Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Braz. j. microbiol ; Braz. j. microbiol;48(3): 544-550, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-889154

ABSTRACT

Abstract Presence of the relatively new sulfonylurea herbicide monosulfuron-ester at 0.03-300 nmol/L affected the growth of two non-target nitrogen-fixing cyanobacteria (Anabaena flos-aquae and Anabaena azotica) and substantially inhibited in vitro Acetolactate synthase activity, with IC50 of 3.3 and 101.3 nmol/L for A. flos-aquae and A. azotica, respectively. Presenting in 30-300 nmol/L, it inhibited protein synthesis of the cyanobacteria with less amino acids produced as its concentration increased. Our findings support the view that monosulfuron-ester toxicity in both nitrogen-fixing cyanobacteria is due to its interference with protein metabolism via inhibition of branch-chain amino acid biosynthesis, and particularly Acetolactate synthase activity.


Subject(s)
Pyrimidines/toxicity , Sulfonylurea Compounds/toxicity , Anabaena/drug effects , Anabaena/metabolism , Dolichospermum flos-aquae/drug effects , Dolichospermum flos-aquae/metabolism , Esters/toxicity , Herbicides/toxicity , Nitrogen Fixation/drug effects , Anabaena/genetics , Dolichospermum flos-aquae/genetics , Amino Acids/metabolism , Nitrogen/metabolism
2.
Braz J Microbiol ; 48(3): 544-550, 2017.
Article in English | MEDLINE | ID: mdl-28454676

ABSTRACT

Presence of the relatively new sulfonylurea herbicide monosulfuron-ester at 0.03-300nmol/L affected the growth of two non-target nitrogen-fixing cyanobacteria (Anabaena flos-aquae and Anabaena azotica) and substantially inhibited in vitro Acetolactate synthase activity, with IC50 of 3.3 and 101.3nmol/L for A. flos-aquae and A. azotica, respectively. Presenting in 30-300nmol/L, it inhibited protein synthesis of the cyanobacteria with less amino acids produced as its concentration increased. Our findings support the view that monosulfuron-ester toxicity in both nitrogen-fixing cyanobacteria is due to its interference with protein metabolism via inhibition of branch-chain amino acid biosynthesis, and particularly Acetolactate synthase activity.


Subject(s)
Anabaena/drug effects , Anabaena/metabolism , Dolichospermum flos-aquae/drug effects , Dolichospermum flos-aquae/metabolism , Esters/toxicity , Herbicides/toxicity , Nitrogen Fixation/drug effects , Pyrimidines/toxicity , Sulfonylurea Compounds/toxicity , Amino Acids/metabolism , Anabaena/genetics , Dolichospermum flos-aquae/genetics , Nitrogen/metabolism
3.
Anal Bioanal Chem ; 408(21): 5829-5841, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27311955

ABSTRACT

Cyanobacteria are a group of photosynthetic, nitrogen-fixing bacteria present in a wide variety of habitats such as freshwater, marine, and terrestrial ecosystems. In this work, the effects of As(III), a major toxic environmental pollutant, on the lipidomic profiles of two cyanobacteria species (Anabaena and Planktothrix agardhii) were assessed by means of a recently proposed method based on the concept of regions of interest (ROI) in liquid chromatography mass spectroscopy (LC-MS) together with multivariate curve resolution alternating least squares (MCR-ALS). Cyanobacteria were exposed to two concentrations of As(III) for a week, and lipid extracts were analyzed by ultrahigh-performance liquid chromatography/time-of-flight mass spectrometry in full scan mode. The data obtained were compressed by means of the ROI strategy, and the resulting LC-MS data sets were analyzed by the MCR-ALS method. Comparison of profile peak areas resolved by MCR-ALS in control and exposed samples allowed the discrimination of lipids whose concentrations were changed due to As(III) treatment. The tentative identification of these lipids revealed an important reduction of the levels of some galactolipids such as monogalactosyldiacylglycerol, the pigment chlorophyll a and its degradation product, pheophytin a, as well as carotene compounds such as 3-hydroxycarotene and carotene-3,3'-dione, all of these compounds being essential in the photosynthetic process. These results suggested that As(III) induced important changes in the composition of lipids of cyanobacteria, which were able to compromise their energy production processes. Graphical abstract Steps of the proposed LC-MS + MCR-ALS procedure.


Subject(s)
Arsenic/metabolism , Chlorophyll/metabolism , Cyanobacteria/drug effects , Environmental Pollutants/metabolism , Lipid Metabolism/drug effects , Anabaena/drug effects , Anabaena/metabolism , Anabaena/ultrastructure , Chromatography, High Pressure Liquid/methods , Cyanobacteria/metabolism , Cyanobacteria/ultrastructure , Least-Squares Analysis , Mass Spectrometry/methods , Multivariate Analysis
4.
Planta ; 223(5): 891-900, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16261375

ABSTRACT

In higher plants and cyanobacteria, sucrose (Suc) metabolism is carried out by a similar set of enzymes. The function and regulation of Suc metabolism in cyanobacteria has begun to be elucidated. In strains of Anabaena sp., filamentous nitrogen-fixing cyanobacteria, Suc synthase (SuS, EC 2.4.1.13) controls Suc cell level through the cleavage of the disaccharide. The present work shows that there are two sus genes in Anabaena (Nostoc) sp. that are co-regulated regarding the nitrogen source; however, only susA accounts for the extractable SuS activity and for the control of the Suc level. Primer extension analysis has uncovered the sequence of the Anabaena susA and susB ammonium-activated putative promoters, which share a high sequence similarity with that of rbcLS encoding ribulose bisphosphate carboxylase/oxygenase (EC 4.1.1.39) and other ammonium up-regulated genes. Moreover, susA and rbcLS expression is developmentally co-localized to the vegetative cells of the nitrogen-fixing cyanobacterial filaments. Our results strongly suggest the existence of a regulatory network that would coordinate the expression of key genes for Suc and nitrogen metabolism, carbon fixation, and development in Anabaena sp.


Subject(s)
Anabaena/enzymology , Glucosyltransferases/metabolism , Nitrogen/metabolism , Quaternary Ammonium Compounds/pharmacology , Sucrose/metabolism , Anabaena/drug effects , Anabaena/genetics , Base Sequence , DNA Primers , Down-Regulation , Gene Expression/drug effects , Gene Silencing , Glucosyltransferases/drug effects , Glucosyltransferases/genetics , Molecular Sequence Data , Mutagenesis, Insertional , Nitrogen Fixation , Promoter Regions, Genetic , Regulatory Elements, Transcriptional , Ribulose-Bisphosphate Carboxylase/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Sequence Alignment , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL