Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 126
1.
J Mol Model ; 29(5): 165, 2023 Apr 29.
Article En | MEDLINE | ID: mdl-37117952

Chagas disease (CD) is a tropical disease caused by the parasite Trypanosoma cruzi, transmitted by the barber insect. Currently, there are approximately 7 million infected people in the world, and it is estimated that 70 million people could contract this disease. The anacardic acid (AA) showed effectiveness in in silico and in vitro tests. The antichagasic potential of five sulfonamide molecules, derived from anacardic acid, was evaluated from a molecular approach based on the density functional theory (DFT), molecular dynamics (MD), and molecular docking (docking) calculations. Methyl 2-methoxy-6- (8- (methylsulfonamide) octyl) benzoate (SA1); 2-methoxy-6- (8- (phenylsulfonamide) octyl) benzoate (SA2); methyl 2-methoxy-6- (8- (2methylphenyl sulfonamide) octyl) benzoate (SA3); methyl 2-methoxy-6- (8-(methylphenylsulfonamide)octyl)benzoate (SA4); methyl2-(8-(2,5-dimethylphenylsulfonamide)octyl)-6-methoxybenzoate (SA5) were the investigated molecules. The DFT calculations were performed using the B3LYP/6-311+G (d, p) level of theory. The global and local reactivity data showed that SA1 shows the highest molecular reactivity, while SA2 is the most stable derivative. In addition, the structures of investigated molecules were confirmed by the linear correlations higher than 0.98 displayed between the experimental and calculated spectroscopic data (IR and NMR). Molecular docking of the molecules showed a greater prominence for the SA1, SA2, and SA4 molecules in the results of distances of ligand-cruzain. In molecular dynamics, SA2 obtained better stability due to greater interactions with important amino acids of cruzain.


Anacardic Acids , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , Density Functional Theory , Anacardic Acids/pharmacology , Magnetic Resonance Spectroscopy , Sulfonamides
2.
Fundam Clin Pharmacol ; 37(4): 824-832, 2023 Aug.
Article En | MEDLINE | ID: mdl-36869661

The rising of diseases caused by multidrug-resistant bacteria has encouraged researchers to explore more antimicrobial substances, as well as chemicals capable of potentiating the action of existing ones against multidrug-resistant bacteria. Anacardium occidentale produces a fruit known as cashew nut, filled with a dark, almost black, caustic, and flammable liquid called cashew nutshell liquid (CNSL). The goal of the study was to evaluate the intrinsic antimicrobial activity of the major compounds present in CNSL, called anacardic acids (AA), as well as their possible modulatory action as an adjuvant of Norfloxacin against a Staphylococcus aureus strain overproducing the NorA efflux pump (SA1199B). Microdilution assays were performed to determine the minimum inhibitory concentration (MIC) of AA against different microbial species. Norfloxacin and Ethidium Bromide (EtBr) resistance modulation assays were performed in the presence or absence of AA against SA1199-B. AA showed antimicrobial activity against Gram-positive bacterial strains tested but no activity against Gram-negative bacteria or yeast strains. At subinhibitory concentration, AA reduced the MIC values for Norfloxacin and EtBr against the SA1199-B strain. Furthermore, AA increased the intracellular accumulation of EtBr in this NorA overproducer strain, indicating that AA are NorA inhibitors. Docking analysis showed that AA probably modulates Norfloxacin efflux by spatial impediment at the same binding site of NorA.


Anacardium , Staphylococcal Infections , Norfloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus , Anacardium/metabolism , Anacardic Acids/pharmacology , Anacardic Acids/metabolism , Multidrug Resistance-Associated Proteins , Staphylococcal Infections/microbiology , Ethidium/metabolism , Ethidium/pharmacology , Microbial Sensitivity Tests
3.
Molecules ; 27(24)2022 Dec 09.
Article En | MEDLINE | ID: mdl-36557871

Recently, natural antioxidants for the food industry have become an important focus. Cashew nut-shell liquid (CNSL) is composed of compounds that can act as natural antioxidants in food systems. The aim of this work was to evaluate the potential of CNSL and its components to act as natural antioxidants in a bulk oil system. CNSL was treated with calcium hydroxide to obtain two fractions [cardol/cardanols acid fraction (CCF) and anacardic acid fraction (AF)]. CNSL, FF and AF were analyzed by thin-layer chromatography and Fourier-transform infrared spectroscopy. The protective effects of CNSL, CCF and AF were tested in terms of the peroxide value of bulk soybean oil in accelerated assays and were compared against controls with and without synthetic antioxidants (CSA and CWA). CNLS, CCF, AF and CSA were tested at 200 mg/kg soybean oil by incubation at 30, 40, 50 and 60 °C for five days. The activation energy (Ea) for the production of peroxides was calculated by using the linearized Arrhenius equation. Thin-layer chromatography and Fourier-transform infrared spectroscopy revealed that (i) CNSL contained cardanols, anacardic acids, and cardols; (ii) CCF contained cardanols and cardols; and (iii) AF contained anacardic acids. CSA (Ea 35,355 J/mol) was the most effective antioxidant, followed by CCF (Ea 31,498 J/mol) and by CNSL (Ea 26,351 J/mol). AF exhibited pro-oxidant activity (Ea 8339 J/mol) compared with that of CWA (Ea 15,684 J/mol). Therefore, cardols and cardanols from CNSL can be used as a natural antioxidant in soybean oil.


Anacardium , Anacardium/chemistry , Antioxidants/chemistry , Soybean Oil/analysis , Phenols/chemistry , Anacardic Acids/pharmacology , Anacardic Acids/chemistry , Nuts/chemistry
4.
Chem Biodivers ; 19(6): e202200107, 2022 Jun.
Article En | MEDLINE | ID: mdl-35474603

The dichloromethane extract of the cashew nuts from Anacardium occidentale was fractionated by rotation locular countercurrent chromatography aimed at discovering metabolites that could be useful as new models for photosynthesis inhibitors. The chemical fractionation afforded a complex mixture of anacardic acids, which upon catalytic hydrogenation yielded anacardic acid (1). Methylation of 1 via reaction with diazomethane afforded an ester 2. Both compounds were evaluated using polarographic approaches and fluorescence studies of chlorophyll a (ChL a). The in vitro assays informed the decision for the classification of 1 and 2 as Hill reaction inhibitors. Besides that, 1 inhibited the donor side of the PSII, while 2 acted as an energy transfer inhibitor. Therefore, this study is important for the development of herbicides.


Anacardic Acids , Anacardium , Anacardic Acids/chemistry , Anacardic Acids/pharmacology , Anacardium/chemistry , Chlorophyll A , Nuts/chemistry , Photosynthesis
5.
J Med Chem ; 65(3): 1961-1978, 2022 02 10.
Article En | MEDLINE | ID: mdl-35089724

Metabolic diseases are increasing at staggering rates globally. The peroxisome proliferator-activated receptors (PPARα/γ/δ) are fatty acid sensors that help mitigate imbalances between energy uptake and utilization. Herein, we report compounds derived from phenolic lipids present in cashew nut shell liquid (CNSL), an abundant waste byproduct, in an effort to create effective, accessible, and sustainable drugs. Derivatives of anacardic acid and cardanol were tested for PPAR activity in HEK293 cell co-transfection assays, primary hepatocytes, and 3T3-L1 adipocytes. In vivo studies using PPAR-expressing zebrafish embryos identified CNSL derivatives with varying tissue-specific activities. LDT409 (23) is an analogue of cardanol with partial agonist activity for PPARα and PPARγ. Pharmacokinetic profiling showed that 23 is orally bioavailable with a half-life of 4 h in mice. CNSL derivatives represent a sustainable source of selective PPAR modulators with balanced intermediate affinities (EC50 ∼ 100 nM to 10 µM) that provide distinct and favorable gene activation profiles for the treatment of diabetes and obesity.


Anacardic Acids/pharmacology , Anacardium/chemistry , Nuts/chemistry , PPAR alpha/agonists , PPAR delta/agonists , PPAR gamma/agonists , 3T3-L1 Cells , Anacardic Acids/chemical synthesis , Anacardic Acids/metabolism , Anacardic Acids/pharmacokinetics , Animals , Drug Design , Gene Expression/drug effects , HEK293 Cells , Humans , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Male , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , PPAR alpha/chemistry , PPAR delta/chemistry , PPAR gamma/chemistry , Protein Domains , Zebrafish
6.
PLoS One ; 16(12): e0261388, 2021.
Article En | MEDLINE | ID: mdl-34914791

Cardiac hypertrophy is a complex process induced by the activation of multiple signaling pathways. We previously reported that anacardic acid (AA), a histone acetyltransferase (HAT) inhibitor, attenuates phenylephrine (PE)-induced cardiac hypertrophy by downregulating histone H3 acetylation at lysine 9 (H3K9ac). Unfortunately, the related upstream signaling events remained unknown. The mitogen-activated protein kinase (MAPK) pathway is an important regulator of cardiac hypertrophy. In this study, we explored the role of JNK/MAPK signaling pathway in cardiac hypertrophy induced by PE. The mice cardiomyocyte hypertrophy model was successfully established by treating cells with PE in vitro. This study showed that p-JNK directly interacts with HATs (P300 and P300/CBP-associated factor, PCAF) and alters H3K9ac. In addition, both the JNK inhibitor SP600125 and the HAT inhibitor AA attenuated p-JNK overexpression and H3K9ac hyperacetylation by inhibiting P300 and PCAF during PE-induced cardiomyocyte hypertrophy. Moreover, we demonstrated that both SP600125 and AA attenuate the overexpression of cardiac hypertrophy-related genes (MEF2A, ANP, BNP, and ß-MHC), preventing cardiomyocyte hypertrophy and dysfunction. These results revealed a novel mechanism through which AA might protect mice from PE-induced cardiomyocyte hypertrophy. In particular, AA inhibits the effects of JNK signaling on HATs-mediated histone acetylation, and could therefore be used to prevent and treat pathological cardiac hypertrophy.


Anacardic Acids/pharmacology , Cardiomegaly/physiopathology , MAP Kinase Signaling System/physiology , Acetylation , Anacardic Acids/metabolism , Animals , Anthracenes/pharmacology , Cardiomegaly/metabolism , China , Disease Models, Animal , Female , Histone Acetyltransferases/antagonists & inhibitors , Histone Acetyltransferases/metabolism , Histones/metabolism , MAP Kinase Signaling System/drug effects , Male , Mice , Mitogen-Activated Protein Kinases/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phenylephrine/adverse effects , Phenylephrine/pharmacology , Primary Cell Culture , Signal Transduction/drug effects , p300-CBP Transcription Factors
7.
Phytochemistry ; 191: 112904, 2021 Nov.
Article En | MEDLINE | ID: mdl-34388665

Eight hitherto undescribed long-chain anacardic acid derivatives, janohigenins, were isolated from the endosperm of Ophiopogon japonicus seed, and their structures were elucidated employing spectroscopic and chemical methods. The neuroprotective activity of the isolated compounds was evaluated against rotenone-induced cellular damage in SH-SY5Y human neuroblastoma cells. Janohigenins exhibited noticeable neuroprotection at 1 µM.


Neuroprotective Agents , Ophiopogon , Anacardic Acids/pharmacology , Neuroprotection , Neuroprotective Agents/pharmacology , Seeds
8.
Molecules ; 26(11)2021 May 28.
Article En | MEDLINE | ID: mdl-34071241

Amphipterygium adstringens (cuachalalate) contains anacardic acids (AAs) such as 6-pentadecyl salicylic acid (6SA) that show immunomodulatory and antitumor activity with minimal or no secondary adverse effects. By contrast, most chemotherapeutic agents, such as 5-fluorouracil (5-FU) and carboplatin (CbPt), induce myelosuppression and leukopenia. Here, we investigated the myeloprotective and antineoplastic potential of an AA extract or the 6SA as monotherapy or in combination with commonly used chemotherapeutic agents (5-FU and CbPt) to determine the cytoprotective action of 6SA on immune cells. Treatment of Balb/c breast tumor-bearing female mice with an AA mixture or 6SA did not induce the myelosuppression or leukopenia observed with 5-FU and CbPt. The co-administration of AA mixture or isolated 6SA with 5-FU or CbPt reduced the apoptosis of circulating blood cells and bone marrow cells. Treatment of 4T1 breast tumor-bearing mice with the AA mixture or 6SA reduced tumor growth and lung metastasis and increased the survival rate compared with monotherapies. An increased effect was observed in tumor reduction with the combination of 6SA and CbPt. In conclusion, AAs have important myeloprotective and antineoplastic effects, and they can improve the efficiency of chemotherapeutics, thereby protecting the organism against the toxic effects of drugs such as 5-FU and CbPt.


Anacardic Acids/chemistry , Carboplatin/pharmacology , Fluorouracil/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Anacardiaceae , Anacardic Acids/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Bone Marrow Cells/metabolism , Cell Line, Tumor , Cell Survival , Cytoprotection , Disease Models, Animal , Female , Hexanes/chemistry , Leukocytes/drug effects , Mice , Mice, Inbred BALB C , Neoplasm Metastasis , Plant Bark/metabolism
9.
J Ethnopharmacol ; 269: 113744, 2021 Apr 06.
Article En | MEDLINE | ID: mdl-33359862

