Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 532
Filter
1.
Neuropharmacology ; 257: 110060, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38960134

ABSTRACT

The escalating incidence of opioid-related issues among pregnant women in the United States underscores the critical necessity to understand the effects of opioid use and Medication for Opioid Use Disorders (MOUDs) during pregnancy. This research employed a translational rodent model to examine the impact of gestational exposure to buprenorphine (BUP) or morphine on maternal behaviors and offspring well-being. Female rats received BUP or morphine before conception, representing established use, with exposure continuing until postnatal day 2 or discontinued on gestational day 19 to mimic treatment cessation before birth. Maternal behaviors - including care, pup retrieval, and preference - as well as hunting behaviors and brain neurotransmitter levels were assessed. Offspring were evaluated for mortality, weight, length, milk bands, surface righting latency, withdrawal symptoms, and brain neurotransmitter levels. Our results reveal that regardless of exposure length (i.e., continued or discontinued), BUP resulted in reduced maternal care in contrast to morphine-exposed and control dams. Opioid exposure altered brain monoamine levels in the dams and offspring, and was associated with increased neonatal mortality, reduced offspring weight, and elevated withdrawal symptoms compared to controls. These findings underscore BUP's potential disruption of maternal care, contributing to increased pup mortality and altered neurodevelopmental outcomes in the offspring. This study calls for more comprehensive research into prenatal BUP exposure effects on the maternal brain and infant development with the aim to mitigate adverse outcomes in humans exposed to opioids during pregnancy.


Subject(s)
Analgesics, Opioid , Brain , Buprenorphine , Maternal Behavior , Morphine , Prenatal Exposure Delayed Effects , Pregnancy , Animals , Female , Morphine/adverse effects , Morphine/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Brain/drug effects , Brain/growth & development , Brain/metabolism , Analgesics, Opioid/toxicity , Analgesics, Opioid/adverse effects , Rats , Maternal Behavior/drug effects , Rats, Sprague-Dawley , Animals, Newborn , Behavior, Animal/drug effects , Male , Substance Withdrawal Syndrome , Opioid-Related Disorders
2.
Respir Physiol Neurobiol ; 327: 104300, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39009328

ABSTRACT

Intravenous rapid injection of fentanyl causes respiratory depression (severe apneas), leading to sudden death, which constitutes the deadliest drug reaction among overdoses of synthetic opioids. Here we asked whether acute inhalation of overdose fentanyl would also result in similar respiratory failure and death. The anesthetized and spontaneously breathing rats with tracheal cannulation were exposed to aerosolized fentanyl at 100 mg/m3 (FNTH) or 30 mg/m3 (FNTL) for 10 min. Minute ventilation (VE), electromyography (EMG) of the internal and external intercostal muscles and thyroarytenoid muscles (EMGII, EMGEI, and EMGTA), heart rate and arterial blood pressure were recorded. During the exposure, FNTH and FNTL immediately triggered bradypnea (40 % reduction, p < 0.05) with TE prolonged and then gradually decreased VE by 40 % (P < 0.05) after a brief VE recovery. The initial TE prolongation (apneas) were characterized by the cessation of EMGEI activity with enhanced tonic discharges of EMGTA and EMGII. After termination of the exposure, the cardiorespiratory responses to FNTL returned to the baseline values 30 min later, while those to FNTH were greatly exacerbated (P < 0.05), leading to ventilatory and cardiac arrest occurred 16.4 ± 4.7 min and 19.3 ± 4.5 min respectively after the onset of FNTH. The ventilatory arrest was featured by cessation of both EMGEI and EMGII and augmentation of tonic EMGTA. Our results suggest that acute exposure to an overdose of fentanyl aerosol leads to death through initially inducing a brief central and upper airway obstructive apnea as well as chest wall rigidity followed by gradual severe hypoventilation, bradycardia and hypotension, and eventual cardiorespiratory arrest in anesthetized rats.


Subject(s)
Fentanyl , Respiratory Insufficiency , Animals , Fentanyl/administration & dosage , Fentanyl/toxicity , Male , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/physiopathology , Rats , Administration, Inhalation , Aerosols , Rats, Sprague-Dawley , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/toxicity , Heart Rate/drug effects , Electromyography , Blood Pressure/drug effects
3.
Drug Alcohol Depend ; 262: 111367, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39003831

ABSTRACT

BACKGROUND: The use of medications for opioid use disorder such as methadone or buprenorphine is increasing among pregnant women. However, long-term effects of this treatment on the children's health are not well understood. A key challenge is distinguishing the effects of opioid exposure from other confounding factors associated with human opioid use, such as reduced maternal care. In this study, we therefore used a multi-risk factor design to examine anxiety-like behavior in rats prenatally exposed to methadone or buprenorphine, with or without maternal separation the first two weeks after birth. METHODS: Female Sprague Dawley rats were exposed to methadone (10mg/kg/day), buprenorphine (1mg/kg/day) or sterile water throughout gestation. Half of the offspring in each litter experienced maternal separation for 3h per day from postnatal day 2 to 12. Male and female offspring (6-9 weeks) were tested in the open field, light-dark transition and elevated plus maze tests to assess anxiety-like behavior. RESULTS: Offspring exposed to buprenorphine and not subjected to maternal separation displayed increased anxiety-like behavior in 3 out of 6 outcomes in the light-dark transition and elevated plus maze tests. Maternal separation did not exacerbate, but rather diminished this behavior. Males and females responded differently to methadone, with a trend towards reduced anxiety for males and increased anxiety for females. CONCLUSIONS: Prenatal exposure to methadone or buprenorphine may increase the risk of developing anxiety-like behavior later in life, but the effect depends on specific subgroup characteristics. Further research is required to draw definitive conclusions.


