , Tibia/surgery , Adult , Prosthesis Fitting/methods , Aged , Amputees/rehabilitation , Quality of Life
7.
J Rehabil Med ; 56: jrm34141, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770700

ABSTRACT

OBJECTIVE: To describe and evaluate the combination of osseointegration and nerve transfers in 3 transhumeral amputees. DESIGN: Case series. PATIENTS: Three male patients with a unilateral traumatic transhumeral amputation. METHODS: Patients received a combination of osseointegration and targeted muscle reinnervation surgery. Rehabilitation included graded weight training, range of motion exercises, biofeedback, table-top prosthesis training, and controlling the actual device. The impairment in daily life, health-related quality of life, and pain before and after the intervention was evaluated in these patients. Their shoulder range of motion, prosthesis embodiment, and function were documented at a 2- to 5-year follow-up. RESULTS: All 3 patients attended rehabilitation and used their myoelectric prosthesis on a daily basis. Two patients had full shoulder range of motion with the prosthesis, while the other patient had 55° of abduction and 45° of anteversion. They became more independent in their daily life activities after the intervention and incorporated their prosthesis into their body scheme to a high extent. CONCLUSION: These results indicate that patients can benefit from the combined procedure. However, the patients' perspective, risks of the surgical procedures, and the relatively long rehabilitation procedure need to be incorporated in the decision-making.


Subject(s)
Amputees , Artificial Limbs , Nerve Transfer , Osseointegration , Range of Motion, Articular , Humans , Male , Osseointegration/physiology , Adult , Amputees/rehabilitation , Nerve Transfer/methods , Range of Motion, Articular/physiology , Bionics , Treatment Outcome , Muscle, Skeletal , Middle Aged , Humerus/surgery , Quality of Life , Amputation, Traumatic/rehabilitation , Amputation, Traumatic/surgery , Activities of Daily Living
8.
Article in English | MEDLINE | ID: mdl-38739519

ABSTRACT

Intuitive regression control of prostheses relies on training algorithms to correlate biological recordings to motor intent. The quality of the training dataset is critical to run-time regression performance, but accurately labeling intended hand kinematics after hand amputation is challenging. In this study, we quantified the accuracy and precision of labeling hand kinematics using two common training paradigms: 1) mimic training, where participants mimic predetermined motions of a prosthesis, and 2) mirror training, where participants mirror their contralateral intact hand during synchronized bilateral movements. We first explored this question in healthy non-amputee individuals where the ground-truth kinematics could be readily determined using motion capture. Kinematic data showed that mimic training fails to account for biomechanical coupling and temporal changes in hand posture. Additionally, mirror training exhibited significantly higher accuracy and precision in labeling hand kinematics. These findings suggest that the mirror training approach generates a more faithful, albeit more complex, dataset. Accordingly, mirror training resulted in significantly better offline regression performance when using a large amount of training data and a non-linear neural network. Next, we explored these different training paradigms online, with a cohort of unilateral transradial amputees actively controlling a prosthesis in real-time to complete a functional task. Overall, we found that mirror training resulted in significantly faster task completion speeds and similar subjective workload. These results demonstrate that mirror training can potentially provide more dexterous control through the utilization of task-specific, user-selected training data. Consequently, these findings serve as a valuable guide for the next generation of myoelectric and neuroprostheses leveraging machine learning to provide more dexterous and intuitive control.