ETHNOPHARMACOLOGICAL RELEVANCE: The incidence of gastric mucosa lesions in the adult population has increased mainly due to the continued use of nonsteroidal anti-inflammatory drugs (NSAIDs). The cashew (Anacardium occidentale L.) is a tropical tree, cultivated in several countries, whose barks, leaves and pseudofruit (cashew apple) are popularly used in traditional medicine for the treatment of many diseases, including gastric ulcer. AIM: Our study evaluated the potential gastroprotective effect of the carotenoid and anacardic acids-enriched aqueous extract (CAE), prepared from cashew apple pomace, in the dose-repeated acetylsalicylic acid (ASA)-induced gastric lesions model in rats. MATERIAL AND METHODS: After randomly distribution into five group (G1 - G5, n = 8 animals/group), male Wistar rats were daily treated with ASA solution (200 mg/kg, 5 ml/kg, G2 - G5) or potable water (Satellite group, G1) during 14 days. From 8th to 14th experimental day, rats in G3 - G5 groups were orally treated with CAE (50, 100 and 500 mg/kg, 5 ml/kg, respectively). Body weight was measured on 0, 7th and 14th day. On the 14th experimental day, all surviving animals were euthanized for macroscopic evaluation of the inner organs and stomach removal. After weighting, each stomach was properly prepared for biochemical analysis [myeloperoxidase activity (MPO), reduced glutathione analysis (GSH), IL-1ß, CXCL2/MIP-2, TNF-α and IL-10 levels]. RESULTS: At the most efficient dose (100 mg/kg, p.o.), CAE-treated animals showed a slight improvement in the macroscopic aspect of gastric mucosa associated with significant (p < 0.05) reduced levels of IL-1ß, CXCL2/MIP-2, and MPO activity besides increased levels of GSH (partially), and IL-10 in stomach tissues. CONCLUSIONS: The present study demonstrated that the carotenoid and anacardic acids-enriched extract obtained from cashew apple pomace is a promising raw material for the development of herbal medicine and/or functional food supplements for the adjuvant treatment of NSAIDs-induced gastric ulcers.


Anacardium/chemistry , Anti-Ulcer Agents/pharmacology , Plant Extracts/pharmacology , Protective Agents/pharmacology , Stomach Ulcer/prevention & control , Anacardic Acids/chemistry , Anacardic Acids/isolation & purification , Anacardic Acids/pharmacology , Anacardic Acids/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Anti-Ulcer Agents/therapeutic use , Aspirin/toxicity , Carotenoids/chemistry , Carotenoids/isolation & purification , Carotenoids/pharmacology , Carotenoids/therapeutic use , Chemokine CXCL2/metabolism , Disease Models, Animal , Gastric Mucosa/drug effects , Glutathione/metabolism , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Male , Peroxidase/metabolism , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Protective Agents/therapeutic use , Rats, Wistar , Stomach Ulcer/chemically induced
10.
Toxicol Appl Pharmacol ; 410: 115359, 2021 01 01.
Article En | MEDLINE | ID: mdl-33290779

Many antineoplastic agents induce myelosuppression and leukopenia as secondary effects in patients. The development of anticancer agents that simultaneously provoke antitumor immune response represents an important therapeutic advance. The administration of 6-pentadecyl salicylic acid (6SA) contributes to the antitumor immunity using 4T1 breast cancer cells in Balb/c female mice, with Taxol as a positive control and in cotreatment with 6SA (6SA + Taxol; CoT). Our results show that 6SA reduces tumor volume and size by inducing caspase-8-mediated apoptosis without reducing tumor infiltrated lymphocytes. Also, 6SA reduced lung metastasis and increased the proportion of immune cells in blood, lymph nodes and bone marrow; more evidently, in the proportion of tumor-infiltrated natural killer (NK) cells and cytotoxic T lymphocytes. Taxol reduces helper and cytotoxic lymphocytes causing systemic immunosuppression and myelosuppression in bone marrow, whereas 6SA does not decrease any immune cell subpopulations in circulating blood and lymph nodes. More importantly, the CoT decreased the Taxol-induced cytotoxicity in circulating T cells and bone marrow. Treatment with 6SA increases the secretion of IL-2, IL-12, GM-CSF, TNF-α and IFN-γ and significantly reduces IL-10 and IL-17 secretion, suggesting that the reduction of regulatory T cells and tumor-associated macrophages contribute to the host control of tumor development. Finally, 6SA has an effective antineoplastic activity against breast cancer cells in an immunocompetent animal, reduces the myelosuppression and leukopenia that Taxol produces, improves the antitumoral immunological microenvironment and increases the overall survival of the animals improving the quality of life of patients with cancer.


Anacardic Acids/therapeutic use , Antineoplastic Agents, Phytogenic/toxicity , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Immunization/methods , Paclitaxel/toxicity , Anacardic Acids/pharmacology , Animals , Apoptosis/immunology , Breast Neoplasms/blood , Breast Neoplasms/immunology , Cell Line, Tumor , Female , Immunity, Cellular/drug effects , Immunity, Cellular/physiology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C3H
11.
Mol Cell Biochem ; 476(2): 819-829, 2021 Feb.
Article En | MEDLINE | ID: mdl-33090336

Disruption of the finely tuned osteoblast-osteoclast balance is the underlying basis of several inflammatory bone diseases, such as osteomyelitis, osteoporosis, and septic arthritis. Prolonged and unrestrained exposure to inflammatory environment results in reduction of bone mineral density by downregulating osteoblast differentiation. Earlier studies from our laboratory have identified that Anacardic acid (AA), a constituent of Cashew nut shell liquid that is used widely in traditional medicine, has potential inhibitory effect on gelatinases (MMP2 and MMP9) which are over-expressed in numerous inflammatory conditions (Omanakuttan et al. in Mol Pharmacol, 2012 and Nambiar et al. in Exp Cell Res, 2016). The study demonstrated for the first time that AA promotes osteoblast differentiation in lipopolysaccharide-treated osteosarcoma cells (MG63) by upregulating specific markers, like osteocalcin, receptor activator of NF-κB ligand, and alkaline phosphatase. Furthermore, expression of the negative regulators, such as nuclear factor-κB, matrix metalloproteinases (MMPs), namely MMP13, and MMP1, along with several inflammatory markers, such as Interleukin-1ß and Nod-like receptor protein 3 were downregulated by AA. Taken together, AA expounds as a novel template for development of potential pharmacological therapeutics for inflammatory bone diseases.