Subject(s)
Anxiety , Buprenorphine , Maternal Deprivation , Methadone , Prenatal Exposure Delayed Effects , Rats, Sprague-Dawley , Animals , Pregnancy , Female , Methadone/therapeutic use , Rats , Anxiety/chemically induced , Male , Behavior, Animal/drug effects , Analgesics, Opioid/toxicity
4.
J Neuroimmune Pharmacol ; 19(1): 29, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874861

ABSTRACT

The opioid epidemic has received considerable attention, but the impact on perinatal opioid-exposed (POE) offspring remains underexplored. This study addresses the emerging public health challenge of understanding and treating POE children. We examined two scenarios using preclinical models: offspring exposed to oxycodone (OXY) in utero (IUO) and acute postnatal OXY (PNO). We hypothesized exposure to OXY during pregnancy primes offspring for neurodevelopmental deficits and severity of deficits is dependent on timing of exposure. Notable findings include reduced head size and brain weight in offspring. Molecular analyses revealed significantly lower levels of inflammasome-specific genes in the prefrontal cortex (PFC). Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) highlighted the enrichment of genes associated with mitochondrial and synapse dysfunction in POE offspring. Western blot analysis validated IPA predictions of mitochondrial dysfunction in PFC-derived synaptosomes. Behavioral studies identified significant social deficits in POE offspring. This study presents the first comparative analysis of acute PNO- and IUO-offspring during early adolescence finding acute PNO-offspring have considerably greater deficits. The striking difference in deficit severity in acute PNO-offspring suggests that exposure to opioids in late pregnancy pose the greatest risk for offspring well-being.


Subject(s)
Analgesics, Opioid , Oxycodone , Prenatal Exposure Delayed Effects , Animals , Oxycodone/toxicity , Pregnancy , Female , Prenatal Exposure Delayed Effects/chemically induced , Male , Analgesics, Opioid/adverse effects , Analgesics, Opioid/toxicity , Behavior, Animal/drug effects , Rats , Rats, Sprague-Dawley , Neurodevelopmental Disorders/chemically induced , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism
5.
J Cell Mol Med ; 28(4): e18118, 2024 02.
Article in English | MEDLINE | ID: mdl-38332529

ABSTRACT

Opioids can be used for medical and non-medical purposes. Chronic pain such as cancer, as well as the frequent use of such drugs in places such as operating rooms and intensive care units, and in non-medical areas like drug abuse the effects and side effects of these drugs need to be examined in more detail. For this purpose, the effects of fentanyl and remifentanil drugs on neuroinflammation, oxidative stress and cholinesterase metabolism were investigated. Neuron cells (CRL-10742) were used for the evaluation of the toxicity of fentanyl and remifentanil. MTT, PON1 activity and total thiol levels for its effect on oxidative stress, AChE and BChE activities for its effect on the cholinergic system, and TNF, IL-8 and IL-10 gene levels for its neuroinflammation effect were determined. The highest neurotoxic dose of fentanyl and remifentanil was determined as 10 µg/mL. It was observed that the rate of neuron cells in this dose has decreased by up to 61.80% and 56.89%, respectively. The IL-8 gene expression level in both opioids was down-regulated while IL 10 gene level was up-regulated in a dose-dependent manner compared to the control. In our results, the TNF gene expression level differs between the two opioids. In the fentanyl group, it was seen to be up-regulated in a dose-dependent manner compared to the control. Fentanyl and remifentanil showed an inhibitory effect against PON1, while remifentanil showed an increase in total thiol levels. PON1, BChE and total thiol activities showed similarity with MTT.


Subject(s)
Chronic Pain , Fentanyl , Humans , Fentanyl/toxicity , Remifentanil/pharmacology , Piperidines/toxicity , Interleukin-8 , Neuroinflammatory Diseases , Analgesics, Opioid/toxicity , Oxidative Stress , Neurons , Chronic Pain/chemically induced , Sulfhydryl Compounds , Aryldialkylphosphatase
6.
Toxicol Appl Pharmacol ; 483: 116802, 2024 02.
Article in English | MEDLINE | ID: mdl-38184280