Subject(s)
Algorithms , Artificial Limbs , Electromyography , Hand , Humans , Electromyography/methods , Biomechanical Phenomena , Male , Female , Adult , Hand/physiology , Reproducibility of Results , Amputees/rehabilitation , Neural Networks, Computer , Prosthesis Design , Movement/physiology , Young Adult , Healthy Volunteers , Nonlinear Dynamics
9.
Medicina (Kaunas) ; 60(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792967

ABSTRACT

Background and Objectives: mortality and morbidity due to cardiovascular causes are frequently experienced in amputees. Research on the effects of chronic exercise on biomarkers and cardiac damage indicators in these individuals is limited. The aim of this study was to investigate the effects of a core training program on brain natriuretic-related peptide, as well as hematological and biochemical parameters in amputee soccer players. Materials and Methods: The participants were randomly allocated to the following two groups: a core exercise group (CEG) and a control group (CG). While the CG continued routine soccer training, the CEG group was included in a core exercise program different from this group. During the study, routine hemogram parameters of the participants, various biochemical markers, and the concentration of brain natriuretic-related peptide (NT-pro-BNP) were analyzed. Results: after the training period, notable improvements in various hematological parameters were observed in both groups. In the CEG, there were significant enhancements in red blood cell count (RBC), hematocrit (HCT), mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular hemoglobin (MCH) values. Similarly, the CG also showed substantial improvements in RBC, HCT, mean corpuscular volume (MCV), MCHC, MCH, red cell distribution width-standard deviation (RDW-SD), platelet-to-lymphocyte ratio (PLCR), mean platelet volume (MPV), and platelet distribution width (PDW). Moreover, in the CEG, serum triglycerides (TG) and maximal oxygen uptake (MaxVO2) exhibited significant increases. Conversely, TG levels decreased in the CG, while high-density lipoprotein (HDL), low-density lipoprotein (LDL), and MaxVO2 levels demonstrated substantial elevations. Notably, the N-terminal pro-brain natriuretic peptide (BNP) levels did not undergo significant changes in either the CEG or the CG following the core exercise program (p > 0.05). However, in the CEG, a meaningful positive correlation was observed between NT-pro-BNP and creatine kinase (CK) levels before and after the core exercise program. Conclusions: the findings emphasized the potential benefits of core training in enhancing specific physiological aspects, such as erythrocyte-related parameters and lipid metabolism, as well as aerobic capacity. Furthermore, the observed correlation between NT-pro-BNP and CK levels in the CEG provides intriguing insights into the unique physiological adaptations of amputee athletes.


Subject(s)
Amputees , Athletes , Exercise , Natriuretic Peptide, Brain , Peptide Fragments , Humans , Natriuretic Peptide, Brain/blood , Male , Athletes/statistics & numerical data , Adult , Exercise/physiology , Peptide Fragments/blood , Amputees/rehabilitation , Biomarkers/blood , Soccer/physiology , Hematocrit/methods , Erythrocyte Indices/physiology
10.
Arch Phys Med Rehabil ; 105(7): 1338-1345, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38561145

ABSTRACT

OBJECTIVE: To determine if lower limb prosthesis (LLP) sophistication is associated with patient-reported mobility and/or mobility satisfaction, and if these associations differ by amputation level. DESIGN: Cohort study that identified participants through a large national database and prospectively collected self-reported patient outcomes. SETTING: The Veterans Administration (VA) Corporate Data Warehouse, the National Prosthetics Patient Database, participant mailings, and phone calls. PARTICIPANTS: 347 Veterans who underwent an incident transtibial (TT) or transfemoral (TF) amputation due to diabetes and/or peripheral artery disease and received a qualifying LLP between March 1, 2018, and November 30, 2020. INTERVENTIONS: Basic, intermediate, and advanced prosthesis sophistication was measured by the accurate and reliable PROClass system. MAIN OUTCOME MEASURE: Patient-reported mobility using the advanced mobility subscale of the Locomotor Capabilities Index-5; mobility satisfaction using a 0-10-point Likert scale. RESULTS: Lower limb amputees who received intermediate or advanced prostheses were more likely to achieve advanced mobility than those who received basic prostheses, with intermediate nearing statistical significance at nearly twice the odds (adjusted odds ratio (aOR)=1.8, 95% confidence interval (CI), .98-3.3; P=.06). The association was strongest in TF amputees with over 10 times the odds (aOR=10.2, 95% CI, 1.1-96.8; P=.04). The use of an intermediate sophistication prosthesis relative to a basic prosthesis was significantly associated with mobility satisfaction (adjusted ß coefficient (aß)=.77, 95% CI, .11-1.4; P=.02). A statistically significant association was only observed in those who underwent a TT amputation (aß=.79, 95% CI, .09-1.5; P=.03). CONCLUSIONS: Prosthesis sophistication was not associated with achieving advanced mobility in TT amputees but was associated with greater mobility satisfaction. In contrast, prosthesis sophistication was associated with achieving advanced mobility in TF amputees but was not associated with an increase in mobility satisfaction.