Anacardic Acids/pharmacology , Bone Diseases/drug therapy , Inflammasomes/antagonists & inhibitors , Osteoblasts/drug effects , Osteocalcin/agonists , RANK Ligand/agonists , Bone Diseases/metabolism , Bone Diseases/pathology , Cell Differentiation/drug effects , Cell Line, Tumor , Humans , Inflammasomes/metabolism , NF-kappa B/antagonists & inhibitors , Osteoblasts/metabolism , Osteocalcin/metabolism , RANK Ligand/metabolism
12.
Proc Natl Acad Sci U S A ; 117(35): 21527-21535, 2020 09 01.
Article En | MEDLINE | ID: mdl-32817520

Given the known neuroreparative actions of IL-33 in experimental models of central nervous system (CNS) injury, we predicted that compounds which induce IL-33 are likely to promote remyelination. We found anacardic acid as a candidate molecule to serve as a therapeutic agent to promote remyelination. Addition of anacardic acid to cultured oligodendrocyte precursor cells (OPCs) rapidly increased expression of myelin genes and myelin proteins, suggesting a direct induction of genes involved in myelination by anacardic acid. Also, when added to OPCs, anacardic acid resulted in the induction of IL-33. In vivo, treatment of with anacardic acid in doses which ranged from 0.025 mg/kg to 2.5 mg/kg, improved pathologic scores in experimental allergic encephalitis (EAE) and in the cuprizone model of demyelination/remyelination. Electron microscopic studies performed in mice fed with cuprizone and treated with anacardic acid showed lower g-ratio scores when compared to controls, suggesting increased remyelination of axons. In EAE, improvement in paralytic scores was seen when the drug was given prior to or following the onset of paralytic signs. In EAE and in the cuprizone model, areas of myelin loss, which are likely to remyelinate, was associated with a greater recruitment of IL-33-expressing OPCs in mice which received anacardic acid when compared to controls.


Anacardic Acids/pharmacology , Interleukin-33/biosynthesis , Remyelination/drug effects , Animals , Central Nervous System/drug effects , Central Nervous System/metabolism , Demyelinating Diseases/drug therapy , Demyelinating Diseases/metabolism , Female , Interleukin-33/metabolism , Male , Mice , Mice, Inbred C57BL , Myelin Basic Protein/metabolism , Myelin Proteins/metabolism , Myelin Sheath/metabolism , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Remyelination/physiology , Stem Cells/metabolism
13.
Exp Cell Res ; 395(2): 112234, 2020 10 15.
Article En | MEDLINE | ID: mdl-32822723

Skeletal muscle preservation is a dynamic process that involves constant repair and regeneration. However, the regenerative capacity of muscle cells declines in hyperglycemia. This study aimed to explore the molecular mechanisms underlying this glucotoxicity during myoblast differentiation. C2C12 cells were exposed to different concentrations of glucose, to recapitulate the development of skeletal muscles in vivo in normo- and hyperglycemic conditions. In high glucose conditions, we found significant increases in levels of total cellular reactive oxygen species (ROS) and a reorganization of SUMO enzyme transcripts and SUMOylated proteins. Furthermore, in anticipation of the ROS-induced damage to newly formed myotubes, we observed acceleration of myogenesis. Interestingly, we found a tight relationship between SUMOylation of the Histone methyltransferase SET7/9 and the maintenance of sarcomeric structures of newly formed myotubes. Finally, treatment with the antioxidant anacardic acid preserved the function and activity of myotubes generated in high-glucose conditions by interfering with both ROS and SUMO pathways. Combined, these results suggest that increased oxidative stress and modulation of SUMO reactions are key mediators of glucotoxicity and inhibition of these perturbations using antioxidants might improve muscle regeneration in hyperglycemia.