ABSTRACT

The incidence of postoperative myocardial injury remains high as the underlying pathogenesis is still unknown. The dorsal root ganglion (DRG) neurons express transient receptor potential vanilloid 1 (TRPV1) and its downstream effector, calcitonin gene-related peptide (CGRP) participating in transmitting pain signals and cardiac protection. Opioids remain a mainstay therapeutic option for moderate-to-severe pain relief clinically, as a critical component of multimodal postoperative analgesia via intravenous and epidural delivery. Evidence indicates the interaction of opioids and TRPV1 activities in DRG neurons. Here, we verify the potential impairment of myocardial viability by epidural usage of opioids in postoperative analgesia. We found that large dose of epidural morphine (50 µg) significantly worsened the cardiac performance (+dP/dtmax reduction by 11% and -dP/dtmax elevation by 24%, all P < 0.001), the myocardial infarct size (morphine vs Control, 0.54 ± 0.09 IS/AAR vs. 0.23 ± 0.06 IS/AAR, P < 0.001) and reduced CGRP in the myocardium (morphine vs. Control, 9.34 ± 2.24 pg/mg vs. 21.23 ± 4.32 pg/mg, P < 0.001), while induced definite suppression of nociception in the postoperative animals. It was demonstrated that activation of µ-opioid receptor (µ-OPR) induced desensitization of TRPV1 by attenuating phosphorylation of the channel in the dorsal root ganglion neurons, via inhibiting the accumulation of cAMP. CGRP may attenuated the buildup of ROS and the reduction of mitochondrial membrane potential in cardiomyocytes induced by hypoxia/reoxygenation. The findings of this study indicate that epidurally giving large dose of µ-OPR agonist may aggravate myocardial injury by inhibiting the activity of TRPV1/CGRP pathway.


Subject(s)
Analgesics, Opioid , Calcitonin Gene-Related Peptide , Animals , Analgesics, Opioid/toxicity , Calcitonin Gene-Related Peptide/pharmacology , Receptors, Opioid, mu/agonists , Morphine/toxicity , Myocardium/pathology , Pain/drug therapy , Pain/metabolism , Pain/pathology , Myocytes, Cardiac/metabolism , TRPV Cation Channels/metabolism , Ganglia, Spinal
7.
Neurotoxicology ; 99: 292-304, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37981055

ABSTRACT

Within the national opioid epidemic, there has been an increase in the number of infants exposed to opioids in utero. Additionally, opioid agonist medications are the standard of care for women with opioid use disorder during pregnancy. Buprenorphine (BUP), a partial µ -opioid receptor agonist, has been successful in improving gestational and neonatal outcomes. However, in utero exposure has been linked to childhood cognitive and behavioral problems. Therefore, we sought to compare offspring cognitive and behavioral outcomes after prenatal exposure to a clinically relevant low dose of BUP compared to morphine (MO), a full µ -opioid receptor agonist and immediate metabolite of heroin. We used a mouse model to assess gestational and offspring outcomes. Mouse dams were injected once daily s.c. with saline (SAL, n = 12), MO (10 mg/kg, n = 15), or BUP (0.1 mg/kg, n = 16) throughout pre-gestation, gestation, and lactation until offspring were weaned on postnatal day (P)21. Offspring social interaction and exploratory behavior were assessed, along with executive function via the touchscreen 5 choice serial reaction time task (5CSRTT). We then quantified P1 brain gene expression in the frontal cortex and amygdala (AMG). Perinatal MO but not BUP exposure decreased gestational weight gain and was associated with dystocia. In adolescent offspring, perinatal MO but not BUP exposure increased social exploration in males and grooming behavior in females. In the 5CSRTT, male MO exposed offspring exhibited increased impulsive action errors compared to male BUP offspring. In the AMG of P1 MO exposed offspring, we observed an increase in gene expression of targets related to activity of microglia. Importantly, both MO and BUP caused acute hyperlocomotion in the dams to a similar degree, indicating that the selected doses are comparable, in accordance with previous dose comparisons on analgesic and reward efficacy. These data suggest that compared to MO, low dose BUP improves gestational outcomes and has less of an effect on the neonatal offspring brain and later adolescent and adult behavior.


Subject(s)
Buprenorphine , Opioid-Related Disorders , Humans , Pregnancy , Adult , Adolescent , Male , Female , Animals , Mice , Child , Buprenorphine/toxicity , Buprenorphine/therapeutic use , Morphine , Analgesics, Opioid/toxicity , Opioid-Related Disorders/drug therapy , Receptors, Opioid/therapeutic use
8.
Toxicol Appl Pharmacol ; 479: 116731, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37866706

ABSTRACT

The use and/or misuse of opioids by pregnant women would expose the fetuses to these drugs during critical stages of development with serious effects for the newborn, like the neonatal abstinence syndrome (NAS). We have revisited an established chicken model for NAS to describe the distribution of morphine and methadone to the brain and explore its validity as a valuable alternative to rodent models. For this purpose, chicken eggs were injected with a single dose of 10 mg/kg or 20 mg/kg morphine or 20 mg/kg methadone onto the chorioallantoic membrane (CAM) on embryonal day 13. Whole brains and lungs were harvested and the concentrations of morphine, methadone and their subsequent metabolites (morphine-3-glucuronide and EDDP, respectively) determined in the brain and lungs at different time points using LC-MS/MS. Morphine and methadone, as well as their metabolites, were detected both in the brain and lungs, with significantly higher concentrations in the lungs. Pharmacokinetic modelling showed that the distribution of morphine to the brain followed a first-order absorption with transit compartments and linear elimination, with concentrations linearly dependent on dose. Moreover, methadone, but not morphine, reduced µ receptor (the main morphine receptor) binding, which can be of relevance for opioid tolerance. The present study is the first to report the brain distribution of morphine, which can be described by standard pharmacokinetic processes, and methadone in the developing chicken embryo. The present findings supplement the already established model and support the use of this chicken model to study NAS.