Subject(s)
Amputation, Surgical , Artificial Limbs , Patient Satisfaction , Self Report , Humans , Male , Female , Middle Aged , Aged , Amputation, Surgical/rehabilitation , Veterans , United States , Prosthesis Design , Amputees/rehabilitation , Cohort Studies , Mobility Limitation , Patient Reported Outcome Measures , Lower Extremity/surgery
11.
Arch Phys Med Rehabil ; 105(7): 1346-1354, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38570179

ABSTRACT

OBJECTIVE: To formulate a prognostication model in the early post-operation phase of lower limb amputation to predict patient's ability to ambulate with a prosthesis post rehabilitation. DESIGN: Retrospective cohort study, using data collected from electronic medical records. Predictive factors and prosthetic ambulation outcomes post rehabilitation were used to develop prognostic models via machine learning techniques. SETTING: Regional hospital's ambulatory rehabilitation clinic. PARTICIPANTS: Patients with major lower limb amputation (N=329). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: The outcome of prosthetic ambulation ability post rehabilitation collected was categorized in 3 groups: non-ambulant with prosthesis, homebound ambulant with prosthesis (AP), and community AP. RESULTS: In a 2-class model of non-ambulant and AP (homebound and community), the model with highest accuracy of prediction included ethnicity, total Functional Comorbidity Index (FCI), level of amputation, being community ambulant prior to amputation, and age. The f1-score and area under receiver operator curve (AUROC) of the model is 0.78 and 0.82. In a 3-class model consisting of all 3 groups of outcomes, the model with highest accuracy of prediction required 10 factors. The additional factors from the 2-class model include presence of caregiver, history of congestive heart failure, diabetes, visual impairment, and stroke. The 3-class model has a moderate accuracy with a f1-score and AUROC of 0.60 and 0.79. CONCLUSION: The 2-class prognostication model has a high accuracy which can be used early post-amputation to predict if patient would be ambulant with a prosthesis post rehabilitation. The 3-class prognostication model has moderate accuracy and is able to further differentiate the walking ability to either homebound or community ambulation with a prosthesis, which can assist in prosthetic prescription and setting realistic rehabilitation goals.


Subject(s)
Amputation, Surgical , Artificial Limbs , Lower Extremity , Walking , Humans , Male , Female , Retrospective Studies , Middle Aged , Amputation, Surgical/rehabilitation , Prognosis , Aged , Lower Extremity/surgery , Adult , Postoperative Period , Age Factors , Amputees/rehabilitation , Machine Learning
12.
Prosthet Orthot Int ; 48(3): 300-314, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38579197

ABSTRACT

Prosthesis rejection is a significant barrier to rehabilitation of persons with upper limb difference. Many individual factors can affect device rejection, including a person's sex or gender. The objective of this narrative review was to explore the reported differences between the sexes and genders in upper limb prosthesis rejection. This review considered peer-reviewed, published research studies in which the study population were adults (aged 18 and older) who had unilateral or bilateral limb difference (any level) of any etiology with current, past, or no history of prosthetic device usage. Using identified keywords, index terms, and a peer-reviewed search filter, the literature was searched in MEDLINE, Embase, and PsycInfo. The reasons for rejection, disuse, or abandonment of prosthetic devices were extracted, with the focus on reported differences between sex and genders. After searching, 29 articles were selected for full-text review and 15 were included. Only 5 of 15 articles examined differences between the sexes. Women tend to reject upper extremity prostheses more than men both before and after being fit with a device; device characteristics, such as weight and cosmesis, do not appear to be appropriately designed for women; and there may not be adequate consideration of the goals for women with limb difference(s). There is inadequate reporting of sex and gender in the literature on prosthesis rejection; future studies should report and explore these factors to determine whether the needs of the full population with limb loss are being met.