Cell Differentiation/drug effects , Glucose/pharmacology , Muscle Development/drug effects , Muscle Fibers, Skeletal/drug effects , Reactive Oxygen Species/metabolism , Anacardic Acids/pharmacology , Animals , Antioxidants/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Oxidative Stress/drug effects , Sumoylation/drug effects
14.
J Vis Exp ; (162)2020 08 06.
Article En | MEDLINE | ID: mdl-32831305

Lysine acetyltransferases (KATs) catalyze acetylation of lysine residues on histones and other proteins to regulate chromatin dynamics and gene expression. KATs, such as CBP/p300, are under intense investigation as therapeutic targets due to their critical role in tumorigenesis of diverse cancers. The development of novel small molecule inhibitors targeting the histone acetyltransferase (HAT) function of KATs is challenging and requires robust assays that can validate the specificity and potency of potential inhibitors. This article outlines a pipeline of three methods that provide rigorous in vitro validation for novel HAT inhibitors (HATi). These methods include a test tube HAT assay, Chromatin Hyperacetylation Inhibition (ChHAI) assay, and Chromatin Immunoprecipitation-quantitative PCR (ChIP-qPCR). In the HAT assay, recombinant HATs are incubated with histones in a test tube reaction, allowing for acetylation of specific lysine residues on the histone tails. This reaction can be blocked by a HATi and the relative levels of site-specific histone acetylation can be measured via immunoblotting. Inhibitors identified in the HAT assay need to be confirmed in the cellular environment. The ChHAI assay uses immunoblotting to screen for novel HATi that attenuate the robust hyperacetylation of histones induced by a histone deacetylase inhibitor (HDACi). The addition of an HDACi is helpful because basal levels of histone acetylation can be difficult to detect via immunoblotting. The HAT and ChHAI assays measure global changes in histone acetylation, but do not provide information regarding acetylation at specific genomic regions. Therefore, ChIP-qPCR is used to investigate the effects of HATi on histone acetylation levels at gene regulatory elements. This is accomplished through selective immunoprecipitation of histone-DNA complexes and analysis of the purified DNA through qPCR. Together, these three assays allow for the careful validation of the specificity, potency, and mechanism of action of novel HATi.


Biological Assay/methods , Histone Acetyltransferases/metabolism , Histone Deacetylase Inhibitors/pharmacology , Acetylation/drug effects , Anacardic Acids/pharmacology , Cyclin D1/genetics , Cyclin D1/metabolism , E1A-Associated p300 Protein/antagonists & inhibitors , E1A-Associated p300 Protein/metabolism , Heterocyclic Compounds, 4 or More Rings/pharmacology , Histones/metabolism , Humans , Lysine/metabolism , MCF-7 Cells , Promoter Regions, Genetic/genetics , Reproducibility of Results , Sonication
15.
Bioorg Chem ; 102: 104068, 2020 09.
Article En | MEDLINE | ID: mdl-32653609

The n-hexane extract from leaves of Schinus terebinthifolius (Anacardiaceae) induced 100% of death of trypomastigote forms of T. cruzi at 300 µg/mL and was subjected to a bioactivity-guided fractionation to afford a C17:2 derivative of anacardic acid [6-(8'Z,11'Z)-heptadecadienyl-salicylic acid, 1]. Additionally, compound 1 was subjected to hydrogenation procedures to afford a C17:0 derivative (6-heptadecanyl-salicylic acid, 1a). Compounds 1 and 1a were effective in killing trypomastigote forms of T. cruzi with IC50 values of 8.3 and 9.0 µM, respectively, while a related compound, salicylic acid, was inactive. Furthermore, no cytotoxicity was observed for the highest tested concentration (CC50 > 200 µM) for all evaluated compounds. Due to the promising results, the mechanism of parasite death was investigated for compounds 1 and 1a using flow cytometry and spectrofluorimetry. The cell membrane permeability assay with SYTOX Green indicated that compound 1 significantly altered this parameter after 40 min of incubation, while compound 1a caused no alteration. Considering that the hydrogenation rendered a differential cellular target in parasites, additional assays were performed with 1a. Despite no permeabilization of the plasma membrane, compound 1a induced depolarization of the electric potential after two hours of incubation. The mitochondria of the parasite were also affected by compound 1a, with depolarization of the mitochondrial membrane potential, and reduction of reactive oxygen species (ROS) levels. The Ca2+ levels were not affected during the time of incubation. Considering that the mitochondrion is a single organelle in Trypanosoma cruzi for ATP generation, compounds affecting the bioenergetic system are of interest for drug discovery against Trypanosomatids.


Anacardic Acids/therapeutic use , Chagas Disease/drug therapy , Plant Leaves/chemistry , Trypanosoma cruzi/drug effects , Anacardic Acids/pharmacology , Animals , Female , Male , Mice
16.
ACS Infect Dis ; 6(7): 1674-1685, 2020 07 10.
Article En | MEDLINE | ID: mdl-32519844

We report on the antibacterial activity of five phenolic lipids derived from anacardic acid characterized by increasing alkyl chain lengths with 6, 8, 10, 12, or 14 carbon atoms. The compounds were profiled for their physicochemical properties, transport across epithelial monolayers, cytotoxicity, and antibacterial activity as compared to common antibiotics. No cytotoxicity was reported in cell lines of fibroblast, hepatic, colorectal, or renal origin. C10 and C12 significantly increased the survival in a Galleria mellonella model infected with multi-drug-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococci (VRE) as compared to the untreated control group. Future studies are required to corroborate these findings in relevant animal model systems of infection.