Subject(s)
Methadone , Neonatal Abstinence Syndrome , Chick Embryo , Infant, Newborn , Animals , Female , Pregnancy , Humans , Methadone/toxicity , Methadone/therapeutic use , Morphine , Analgesics, Opioid/toxicity , Chickens , Chromatography, Liquid , Drug Tolerance , Tandem Mass Spectrometry , Neonatal Abstinence Syndrome/drug therapy , Brain , Receptors, Opioid, mu
9.
Reprod Toxicol ; 120: 108453, 2023 09.
Article in English | MEDLINE | ID: mdl-37536455

ABSTRACT

Methadone (Met) is the most common treatment for opioid addiction. Although Met is effective for treatment of opioid dependence, sexual dysfunctions and infertility have been reported as a major problem in patients under Met treatment. The present study aimed to evaluate the effect of melatonin and N-acetylcysteine (N) on morphine and Met-induced oxidative stress, apoptosis, suppression of blood sexual hormones, impairment in sperm parameters, and sexual dysfunction. Adult male Wistar rats (n = 66) were randomly divided into 11 equal groups (n = 6) as follows: control, sham, morphine, Met, Met+N, Met+ melatonin, Met+melatonin+N, morphine+ Met, morphine+Met+ melatonin, morphine+Met+N, and morphine+Met+ melatonin+N groups. On day 56 post-treatment, the blood was collected from the tail and the serum levels of sex hormones were evaluated, then the rats were sacrificed, and their bilateral testes and epididymis were retrieved for histological, immunohistochemical, molecular, testicular tissue stress oxidative status, and sperm parameters assays. Exposure to morphine, Met, and shift of morphine to Met resulted in testicular degeneration that can be attributed to generating the stress oxidative-induced- apoptotic testicular cell death and impairing spermatogenesis. Melatonin and N alone and particularly, in combination with each other improved testicular degeneration, sex hormone suppression, and testicular function mediated by increasing the testicular antioxidant capacity and inhibition of the apoptosis pathway. It's suggested that oral administration of antioxidants may be an effective treatment for attenuating some opioid-related testicular dysfunction and degeneration.


Subject(s)
Melatonin , Testicular Diseases , Animals , Male , Rats , Acetylcysteine/pharmacology , Analgesics, Opioid/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Gonadal Steroid Hormones/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Morphine Derivatives/metabolism , Morphine Derivatives/toxicity , Oxidative Stress , Rats, Wistar , Semen/metabolism , Testicular Diseases/pathology , Testis
10.
Arch Toxicol ; 97(10): 2575-2585, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37537419

ABSTRACT

The increasing use of opioids in pregnant women has led to an alarming rise in the number of cases of neonates with drug-induced withdrawal symptoms known as neonatal opioid withdrawal syndrome (NOWS). NOWS is a toxic heterogeneous condition with many neurologic, autonomic, and gastrointestinal symptoms including poor feeding, irritability, tachycardia, hypertension, respiratory defects, tremors, hyperthermia, and weight loss. Paradoxically, for the management of NOWS, low doses of morphine, methadone, or buprenorphine are administered. NOWS is a polygenic disorder supported by studies of genomic variation in opioid-related genes. Single-nucleotide polymorphisms (SNPs) in CYP2B6 are associated with variations in NOWS infant responses to methadone and SNPs in the OPRM1, ABCB1, and COMT genes are associated with need for treatment and length of hospital stay. Epigenetic gene changes showing higher methylation levels in infants and mothers have been associated with more pharmacologic treatment in the case of newborns, and for mothers, longer infant hospital stays. Respiratory disturbances associated with NOWS are not well characterized. Little is known about the effects of opioids on developing neonatal respiratory control and respiratory distress (RD), a potential problem for survival of the neonate. In a rat model to test the effect of maternal opioids on the developing respiratory network and neonatal breathing, maternal-derived methadone increased apneas and lessened RD in neonates at postnatal (P) days P0 and P1. From P3, breathing normalized with age suggesting reorganization of respiratory rhythm-generating circuits at a time when the preBötC becomes the dominant inspiratory rhythm generator. In medullary slices containing the preBötC, maternal opioid treatment plus exposure to exogenous opioids showed respiratory activity was maintained in younger but not older neonates. Thus, maternal opioids blunt centrally controlled respiratory frequency responses to exogenous opioids in an age-dependent manner. In the absence of maternal opioid treatment, exogenous opioids abolished burst frequencies at all ages. Prenatal opioid exposure in children stunts growth rate and development while studies of behavior and cognitive ability reveal poor performances. In adults, high rates of attention deficit disorder, hyperactivity, substance abuse, and poor performances in intelligence and memory tests have been reported.