Subject(s)
Artificial Limbs , Upper Extremity , Humans , Female , Male , Sex Factors , Prosthesis Design , Amputees/rehabilitation
13.
J Plast Reconstr Aesthet Surg ; 92: 288-298, 2024 May.
Article in English | MEDLINE | ID: mdl-38599000

ABSTRACT

BACKGROUND: Globally, over 1 million lower limb amputations are performed annually, with approximately 75% of patients experiencing significant pain, profoundly impacting their quality of life and functional capabilities. Targeted muscle reinnervation (TMR) has emerged as a surgical solution involving the rerouting of amputated nerves to specific muscle targets. Originally introduced to enhance signal amplification for myoelectric prosthesis control, TMR has expanded its applications to include neuroma management and pain relief. However, the literature assessing patient outcomes is lacking, specifically for lower limb amputees. This systematic review aims to assess the effectiveness of TMR in reducing pain and enhancing functional outcomes for patients who have undergone lower limb amputation. METHODS: A systematic review was performed by examining relevant studies between 2010 and 2023, focusing on pain reduction, functional outcomes and patient-reported quality of life measures. RESULTS: In total, 20 studies were eligible encompassing a total of 778 extremities, of which 75.06% (n = 584) were lower limb amputees. Average age was 46.66 years and patients were predominantly male (n = 70.67%). Seven studies (35%) reported functional outcomes. Patients who underwent primary TMR exhibited lower average patient-reported outcome measurement information system (PROMIS) scores for phantom limb pain (PLP) and residual limb pain (RLP). Secondary TMR led to improvements in PLP, RLP and general limb pain as indicated by average numeric rating scale and PROMIS scores. CONCLUSION: The systematic review underscores TMR's potential benefits in alleviating pain, fostering post-amputation rehabilitation and enhancing overall well-being for lower limb amputees.


Subject(s)
Amputation, Surgical , Lower Extremity , Quality of Life , Humans , Amputation, Surgical/adverse effects , Lower Extremity/surgery , Nerve Transfer/methods , Muscle, Skeletal/innervation , Phantom Limb/prevention & control , Phantom Limb/etiology , Patient Reported Outcome Measures , Pain Management/methods , Amputees/rehabilitation
14.
Medicina (Kaunas) ; 60(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38674211