Methicillin-Resistant Staphylococcus aureus , Vancomycin-Resistant Enterococci , Anacardic Acids/pharmacology , Animals , Anti-Bacterial Agents/pharmacology
17.
Braz J Microbiol ; 51(4): 1623-1630, 2020 Dec.
Article En | MEDLINE | ID: mdl-32562202

Bacterial biofilms play a key role in the pathogenesis of major oral diseases. Nanoparticles open new paths for drug delivery in complex structures such as biofilms. This study evaluated the antimicrobial effect of zein nanoparticles containing anacardic acid (AA) extracted from cashew shells of Anacardium occidentale on in vitro Streptococcus mutans biofilm formation and mature biofilms. The minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and antibiofilm assays were performed. Streptococcus mutans UA159 biofilms were formed on saliva-coated hydroxyapatite disk for 5 days. To evaluate the preventive effect on biofilm formation, before contact with the inoculum, the disks were immersed once for 2 min in (1) hydroethanolic solution; (2) blank zein nanoparticles; (3) zein nanoparticles containing AA; and (4) 0.12% chlorhexidine gluconate. To determine the effect against mature biofilms, the disks containing 5-day preformed biofilms were further treated using the same procedure. The bacterial viability and dry weight were determined for both assays and used to compare the groups using ANOVA followed by Tukey's test (p < 0.05). Both MIC and MBC for AA-loaded zein nanoparticles were 0.36 µg/mL. Groups 3 and 4 were very effective in inhibiting S. mutans biofilm formation, as no colony-forming units were detected. In contrast, for mature biofilms, no difference in bacterial viability (p = 0.28) or dry weight (p = 0.09) was found between the treatments. Therefore, the AA-based nanoformulation presented very high inhibitory and bactericidal activities against planktonic S. mutans, and the results indicate a strong antiplaque effect. However, the formulation showed no antimicrobial effect on the established biofilm.


Anacardic Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Microbial Viability/drug effects , Plant Extracts/pharmacology , Streptococcus mutans/drug effects , Anacardium/chemistry , Microbial Sensitivity Tests , Nanoparticles/chemistry , Zein/chemistry
18.
Int J Biol Sci ; 16(11): 1774-1784, 2020.
Article En | MEDLINE | ID: mdl-32398948

PTEN, a tumor suppressor, is found loss of function in many cancers, including colorectal cancer. To identify the synthetic lethal compounds working with PTEN deficiency, we performed a synthetic lethality drug screening with PTEN-isogenic colorectal cancer cells. From the screening, we found that PTEN-/- colorectal cancer cells were sensitive to anacardic acid, a p300/CBP histone acetyltransferase (HAT) inhibitor. Anacardic acid significantly reduced the viability of PTEN-/- cells not in PTEN+/+ cells via inducing apoptosis. Inhibition of HAT activity of p300/CBP by anacardic acid reduced the acetylation of histones at the promoter region and inhibited the transcription of Hsp70 family of proteins. The down-regulation of Hsp70 family proteins led to the reduction of AKT-Hsp70 complex formation, AKT destabilization and decreased the level of phosphorylated AKT at Ser473, all of which are vital for the survival of PTEN-/- colorectal cells. The synthetic lethality effect of anacardic acid was further validated in tumor xenograft mice models, where PTEN-/- colorectal tumors showed greater sensitivity to anacardic acid treatment than PTEN+/+ tumors. These data suggest that anacardic acid induced synthetic lethality by inhibiting HAT activity of p300/CBP, thereby reducing Hsp70 transcription and destabilizing AKT in PTEN deficient colorectal cancer cells.


Anacardic Acids/therapeutic use , Colorectal Neoplasms/drug therapy , PTEN Phosphohydrolase/deficiency , Proto-Oncogene Proteins c-akt , p300-CBP Transcription Factors/antagonists & inhibitors , Anacardic Acids/chemistry , Anacardic Acids/pharmacology , Animals , Colorectal Neoplasms/pathology , Combinatorial Chemistry Techniques , Down-Regulation , Drug Design , Drug Discovery , Gene Deletion , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Neoplasms, Experimental , PTEN Phosphohydrolase/metabolism , Prostatic Neoplasms/drug therapy , Synthetic Lethal Mutations , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , p300-CBP Transcription Factors/metabolism
19.
IUBMB Life ; 72(8): 1765-1779, 2020 08.
Article En | MEDLINE | ID: mdl-32449271