Subject(s)
Neonatal Abstinence Syndrome , Opioid-Related Disorders , Respiratory Insufficiency , Substance Withdrawal Syndrome , Humans , Infant, Newborn , Infant , Adult , Child , Female , Pregnancy , Animals , Rats , Analgesics, Opioid/toxicity , Pharmacogenetics , Opioid-Related Disorders/genetics , Opioid-Related Disorders/complications , Opioid-Related Disorders/drug therapy , Substance Withdrawal Syndrome/complications , Substance Withdrawal Syndrome/drug therapy , Methadone/adverse effects , Neonatal Abstinence Syndrome/genetics , Neonatal Abstinence Syndrome/complications , Neonatal Abstinence Syndrome/drug therapy , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/genetics
11.
CMAJ Open ; 11(3): E569-E578, 2023.
Article in English | MEDLINE | ID: mdl-37369523

ABSTRACT

BACKGROUND: Previous research has shown that cocaine-associated deaths occur more frequently in hot weather, which has not been described for other illicit drugs or combinations of drugs. The study objective was to evaluate the relation between temperature and risk of death related to cocaine, opioids and amphetamines in British Columbia, Canada. METHODS: We extracted data on all deaths with cocaine, opioid or amphetamine toxicity recorded as an underlying or contributing cause from BC vital statistics for 1998-2017. We used a time-stratified case-crossover design to estimate the effect of temperature on the risk of death associated with acute drug toxicity during the warmer months (May through September). Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated for each 10°C increase in the 2-day average maximum temperature at the residential location. RESULTS: We included 4913 deaths in the analyses. A 10°C increase in the 2-day average maximum temperature was associated with an OR of 1.43 (95% CI 1.11-1.86) for deaths with only cocaine toxicity recorded (n = 561), an OR of 1.15 (95% CI 0.99-1.33) for deaths with opioids only (n = 1682) and an OR of 1.11 (95% CI 0.60-2.04) for deaths with amphetamines only (n = 133). There were also elevated effects when toxicity from multiple drugs was recorded. Sensitivity analyses showed differences in the ORs by sex, by climatic region, and when the location of death was used instead of the location of residence. INTERPRETATION: Increasing temperatures were associated with higher odds of death due to drug toxicity, especially for cocaine alone and combined with other drugs. Targeted interventions are necessary to prevent death associated with toxic drug use during hot weather.


Subject(s)
Cocaine , Drug-Related Side Effects and Adverse Reactions , Humans , Analgesics, Opioid/toxicity , British Columbia/epidemiology , Cocaine/toxicity , Cross-Over Studies , Temperature
12.
JAMA Netw Open ; 6(6): e2314925, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37294571

ABSTRACT

Importance: In 2021, more than 80 000 US residents died from an opioid overdose. Public health intervention initiatives, such as the Helping to End Addiction Long-term (HEALing) Communities Study (HCS), are being launched with the goal of reducing opioid-related overdose deaths (OODs). Objective: To estimate the change in the projected number of OODs under different scenarios of the duration of sustainment of interventions, compared with the status quo. Design, Setting, and Participants: This decision analytical model simulated the opioid epidemic in the 4 states participating in the HCS (ie, Kentucky, Massachusetts, New York, and Ohio) from 2020 to 2026. Participants were a simulated population transitioning from opioid misuse to opioid use disorder (OUD), overdose, treatment, and relapse. The model was calibrated using 2015 to 2020 data from the National Survey on Drug Use and Health, the US Centers for Disease Control and Prevention, and other sources for each state. The model accounts for reduced initiation of medications for OUD (MOUDs) and increased OODs during the COVID-19 pandemic. Exposure: Increasing MOUD initiation by 2- or 5-fold, improving MOUD retention to the rates achieved in clinical trial settings, increasing naloxone distribution efforts, and furthering safe opioid prescribing. An initial 2-year duration of interventions was simulated, with potential sustainment for up to 3 additional years. Main Outcomes and Measures: Projected reduction in number of OODs under different combinations and durations of sustainment of interventions. Results: Compared with the status quo, the estimated annual reduction in OODs at the end of the second year of interventions was 13% to 17% in Kentucky, 17% to 27% in Massachusetts, 15% to 22% in New York, and 15% to 22% in Ohio. Sustaining all interventions for an additional 3 years was estimated to reduce the annual number of OODs at the end of the fifth year by 18% to 27% in Kentucky, 28% to 46% in Massachusetts, 22% to 34% in New York, and 25% to 41% in Ohio. The longer the interventions were sustained, the better the outcomes; however, these positive gains would be washed out if interventions were not sustained. Conclusions and Relevance: In this decision analytical model study of the opioid epidemic in 4 US states, sustained implementation of interventions, including increased delivery of MOUDs and naloxone supply, was found to be needed to reduce OODs and prevent deaths from increasing again.