ABSTRACT

Background and Objectives: Medical registries evolved from a basic epidemiological data set to further applications allowing deriving decision making. Revision rates after non-traumatic amputation are high and dramatically impact the following rehabilitation of the amputee. Risk scores for revision surgery after non-traumatic lower limb amputation are still missing. The main objective was to create an amputation registry allowing us to determine risk factors for revision surgery after non-traumatic lower-limb amputation and to develop a score for an early detection and decision-making tool for the therapeutic course of patients at risk for non-traumatic lower limb amputation and/or revision surgery. Materials and Methods: Retrospective data analysis was of patients with major amputations lower limbs in a four-year interval at a University Hospital of maximum care. Medical records of 164 patients analysed demographics, comorbidities, and amputation-related factors. Descriptive statistics analysed demographics, prevalence of amputation level and comorbidities of non-traumatic lower limb amputees with and without revision surgery. Correlation analysis identified parameters determining revision surgery. Results: In 4 years, 199 major amputations were performed; 88% were amputated for non-traumatic reasons. A total of 27% of the non-traumatic cohort needed revision surgery. Peripheral vascular disease (PVD) (72%), atherosclerosis (69%), diabetes (42%), arterial hypertension (38%), overweight (BMI > 25), initial gangrene (47%), sepsis (19%), age > 68.2 years and nicotine abuse (17%) were set as relevant within this study and given a non-traumatic amputation score. Correlation analysis revealed delayed wound healing (confidence interval: 64.1% (47.18%; 78.8%)), a hospital length of stay before amputation of longer than 32 days (confidence interval: 32.3 (23.2; 41.3)), and a BKA amputation level (confidence interval: 74.4% (58%; 87%)) as risk factors for revision surgery after non-traumatic amputation. A combined score including all parameters was drafted to identify non-traumatic amputees at risk for revision surgery. Conclusions: Our results describe novel scoring systems for risk assessment for non-traumatic amputations and for revision surgery at non-traumatic amputations. It may be used after further prospective evaluation as an early-warning system for amputated limbs at risk of revision.


Subject(s)
Amputation, Surgical , Amputees , Reoperation , Humans , Male , Female , Middle Aged , Retrospective Studies , Reoperation/statistics & numerical data , Amputation, Surgical/statistics & numerical data , Amputation, Surgical/adverse effects , Aged , Amputees/rehabilitation , Adult , Risk Factors , Aged, 80 and over , Lower Extremity/surgery , Lower Extremity/injuries
15.
Article in English | MEDLINE | ID: mdl-38683719

ABSTRACT

To overcome the challenges posed by the complex structure and large parameter requirements of existing classification models, the authors propose an improved extreme learning machine (ELM) classifier for human locomotion intent recognition in this study, resulting in enhanced classification accuracy. The structure of the ELM algorithm is enhanced using the logistic regression (LR) algorithm, significantly reducing the number of hidden layer nodes. Hence, this algorithm can be adopted for real-time human locomotion intent recognition on portable devices with only 234 parameters to store. Additionally, a hybrid grey wolf optimization and slime mould algorithm (GWO-SMA) is proposed to optimize the hidden layer bias of the improved ELM classifier. Numerical results demonstrate that the proposed model successfully recognizes nine daily motion modes including low-, mid-, and fast-speed level ground walking, ramp ascent/descent, sit/stand, and stair ascent/descent. Specifically, it achieves 96.75% accuracy with 5-fold cross-validation while maintaining a real-time prediction time of only 2 ms. These promising findings highlight the potential of onboard real-time recognition of continuous locomotion modes based on our model for the high-level control of powered knee prostheses.


Subject(s)
Algorithms , Amputees , Intention , Knee Prosthesis , Machine Learning , Humans , Amputees/rehabilitation , Male , Logistic Models , Locomotion/physiology , Walking , Femur , Pattern Recognition, Automated/methods , Adult
16.
J Neuroeng Rehabil ; 21(1): 55, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622634

ABSTRACT

BACKGROUND: The therapeutic benefits of motor imagery (MI) are now well-established in different populations of persons suffering from central nervous system impairments. However, research on similar efficacy of MI interventions after amputation remains scarce, and experimental studies were primarily designed to explore the effects of MI after upper-limb amputations. OBJECTIVES: The present comparative study therefore aimed to assess the effects of MI on locomotion recovery following unilateral lower-limb amputation. METHODS: Nineteen participants were assigned either to a MI group (n = 9) or a control group (n = 10). In addition to the course of physical therapy, they respectively performed 10 min per day of locomotor MI training or neutral cognitive exercises, five days per week. Participants' locomotion functions were assessed through two functional tasks: 10 m walking and the Timed Up and Go Test. Force of the amputated limb and functional level score reflecting the required assistance for walking were also measured. Evaluations were scheduled at the arrival at the rehabilitation center (right after amputation), after prosthesis fitting (three weeks later), and at the end of the rehabilitation program. A retention test was also programed after 6 weeks. RESULTS: While there was no additional effect of MI on pain management, data revealed an early positive impact of MI for the 10 m walking task during the pre-prosthetic phase, and greater performance during the Timed Up and Go Test during the prosthetic phase. Also, a lower proportion of participants still needed a walking aid after MI training. Finally, the force of the amputated limb was greater at the end of rehabilitation for the MI group. CONCLUSION: Taken together, these data support the integration of MI within the course of physical therapy in persons suffering from lower-limb amputations.


Subject(s)
Amputees , Artificial Limbs , Humans , Postural Balance , Time and Motion Studies , Amputation, Surgical , Amputees/rehabilitation , Walking/physiology
17.
J Pediatr Rehabil Med ; 17(2): 147-165, 2024.
Article in English | MEDLINE | ID: mdl-38427511

ABSTRACT

OBJECTIVE: This study aimed to identify clinical measures that have been used to evaluate function, health related quality of life (HRQoL), and/or satisfaction in children who use lower limb prostheses (LLP). The data reported on psychometric properties for children who use LLP were collected for each measure. METHODS: First, PubMed, CINAHL, and Web of Science databases were searched using broad search terms to identify standardized outcome measures of function, HRQoL, and/or satisfaction with treatment used in pediatric LLP research published in 2001 or after. For each of the eligible measures found, a second search was performed to identify psychometric properties (e.g., validity, reliability) assessed with children who use LLP. RESULTS: Forty-four standardized outcome measures were identified from 41 pediatric LLP research articles. Five measures (i.e., Gait Outcomes Assessment for Lower Limb Differences, Functional Mobility Assessment, Child Amputee Prosthetics Project- Prosthesis Satisfaction Inventory, Child Amputee Prosthetics Project- Functional Scale Index, and Lower Limb Function Questionnaire) had data on psychometric properties for children who use LLP. CONCLUSIONS: Few studies report psychometric data for assessing the overall HRQoL, function, and/or satisfaction for children who use LLP. Further research is needed to validate or create new outcome measures that assess the HRQoL, satisfaction, and/or function of children who use LLP.


Subject(s)
Artificial Limbs , Lower Extremity , Outcome Assessment, Health Care , Psychometrics , Quality of Life , Humans , Child , Lower Extremity/surgery , Lower Extremity/physiopathology , Outcome Assessment, Health Care/methods , Amputees/rehabilitation , Amputees/psychology , Adolescent , Patient Satisfaction , Reproducibility of Results
18.
PLoS One ; 19(3): e0299869, 2024.
Article in English | MEDLINE | ID: mdl-38512879

ABSTRACT

BACKGROUND: Lower limb amputation contributes to structural and functional brain alterations, adversely affecting gait, balance, and overall quality of life. Therefore, selecting an appropriate prosthetic ankle is critical in enhancing the well-being of these individuals. Despite the availability of various prostheses, their impact on brain neuroplasticity remains poorly understood. OBJECTIVES: The primary objective is to examine differences in the degree of brain neuroplasticity using magnetic resonance imaging (MRI) between individuals wearing a new passive ankle prosthesis with an articulated ankle joint and a standard passive prosthesis, and to examine changes in brain neuroplasticity within these two prosthetic groups. The second objective is to investigate the influence of prosthetic type on walking performance and quality of life. The final objective is to determine whether the type of prosthesis induces differences in the walking movement pattern. METHODS: Participants with a unilateral transtibial amputation will follow a 24-week protocol. Prior to rehabilitation, baseline MRI scans will be performed, followed by allocation to the intervention arms and commencement of rehabilitation. After 12 weeks, baseline functional performance tests and a quality of life questionnaire will be administered. At the end of the 24-week period, participants will undergo the same MRI scans, functional performance tests and questionnaire to evaluate any changes. A control group of able-bodied individuals will be included for comparative analysis. CONCLUSION: This study aims to unravel the differences in brain neuroplasticity and prosthesis type in patients with a unilateral transtibial amputation and provide insights into the therapeutic benefits of prosthetic devices. The findings could validate the therapeutic benefits of more advanced lower limb prostheses, potentially leading to a societal impact ultimately improving the quality of life for individuals with lower limb amputation. TRIAL REGISTRATION: NCT05818410 (Clinicaltrials.gov).