Parkinson's disease (PD) induced by environmental toxins involves a multifactorial cascade of harmful factors, thus motivating the search for therapeutic agents able to act on the greatest number of molecular targets. This study evaluated the efficacy of 50 mg/kg purified anacardic acids (AAs), isolated from cashew nut shell liquid, on multiple steps of oxidative stress and inflammation induced by rotenone in the substantia nigra (SN) and striatum. Adult mice were divided into four groups: Control, rotenone, AAs + rotenone, and AAs alone. Lipoperoxidation, nitric oxide (NO) levels, and reduced glutathione (GSH)/oxidized gluthatione (GSSG) ratio were evaluated. NF-kB-p65, pro-IL-1ß, cleaved IL-1ß, metalloproteinase-9, Tissue Inhibitory Factor-1 (TIMP-1), tyrosine hydroxylase (TH), and glial fibrillary acidic protein (GFAP) levels were assessed by Western blot. In silico studies were also made using the SwissADME web tool. Rotenone increased lipoperoxidation and NO production and reduced TH levels and GSH/GSSG ratio in both SN and striatum. It also enhanced NF-kB-p65, pro, and cleaved IL-1ß, MMP-9, GFAP levels compared to control and AAs groups. The AAs alone reduced pro-IL-1ß in the striatum while they augmented TIMP1 and reduced MMP-9 amounts in both regions. AAs reversed rotenone-induced effects on lipoperoxidation, NO production, and GSH/GSSG ratio, as well as increased TH and attenuated pro-IL-1ß and MMP-9 levels in both regions, NF-kB-p65 in the SN and GFAP in the striatum. Altogether, the in vivo and in silico analysis reinforced multiple and defined molecular targets of AAs, identifying that they are promising neuroprotective drug candidates for PD, acting against oxidative and inflammatory conditions induced by rotenone.


Anacardic Acids/pharmacology , Neuroprotective Agents/pharmacology , Parkinson Disease, Secondary/drug therapy , Parkinson Disease/drug therapy , Pesticides/toxicity , Anacardic Acids/chemistry , Anacardic Acids/isolation & purification , Animals , Computer Simulation , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Glial Fibrillary Acidic Protein/genetics , Glutathione/metabolism , Glutathione Disulfide/metabolism , Humans , Interleukin-1beta/genetics , Lipid Peroxidation/drug effects , Matrix Metalloproteinase 9/genetics , Mice , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Parkinson Disease/etiology , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/genetics , Parkinson Disease, Secondary/pathology , Tissue Inhibitor of Metalloproteinase-1/genetics , Transcription Factor RelA/genetics , Tyrosine 3-Monooxygenase/genetics
20.
Curr Pharm Biotechnol ; 21(8): 710-719, 2020.
Article En | MEDLINE | ID: mdl-31692436

BACKGROUND AND OBJECTIVE: Coronary bypass operations are commonly performed for the treatment of ischemic heart diseases. Coronary artery bypass surgery with autologous human saphenous vein maintains its importance as a commonly used therapy for advanced atherosclerosis. Vascular inflammation-related intimal hyperplasia and atherosclerotic progress have major roles in the pathogenesis of saphenous vein graft disease. METHODS: In our study, we investigated the effect of anacardic acid (AA), which is a bioactive phytochemical in the shell of Anacardium occidentale, on atherosclerosis considering its inhibitory effect on NF-κB. We observed relative ICAM-1 and NF-κB mRNA levels by qRT-PCR method in a TNF-α- induced inflammation model of saphenous vein endothelial cell culture after 0.1, 0.5, 1 and 5 µM of AA were applied to the cells. In addition, protein levels of ICAM-1 and NF-κB were evaluated by immunofluorescent staining. The results were compared between different concentrations of AA, and also with the control group. RESULTS: It was found that 5 µM, 1 µM and 0.5 µM of AA had toxic effects, while cytotoxicity decreased when 0.1 µM of AA was applied both alone and with TNF-α. When AA was applied with TNF-α, there was a decrease and suppression in NF-κB expression compared with the TNF-α group. TNF-α-induced ICAM-1 expression was significantly reduced more in the AA-applied group than in the TNF-α group. CONCLUSION: In accordance with our results, it can be said that AA has a protective role in the pathogenesis of atherosclerosis and hence in saphenous vein graft disease.


Anacardic Acids/pharmacology , Anti-Inflammatory Agents/pharmacology , Endothelial Cells/drug effects , NF-kappa B/antagonists & inhibitors , Saphenous Vein/drug effects , Tumor Necrosis Factor-alpha/immunology , Anacardium/chemistry , Atherosclerosis/immunology , Atherosclerosis/metabolism , Cell Line , Cell Survival/drug effects , Cell Survival/immunology , Endothelial Cells/metabolism , Humans , Inflammation , Intercellular Adhesion Molecule-1/metabolism , NF-kappa B/immunology , Nuts/chemistry , Saphenous Vein/metabolism , Transcription Factor RelA/metabolism
...