Subject(s)
COVID-19 , Drug Overdose , Opiate Overdose , Opioid-Related Disorders , Humans , Analgesics, Opioid/toxicity , COVID-19/epidemiology , Drug Overdose/epidemiology , Drug Overdose/prevention & control , Drug Overdose/drug therapy , Naloxone/therapeutic use , Opiate Overdose/epidemiology , Opioid-Related Disorders/epidemiology , Opioid-Related Disorders/prevention & control , Opioid-Related Disorders/drug therapy , Pandemics , Practice Patterns, Physicians' , Public Health
13.
Toxicol Lett ; 382: 41-46, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37245850

ABSTRACT

Isolated organ models are a versatile tool for pharmacological and toxicological research. Small bowel has been used to assess the inhibition of smooth muscle contraction by opioids. In the present study, we set out to establish a pharmacologically stimulated rat bowel model. The effects of carfentanil, remifentanil and the new synthetic opioid U-48800 and their respective antagonists naloxone, nalmefene and naltrexone were studied in a small bowel model in rats. The IC50 values of the tested opioids were as follows: carfentanil (IC50 = 0.02 µmol/L, CI 0.02-0.03 µmol/L) ≫ remifentanil (IC50 = 0.51 µmol/L, CI 0.40-0.66 µmol/L) ≫ U-48800 (IC50 = 1.36 µmol/L, CI 1.20-1.54 µmol/L). The administration of the opioid receptor antagonists naloxone, naltrexone and nalmefene led to progressive, parallel rightward shifts of the dose-response curves. Naltrexone was most potent in antagonizing the effects of U-48800, whereas naltrexone and nalmefene were most effective in antagonizing the effects of carfentanil. In summary, the current model seems to be a robust tool to study opioid effects in a small bowel model without the necessity of using electrical stimulation.


Subject(s)
Analgesics, Opioid , Naltrexone , Rats , Animals , Analgesics, Opioid/toxicity , Naltrexone/pharmacology , Remifentanil , Narcotic Antagonists/pharmacology , Naloxone/pharmacology , Receptors, Opioid , Muscle, Smooth
14.
Reprod Toxicol ; 119: 108403, 2023 08.
Article in English | MEDLINE | ID: mdl-37196679

ABSTRACT

Opioids remain the most powerful analgesics for moderate to severe pain but their clinical use, misuse and abuse has been an alarming medical problem, especially for those users at child-bearing age. Mu-opioid receptor (MOR) biased agonists have been suggested as superior alternatives with better therapeutic ratios. We recently discovered and characterized a novel MOR biased agonist, LPM3480392, which demonstrates robust analgesic effect, favorable pharmacokinetic performance, and mild respiratory suppression in vivo. To understand the safety profile of LPM3480392 on the reproductive system and embryonic development, this study evaluated the effects of LPM3480392 on the fertility and early embryonic development, embryo-fetal development, and pre- and postnatal development in rats. Results showed that LPM3480392 had mild effects on parental male and female animals, accompanied by subtle early embryonic loss and delayed ossification of fetal development during organogenesis period. In addition, although minor effects were found on normal developmental milestones and behaviors in the pups, there was no evidence of malformed effect. In conclusion, these results suggest that LPM3480392 has a favorable safety profile with only minor effects on the reproductive and developmental outcomes in animals, which support the development of LPM3480392 as a novel analgesic.


Subject(s)
Analgesics, Opioid , Receptors, Opioid, mu , Pregnancy , Rats , Male , Animals , Female , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/therapeutic use , Analgesics, Opioid/toxicity , Analgesics/therapeutic use , Pain/drug therapy , Reproduction
15.
Health Promot Chronic Dis Prev Can ; 43(2): 51-61, 2023 Feb.
Article in English, French | MEDLINE | ID: mdl-36794822

ABSTRACT

INTRODUCTION: Substance-related acute toxicity deaths continue to be a serious public health concern in Canada. This study explored coroner and medical examiner (C/ME)perspectives of contextual risk factors and characteristics associated with deaths from acute toxic effects of opioids and other illegal substances in Canada. METHODS: In-depth interviews were conducted with 36 C/MEs in eight provinces and territories between December 2017 and February 2018. Interview audio recordings were transcribed and coded for key themes using thematic analysis. RESULTS: Four themes described the perspectives of C/MEs: (1) Who is experiencing a substance-related acute toxicity death?; (2) Who is present at the time of death?; (3) Why are people experiencing an acute toxicity death?; (4) What are the social contextual factors contributing to deaths? Deaths crossed demographic and socioeconomic groups and included people who used substances on occasion, chronically, or for the first time. Using alone presents risk, while using in the presence of others can also contribute to risk if others are unable or unprepared to respond. People who died from a substance-related acute toxicity often had one or more contextual risk factors: contaminated substances, history of substance use, history of chronic pain and decreased tolerance. Social contextual factors contributing to deaths included diagnosed or undiagnosed mental illness, stigma, lack of support and lack of follow-up from health care. CONCLUSION: Findings revealed contextual factors and characteristics associated with substance-related acute toxicity deaths that contribute to a better understanding of the circumstances surrounding these deaths across Canada and that can inform targeted prevention and intervention efforts.