Subject(s)
Amputees , Artificial Limbs , Humans , Amputees/rehabilitation , Biomechanical Phenomena , Brain/diagnostic imaging , Gait , Lower Extremity , Physical Functional Performance , Prosthesis Design , Quality of Life , Walking
19.
J Neural Eng ; 21(3)2024 May 21.
Article in English | MEDLINE | ID: mdl-38489845

ABSTRACT

Objective.The advent of surgical reconstruction techniques has enabled the recreation of myoelectric controls sites that were previously lost due to amputation. This advancement is particularly beneficial for individuals with higher-level arm amputations, who were previously constrained to using a single degree of freedom (DoF) myoelectric prostheses due to the limited number of available muscles from which control signals could be extracted. In this study, we explore the use of surgically created electro-neuromuscular constructs to intuitively control multiple bionic joints during daily life with a participant who was implanted with a neuromusculoskeletal prosthetic interface.Approach.We sequentially increased the number of controlled joints, starting at a single DoF allowing to open and close the hand, subsequently adding control of the wrist (2 DoF) and elbow (3 DoF).Main results.We found that the surgically created electro-neuromuscular constructs allow for intuitive simultaneous and proportional control of up to three degrees of freedom using direct control. Extended home-use and the additional bionic joints resulted in improved prosthesis functionality and disability outcomes.Significance.Our findings indicate that electro-neuromuscular constructs can aid in restoring lost functionality and thereby support a person who lost their arm in daily-life tasks.


Subject(s)
Artificial Limbs , Humans , Male , Prosthesis Design , Electromyography/methods , Amputees/rehabilitation , Activities of Daily Living
20.
Article in English | MEDLINE | ID: mdl-38517721

ABSTRACT

The primary goal of rehabilitation for individuals with lower limb amputation, particularly those with unilateral transfemoral amputation (uTFA), is to restore their ability to walk independently. Effective control of the center of pressure (COP) during gait is vital for maintaining balance and stability, yet it poses a significant challenge for individuals with uTFA. This study aims to study the COP during gait in individuals with uTFA and elucidate their unique compensatory strategies. This study involved 12 uTFA participants and age-matched non-disabled controls, with gait and COP trajectory data collected using an instrumented treadmill. Gait and COP parameters between the control limb (CL), prosthetic limb (PL), and intact limb (IL) were compared. Notably, the mediolateral displacement of COP in PL exhibited significant lateral displacement compared to the CL from 30% to 60% of the stance. In 20% to 45% of the stance, the COP forward speed of PL was significantly higher than that of the IL. Furthermore, during the initial 20% of the stance, the vertical ground reaction force of PL was significantly lower than that of IL. Additionally, individuals with uTFA exhibited a distinct gait pattern with altered duration of loading response, single limb support, pre-swing and swing phases, and step time. These findings indicate the adaptability of individuals with uTFA in weight transfer, balance control, and pressure distribution on gait stability. In conclusion, this study provides valuable insights into the unique gait dynamics and balance strategies of uTFA patients, highlighting the importance of optimizing prosthetic design, alignment procedures, and rehabilitation programs to enhance gait patterns and reduce the risk of injuries due to compensatory movements.


Subject(s)
Amputees , Artificial Limbs , Humans , Amputees/rehabilitation , Biomechanical Phenomena , Gait/physiology , Walking/physiology , Amputation, Surgical
SELECTION OF CITATIONS
SEARCH DETAIL
...