Subject(s)
Chronic Pain , Substance-Related Disorders , Humans , Analgesics, Opioid/toxicity , Coroners and Medical Examiners , Substance-Related Disorders/epidemiology , Risk Factors
16.
Addiction ; 118(7): 1381-1386, 2023 07.
Article in English | MEDLINE | ID: mdl-36710470

ABSTRACT

AIMS: To create a novel emergency medical service (EMS) opioid-related incident (ORI) tiering framework to describe more accurately the opioid epidemic in Massachusetts. By classifying the data, we could more accurately detail differing trends among the new categories. DESIGN: Free-text fields of Massachusetts EMS reports, from 2013 through 2020, were analyzed to identify ORIs and then categorized into a five-tier severity cascade based on symptom presentation: 'dead on arrival,' 'acute overdose,' 'intoxication,' 'withdrawal' and 'other ORI.' As a validation of the new classification, an emergency medical technician, paramedic and emergency medical physician reviewed clinical reports and assigned a severity category to 100 randomly selected cases. The algorithm then assessed the same 100 cases to determine if it could accurately identify the severity category for each case. FINDINGS: Validation of the algorithm by clinical review indicated a substantial level of agreement between the algorithm and the reviewers. Over half of all ORIs were acute overdose (55%), 21% were intoxication, 20% were other ORI, 3% were withdrawal, and 1% were dead on arrival. Overall ORIs decreased in 2020, but the number of 'dead on arrival' increased 32% from 2019. Administration of naloxone also differed between the categories, with 95% of acute overdose and 29% of intoxication receiving naloxone. CONCLUSIONS: This novel categorization of emergency medical service opioid-related incidents in Massachusetts, United States, reveals new trend details and strains on the emergency medical service system. Using these categories also improves dataset linkage within the state and interstate rate comparisons.


Subject(s)
Drug Overdose , Emergency Medical Services , Opioid-Related Disorders , Humans , Analgesics, Opioid/toxicity , Drug Overdose/epidemiology , Massachusetts , Naloxone/therapeutic use , Narcotic Antagonists/therapeutic use , Opioid-Related Disorders/drug therapy , United States
17.
Naunyn Schmiedebergs Arch Pharmacol ; 396(1): 149-159, 2023 01.
Article in English | MEDLINE | ID: mdl-36269341

ABSTRACT

New synthetic opioids continue to emerge in the illicit market, and among them, fentanyl analogues pose a serious threat to the public health with their abuse and trafficking. We investigated the toxicity of fentanyl analogues on the liver and kidneys mediated by the µ-opioid receptor (MOR). Our study focused on 4-fluoro-isobutyrylfentanyl (4F-iBF), which is classified as a "narcotic" in Japan; structurally similar analogues 4-chloro-isobutyrylfentanyl (4Cl-iBF) and isobutyrylfentanyl (iBF) were also investigated. Rats that were intraperitoneally administered 4F-iBF (5 mg/kg (12.3 µmol/kg)) or iBF (12.3 µmol/kg) displayed hepatic and renal ischemic-like damage, but 4Cl-iBF (12.3 µmol/kg) did milder renal damage only. We found that the agonist activity of 4F-iBF, at MORs was approximately 7.2 times that of 4Cl-iBF, and that pretreatment with MOR antagonist naltrexone (0.8 mg/kg) alleviated liver and kidney injuries caused by 4F-iBF. These results suggested that 4F-iBF might cause ischemic damage to the liver and kidneys, induced by respiratory depression mediated by MORs. Furthermore, to elucidate the metabolism of fentanyl analogues, we investigated the change over time in the amount of 4F-iBF, 4Cl-iBF, iBF (6.15 µmol/kg, respectively), and their respective metabolites in serum after intraperitoneal administration to rats. The results showed that in 24-h post-dose serum, 4Cl-iBF and iBF were substantially eliminated while 4F-iBF remained at about 30% of the maximum level, and each of the N-dephenylethylated metabolites of 4F-iBF, 4Cl-iBF, and iBF was detected in 2-h post-dose serum. The results from this study revealed information on the hepatic and renal toxicities and metabolism related to fentanyl analogues.


Subject(s)
Analgesics, Opioid , Fentanyl , Rats , Animals , Fentanyl/toxicity , Analgesics, Opioid/toxicity , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Liver
18.
Arch Toxicol ; 97(2): 359-375, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36344690

ABSTRACT

Insights into the pathophysiology of many non-immune-mediated drug reactions referred to as toxicities, sensitivities, intolerances, or pseudoallergies have resulted from research identifying the mastocyte-related G-protein-coupled receptor (GPCR) member X2 (MRGPRX2), a human mast cell receptor mediating adverse reactions without the involvement of antibody priming. Opioid-induced degranulation of mast cells, particularly morphine, provoking release of histamine and other preformed mediators and causing hemodynamic and cutaneous changes seen as flushing, headache and wheal and flare reactions in the skin, is an example of results of MRGPRX2 activation. Opioids including morphine, codeine, dextromethorphan and metazocine as well as endogenous prodynorphin opioid peptides activate MRGPRX2 at concentrations causing mast cell degranulation. Unlike the canonical opioid receptors, MRGPRX2 shows stereochemical recognition preference for dextro rather than levo opioid enantiomers. Opioid analgesic drugs (OADs) display a range of histamine-releasing potencies from the strong releaser morphine to doubtful releasers like hydromorphone and the non-releaser fentanyl. Whether there is a correlation between histamine release by individual OADs, MRGPRX2 activation, and presence or absence of adverse cutaneous effects is not known. To investigate the question, ongoing research with recently pursued methodologies and strategies employing basophil and mast cell tests resulting from MRGPRX2 insights should help to elucidate whether or not an opioid's histamine-releasing potency, and its property of provoking an adverse reaction, are each a reflection of its activation of MRGPRX2.


Subject(s)
Analgesics, Opioid , Hypersensitivity , Humans , Analgesics, Opioid/toxicity , Histamine/pharmacology , Receptors, Neuropeptide , Receptors, G-Protein-Coupled , Morphine Derivatives/pharmacology , Mast Cells , Cell Degranulation , Nerve Tissue Proteins
19.
Br J Pharmacol ; 180(7): 829-842, 2023 04.
Article in English | MEDLINE | ID: mdl-34855983

ABSTRACT

BACKGROUND AND PURPOSE: Opioids and benzodiazepines are frequently combined in medical as well as in non-medical contexts. At high doses, such combinations often result in serious health complications attributed to pharmacodynamics interactions. Here, we investigate the contribution of the metabolic interactions between oxycodone, diazepam and diclazepam (a designer benzodiazepine) in abuse/overdose conditions through ex vivo, in vivo and in silico approaches. EXPERIMENTAL APPROACH: A preparation of pooled human liver microsomes was used to study oxycodone metabolism in the presence or absence of diazepam or diclazepam. In mice, diazepam or diclazepam was concomitantly administered with oxycodone to mimic acute intoxication. Diclazepam was introduced on Day 10 in mice continuously infused with oxycodone for 15 days to mimic chronic intoxication. In silico modelling was used to study the molecular interactions of the three drugs with CYP3A4 and 2D6. KEY RESULTS: In mice, in acute conditions, both diazepam and diclazepam inhibited the metabolism of oxycodone. In chronic conditions and at pharmacologically equivalent doses, diclazepam drastically enhanced the production of oxymorphone. In silico, the affinity of benzodiazepines was higher than oxycodone for CYP3A4, inhibiting oxycodone metabolism through CYP3A4. Oxycodone metabolism is likely to be diverted towards CYP2D6. CONCLUSION AND IMPLICATIONS: Acute doses of diazepam or diclazepam result in the accumulation of oxycodone, whereas chronic administration induces the accumulation of oxymorphone, the toxic metabolite. This suggests that overdoses of opioids in the presence of benzodiazepines are partly due to metabolic interactions, which in turn explain the patterns of toxicity dependent on usage. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Subject(s)
Drug Overdose , Oxycodone , Humans , Animals , Mice , Oxymorphone , Cytochrome P-450 CYP3A , Benzodiazepines/toxicity , Diazepam/pharmacology , Analgesics, Opioid/toxicity , Models, Animal
20.
Neurotox Res ; 40(5): 1304-1321, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35829998

ABSTRACT

In spite of the increasing epidemic of pharmaceutical opioids (codeine and tramadol) misuse and abuse among the adolescents, little is known about the neurotoxic consequences of the widespread practice of tramadol and codeine abuse involving increasing multiple doses across days, referred to as stacking and boosting. Hence, in this study, we replicated stacking and boosting doses of tramadol, codeine alone, or in combination on spontaneous motor activity and cognitive function in adolescent mice and adduced a plausible mechanism of possible neurotoxicity. Ninety-six adolescent mice were randomly distributed into 4 groups (n = 24 per group) and treated thrice daily for 9 days with vehicle, tramadol (20, 40, or 80 mg/kg), codeine (40, 80, or 160 mg/kg), or their combinations. Exposure of mice to tramadol induced hyperactivity and stereotypic behavior while codeine exposure caused hypoactivity and nootropic effect but tramadol-codeine cocktail led to marked reduction in spontaneous motor activity and cognitive function. In addition, tramadol, codeine, and their cocktail caused marked induction of nitroso-oxidative stress and inhibition of mitochondrial complex I activity in the prefrontal cortex (PFC) and midbrain (MB). Real-time PCR expression profiling of genes encoding neurotoxicity (RT) showed that tramadol exposure upregulate 57 and downregulate 16 neurotoxic genes, codeine upregulate 45 and downregulate 25 neurotoxic genes while tramadol-codeine cocktail upregulate 52 and downregulate 20 neurotoxic genes in the PFC. Findings from this study demonstrate that the exposure of adolescents mice to multiple and increasing doses of tramadol, codeine, or their cocktail lead to spontaneous motor coordination deficits indicative of neurotoxicity through induction of oxidative stress, inhibition of mitochondrial complex I activity and upregulation of neurotoxicity encoding genes in mice.


Subject(s)
Nootropic Agents , Tramadol , Analgesics, Opioid/therapeutic use , Analgesics, Opioid/toxicity , Animals , Codeine/therapeutic use , Codeine/toxicity , Mice , Mitochondria , Oxidative Stress , Pharmaceutical Preparations , Tramadol/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL