Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.138
1.
Science ; 384(6701): eadk5382, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38870290

Polycystic ovary syndrome (PCOS), a prevalent reproductive disorder in women of reproductive age, features androgen excess, ovulatory dysfunction, and polycystic ovaries. Despite its high prevalence, specific pharmacologic intervention for PCOS is challenging. In this study, we identified artemisinins as anti-PCOS agents. Our finding demonstrated the efficacy of artemisinin derivatives in alleviating PCOS symptoms in both rodent models and human patients, curbing hyperandrogenemia through suppression of ovarian androgen synthesis. Artemisinins promoted cytochrome P450 family 11 subfamily A member 1 (CYP11A1) protein degradation to block androgen overproduction. Mechanistically, artemisinins directly targeted lon peptidase 1 (LONP1), enhanced LONP1-CYP11A1 interaction, and facilitated LONP1-catalyzed CYP11A1 degradation. Overexpression of LONP1 replicated the androgen-lowering effect of artemisinins. Our data suggest that artemisinin application is a promising approach for treating PCOS and highlight the crucial role of the LONP1-CYP11A1 interaction in controlling hyperandrogenism and PCOS occurrence.


Artemisinins , Cholesterol Side-Chain Cleavage Enzyme , Polycystic Ovary Syndrome , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Female , Artemisinins/therapeutic use , Artemisinins/pharmacology , Humans , Animals , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Proteolysis , Hyperandrogenism/drug therapy , Hyperandrogenism/metabolism , Mice , Androgens/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Rats , Disease Models, Animal , Ovary/drug effects , Ovary/metabolism
3.
Sci Signal ; 17(840): eadc9142, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38861615

Neuroendocrine prostate cancer (PCa) (NEPC), an aggressive subtype that is associated with poor prognosis, may arise after androgen deprivation therapy (ADT). We investigated the molecular mechanisms by which ADT induces neuroendocrine differentiation in advanced PCa. We found that transmembrane protein 1 (MCTP1), which has putative Ca2+ sensing function and multiple Ca2+-binding C2 domains, was abundant in samples from patients with advanced PCa. MCTP1 was associated with the expression of the EMT-associated transcription factors ZBTB46, FOXA2, and HIF1A. The increased abundance of MCTP1 promoted PC3 prostate cancer cell migration and neuroendocrine differentiation and was associated with SNAI1-dependent EMT in C4-2 PCa cells after ADT. ZBTB46 interacted with FOXA2 and HIF1A and increased the abundance of MCTP1 in a hypoxia-dependent manner. MCTP1 stimulated Ca2+ signaling and AKT activation to promote EMT and neuroendocrine differentiation by increasing the SNAI1-dependent expression of EMT and neuroendocrine markers, effects that were blocked by knockdown of MCTP1. These data suggest an oncogenic role for MCTP1 in the maintenance of a rare and aggressive prostate cancer subtype through its response to Ca2+ and suggest its potential as a therapeutic target.


Cell Differentiation , Epithelial-Mesenchymal Transition , Monocarboxylic Acid Transporters , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Epithelial-Mesenchymal Transition/drug effects , Cell Differentiation/drug effects , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Gene Expression Regulation, Neoplastic , Calcium Signaling/drug effects , Androgens/metabolism , Androgens/pharmacology , Neuroendocrine Cells/metabolism , Neuroendocrine Cells/pathology , Animals , Cell Movement/drug effects , PC-3 Cells , Symporters
4.
Talanta ; 275: 126174, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38705021

To analyze a complex sample for endocrine activity, different tests must be performed to clarify androgen/estrogen agonism, antagonism, cytotoxicity, anti-cytotoxicity, and corresponding false-positive reactions. This means a large amount of work. Therefore, a six-fold planar multiplex bioassay concept was developed to evaluate up to the mentioned six endpoints or mechanisms simultaneously in the same sample analysis. Separation of active constituents from interfering matrix via high-performance thin-layer chromatography and effect differentiation via four vertical stripes (of agonists and end-products of the respective enzyme-substrate reaction) applied along each separated sample track were key to success. First, duplex endocrine bioassay versions were established. For the androgen/anti-androgen bioassay applied via piezoelectric spraying, the mean limit of biological detection of bisphenol A was 14 ng/band and its mean half maximal inhibitory concentration IC50 was 116 ng/band. Applied to trace analysis of six migrate samples from food packaging materials, 19 compound zones with agonistic or antagonistic estrogen/androgen activities were detected, with up to seven active compound zones within one migrate. For the first time, the S9 metabolism of endocrine effective compounds was studied on the same surface and revealed partial deactivation. Coupled to high-resolution mass spectrometry, molecular formulas were tentatively assigned to compounds, known to be present in packaging materials or endocrine active or previously unknown. Finally, the detection of cytotoxicity/anti-cytotoxicity and false-positives was integrated into the duplex androgen/anti-androgen bioassay. The resulting six-fold multiplex planar bioassay was evaluated with positive control standards and successfully applied to one migrate sample. The streamlined stripe concept for multiplex planar bioassays made it possible to assign different mechanisms to individual active compounds in a complex sample. The concept is generic and can be transferred to other assays.


Biological Assay , Biological Assay/methods , Humans , Endocrine Disruptors/analysis , Endocrine Disruptors/pharmacology , False Positive Reactions , Phenols/analysis , Phenols/chemistry , Phenols/pharmacology , Benzhydryl Compounds/analysis , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/chemistry , Androgens/analysis , Androgens/metabolism , Androgen Antagonists/analysis , Androgen Antagonists/pharmacology
5.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732080

Endothelial progenitor cells (EPCs) play a critical role in cardiovascular regeneration. Enhancement of their native properties would be highly beneficial to ensuring the proper functioning of the cardiovascular system. As androgens have a positive effect on the cardiovascular system, we hypothesized that dihydrotestosterone (DHT) could also influence EPC-mediated repair processes. To evaluate this hypothesis, we investigated the effects of DHT on cultured human EPCs' proliferation, viability, morphology, migration, angiogenesis, gene and protein expression, and ability to integrate into cardiac tissue. The results showed that DHT at different concentrations had no cytotoxic effect on EPCs, significantly enhanced the cell proliferation and viability and induces fast, androgen-receptor-dependent formation of capillary-like structures. DHT treatment of EPCs regulated gene expression of androgen receptors and the genes and proteins involved in cell migration and angiogenesis. Importantly, DHT stimulation promoted EPC migration and the cells' ability to adhere and integrate into murine cardiac slices, suggesting it has a role in promoting tissue regeneration. Mass spectrometry analysis further highlighted the impact of DHT on EPCs' functioning. In conclusion, DHT increases the proliferation, migration, and androgen-receptor-dependent angiogenesis of EPCs; enhances the cells' secretion of key factors involved in angiogenesis; and significantly potentiates cellular integration into heart tissue. The data offer support for potential therapeutic applications of DHT in cardiovascular regeneration and repair processes.


Cell Movement , Cell Proliferation , Dihydrotestosterone , Endothelial Progenitor Cells , Neovascularization, Physiologic , Receptors, Androgen , Dihydrotestosterone/pharmacology , Humans , Cell Movement/drug effects , Receptors, Androgen/metabolism , Neovascularization, Physiologic/drug effects , Cell Proliferation/drug effects , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/cytology , Animals , Cells, Cultured , Mice , Cell Survival/drug effects , Androgens/pharmacology , Androgens/metabolism , Male
6.
Proc Natl Acad Sci U S A ; 121(22): e2316459121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38781215

Adult male animals typically court and attempt to mate with females, while attacking other males. Emerging evidence from mice indicates that neurons expressing the estrogen receptor ESR1 in behaviorally relevant brain regions play a central role in mediating these mutually exclusive behavioral responses to conspecifics. However, the findings in mice are unlikely to apply to vertebrates in general because, in many species other than rodents and some birds, androgens-rather than estrogens-have been implicated in male behaviors. Here, we report that male medaka (Oryzias latipes) lacking one of the two androgen receptor subtypes (Ara) are less aggressive toward other males and instead actively court them, while those lacking the other subtype (Arb) are less motivated to mate with females and conversely attack them. These findings indicate that, in male medaka, the Ara- and Arb-mediated androgen signaling pathways facilitate appropriate behavioral responses, while simultaneously suppressing inappropriate responses, to males and females, respectively. Notably, males lacking either receptor retain the ability to discriminate the sex of conspecifics, suggesting a defect in the subsequent decision-making process to mate or fight. We further show that Ara and Arb are expressed in intermingled but largely distinct populations of neurons, and stimulate the expression of different behaviorally relevant genes including galanin and vasotocin, respectively. Collectively, our results demonstrate that male teleosts make adaptive decisions to mate or fight as a result of the activation of one of two complementary androgen signaling pathways, depending on the sex of the conspecific that they encounter.


Androgens , Oryzias , Receptors, Androgen , Sexual Behavior, Animal , Signal Transduction , Animals , Male , Oryzias/metabolism , Oryzias/physiology , Sexual Behavior, Animal/physiology , Female , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Androgens/metabolism , Aggression/physiology
7.
Front Endocrinol (Lausanne) ; 15: 1343759, 2024.
Article En | MEDLINE | ID: mdl-38752176

Syndromic autism spectrum conditions (ASC), such as Klinefelter syndrome, also manifest hypogonadism. Compared to the popular Extreme Male Brain theory, the Enhanced Perceptual Functioning model explains the connection between ASC, savant traits, and giftedness more seamlessly, and their co-emergence with atypical sexual differentiation. Overexcitability of primary sensory inputs generates a relative enhancement of local to global processing of stimuli, hindering the abstraction of communication signals, in contrast to the extraordinary local information processing skills in some individuals. Weaker inhibitory function through gamma-aminobutyric acid type A (GABAA) receptors and the atypicality of synapse formation lead to this difference, and the formation of unique neural circuits that process external information. Additionally, deficiency in monitoring inner sensory information leads to alexithymia (inability to distinguish one's own emotions), which can be caused by hypoactivity of estrogen and oxytocin in the interoceptive neural circuits, comprising the anterior insular and cingulate gyri. These areas are also part of the Salience Network, which switches between the Central Executive Network for external tasks and the Default Mode Network for self-referential mind wandering. Exploring the possibility that estrogen deficiency since early development interrupts GABA shift, causing sensory processing atypicality, it helps to evaluate the co-occurrence of ASC with attention deficit hyperactivity disorder, dyslexia, and schizophrenia based on phenotypic and physiological bases. It also provides clues for understanding the common underpinnings of these neurodevelopmental disorders and gifted populations.


Androgens , Autism Spectrum Disorder , Estrogens , Humans , Androgens/deficiency , Androgens/metabolism , Estrogens/metabolism , Estrogens/deficiency , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Male , Sex Differentiation/physiology , Klinefelter Syndrome/physiopathology , Klinefelter Syndrome/metabolism , Perception/physiology , Brain/metabolism
8.
Am J Physiol Endocrinol Metab ; 326(6): E869-E887, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38775724

The adipokine chemerin contributes to exercise-induced improvements in glucose and lipid metabolism; however, the underlying mechanism remains unclear. We aimed to confirm the impact of reduced chemerin expression on exercise-induced improvement in glycolipid metabolism in male diabetic (DM) mice through exogenous chemerin administration. Furthermore, the underlying mechanism of chemerin involved in changes in muscle mitochondria function mediated by androgen/androgen receptor (AR) was explored by generating adipose-specific and global chemerin knockout (adipo-chemerin-/- and chemerin-/-) mice. DM mice were categorized into the DM, exercised DM (EDM), and EDM + chemerin supplementation groups. Adipo-chemerin-/- and chemerin-/- mice were classified in the sedentary or exercised groups and fed either a normal or high-fat diet. Exercise mice underwent a 6-wk aerobic exercise regimen. The serum testosterone and chemerin levels, glycolipid metabolism indices, mitochondrial function, and protein levels involved in mitochondrial biogenesis and dynamics were measured. Notably, exogenous chemerin reversed exercise-induced improvements in glycolipid metabolism, AR protein levels, mitochondrial biogenesis, and mitochondrial fusion in DM mice. Moreover, adipose-specific chemerin knockout improved glycolipid metabolism, enhanced exercise-induced increases in testosterone and AR levels in exercised mice, and alleviated the detrimental effects of a high-fat diet on mitochondrial morphology, biogenesis, and dynamics. Finally, similar improvements in glucose metabolism (but not lipid metabolism), mitochondrial function, and mitochondrial dynamics were observed in chemerin-/- mice. In conclusion, decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, likely through changes in androgen/AR signaling.NEW & NOTEWORTHY Decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, which is likely mediated by androgen/androgen receptor expression. This study is the first to report the regulatory mechanism of chemerin in muscle mitochondria.


Chemokines , Glucose , Lipid Metabolism , Mice, Knockout , Receptors, Androgen , Animals , Chemokines/metabolism , Male , Mice , Lipid Metabolism/physiology , Lipid Metabolism/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Glucose/metabolism , Diet, High-Fat , Diabetes Mellitus, Experimental/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Physical Conditioning, Animal/physiology , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Mitochondria/metabolism , Androgens/metabolism , Androgens/pharmacology , Muscle, Skeletal/metabolism
9.
Endocrinology ; 165(7)2024 May 27.
Article En | MEDLINE | ID: mdl-38788194

Androgen excess is a hallmark feature of polycystic ovary syndrome (PCOS), the most common form of anovulatory infertility. Clinical and preclinical evidence links developmental or chronic exposure to hyperandrogenism with programming and evoking the reproductive and metabolic traits of PCOS. While critical androgen targets remain to be determined, central GABAergic neurons are postulated to be involved. Here, we tested the hypothesis that androgen signaling in GABAergic neurons is critical in PCOS pathogenesis in 2 well-characterized hyperandrogenic mouse models of PCOS. Using cre-lox transgenics, GABA-specific androgen receptor knockout (GABARKO) mice were generated and exposed to either acute prenatal androgen excess (PNA) or chronic peripubertal androgen excess (PPA). Females were phenotyped for reproductive and metabolic features associated with each model and brains of PNA mice were assessed for elevated GABAergic input to gonadotropin-releasing hormone (GnRH) neurons. Reproductive and metabolic dysfunction induced by PPA, including acyclicity, absence of corpora lutea, obesity, adipocyte hypertrophy, and impaired glucose homeostasis, was not different between GABARKO and wild-type (WT) mice. In PNA mice, acyclicity remained in GABARKO mice while ovarian morphology and luteinizing hormone secretion was not significantly impacted by PNA or genotype. However, PNA predictably increased the density of putative GABAergic synapses to GnRH neurons in adult WT mice, and this PNA-induced plasticity was absent in GABARKO mice. Together, these findings suggest that while direct androgen signaling in GABA neurons is largely not required for the development of PCOS-like traits in androgenized models of PCOS, developmental programming of GnRH neuron innervation is dependent upon androgen signaling in GABA neurons.


Disease Models, Animal , GABAergic Neurons , Hyperandrogenism , Mice, Knockout , Polycystic Ovary Syndrome , Receptors, Androgen , Animals , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Female , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Mice , GABAergic Neurons/metabolism , Hyperandrogenism/metabolism , Hyperandrogenism/genetics , Ovary/metabolism , Androgens/metabolism , Pregnancy , Gonadotropin-Releasing Hormone/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/genetics
10.
OMICS ; 28(5): 246-255, 2024 May.
Article En | MEDLINE | ID: mdl-38722704

Prostate cancer is a major planetary health challenge wherein new ways of thinking drug discovery and therapeutics innovation are much needed. Numerous studies have shown that autophagy inhibition holds a significant role as an adjunctive intervention in prostate cancer. Hydroxychloroquine (HCQ) has gained considerable attention due to its established role as an autophagy inhibitor across diverse cancer types, but its proteomics landscape and systems biology in prostate cancer are currently lacking in the literature. This study reports the proteomic responses to HCQ in prostate cancer cells, namely, androgen-dependent LNCaP and androgen-independent PC3 cells. Differentially expressed proteins and proteome in HCQ-treated cells were determined by label-free quantification with nano-high-performance liquid chromatography and tandem mass spectrometry (nHPLC-MS/MS), and harnessing bioinformatics tools. In PC3 cells, there was a marked shift toward metabolic reprogramming, highlighted by an upregulation of mitochondrial proteins in oxidative phosphorylation and tricarboxylic acid cycle, suggesting an adaptive mechanism to maintain energy production under therapeutic stress. In contrast, LNCaP cells prioritized proteostasis and cell cycle regulation, indicating a more conservative adaptation strategy. To the best of our knowledge, this study is the first to demonstrate the differential responses of prostate cancer cells to autophagy inhibition by HCQ, suggesting that a combination therapy approach, targeting distinct pathways in androgen-independent and androgen-dependent cells, could represent a promising treatment strategy. Moreover, the varied proteomic responses observed between these cell lines underscore the importance of personalized medicine in cancer therapy. Future translational and clinical research on HCQ and prostate cancer are called for.


Autophagy , Hydroxychloroquine , Prostatic Neoplasms , Proteomics , Male , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Autophagy/drug effects , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Proteomics/methods , Cell Line, Tumor , Androgens/metabolism , Proteome/metabolism , Tandem Mass Spectrometry
11.
Am J Reprod Immunol ; 91(5): e13854, 2024 May.
Article En | MEDLINE | ID: mdl-38716832

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disorder characterized by oligo-anovulation, hyperandrogenism, and polycystic ovaries, with hyperandrogenism being the most prominent feature of PCOS patients. However, whether excessive androgens also exist in the ovarian microenvironment of patients with PCOS, and their modulatory role on ovarian immune homeostasis and ovarian function, is not clear. METHODS: Follicular fluid samples from patients participating in their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment were collected. Androgen concentration of follicular fluid was assayed by chemiluminescence, and the macrophage M1:M2 ratio was detected by flow cytometry. In an in vitro model, we examined the regulatory effects of different concentrations of androgen on macrophage differentiation and glucose metabolism levels using qRT-PCR, Simple Western and multi-factor flow cytometry assay. In a co-culture model, we assessed the effect of a hyperandrogenic environment in the presence or absence of macrophages on the function of granulosa cells using qRT-PCR, Simple Western, EdU assay, cell cycle assay, and multi-factor flow cytometry assay. RESULTS: The results showed that a significantly higher androgen level and M1:M2 ratio in the follicular fluid of PCOS patients with hyperandrogenism. The hyperandrogenic environment promoted the expression of pro-inflammatory and glycolysis-related molecules and inhibited the expression of anti-inflammatory and oxidative phosphorylation-related molecules in macrophages. In the presence of macrophages, a hyperandrogenic environment significantly downregulated the function of granulosa cells. CONCLUSION: There is a hyperandrogenic microenvironment in the ovary of PCOS patients with hyperandrogenism. Hyperandrogenic microenvironment can promote the activation of ovarian macrophages to M1, which may be associated with the reprogramming of macrophage glucose metabolism. The increased secretion of pro-inflammatory cytokines by macrophages in the hyperandrogenic microenvironment would impair the normal function of granulosa cells and interfere with normal ovarian follicle growth and development.


Androgens , Follicular Fluid , Granulosa Cells , Hyperandrogenism , Macrophages , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/immunology , Female , Granulosa Cells/metabolism , Macrophages/immunology , Macrophages/metabolism , Hyperandrogenism/metabolism , Adult , Follicular Fluid/metabolism , Androgens/metabolism , Cells, Cultured , Macrophage Activation , Cellular Microenvironment , Coculture Techniques , Cell Differentiation
13.
FASEB J ; 38(9): e23650, 2024 May 15.
Article En | MEDLINE | ID: mdl-38696238

The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF-cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X-zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17ß-Hsd3 in the adrenal cortex of CREBZF-cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF-cKO mice showed higher anxiety-like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.


Adrenal Cortex , Leydig Cells , Mice, Knockout , Animals , Male , Mice , Leydig Cells/metabolism , Adrenal Cortex/metabolism , Androgens/metabolism , Testosterone/blood , Testosterone/metabolism , Behavior, Animal , Mice, Inbred C57BL
14.
Proc Biol Sci ; 291(2022): 20240371, 2024 May.
Article En | MEDLINE | ID: mdl-38714210

Naked mole-rats (Heterocephalus glaber) live in large colonies with one breeding female (queen), one to three breeding males (BMs) and the remainder are non-reproductive subordinates. The animals have a linear dominance rank with the breeders at the top of the hierarchy. We investigated how dominance rank in naked mole-rats differs with exploration (the propensity to explore a novel environment) and related endocrine markers. Exploration behaviour, faecal progestagen metabolite (fPM), faecal glucocorticoid metabolite (fGCM), faecal androgen metabolite (fAM) and plasma prolactin concentrations were quantified in breeding, high-, middle- and low-ranked females and males from five naked mole-rat colonies. There were no significant differences between the dominance rank and exploration behaviour. Interestingly, the queens and high-ranking females had higher fGCM and fAM concentrations compared with middle- and low-ranked females. The queens had significantly higher fPM concentrations than all other ranked females, since they are responsible for procreation. In the males, the BMs had higher fGCM concentrations compared with high- and low-ranked males. In addition, BMs and middle-ranking males had overall higher prolactin levels than all other ranked males, which could be linked to cooperative care. Overall, the results suggest that physiological reproductive suppression is linked to high dominance rank.


Androgens , Feces , Mole Rats , Prolactin , Social Dominance , Animals , Male , Female , Prolactin/metabolism , Prolactin/blood , Feces/chemistry , Mole Rats/physiology , Androgens/metabolism , Androgens/blood , Glucocorticoids/metabolism , Exploratory Behavior , Progestins/metabolism
15.
J Neurosci ; 44(23)2024 Jun 05.
Article En | MEDLINE | ID: mdl-38658166

Aggression is a crucial behavior that impacts access to limited resources in different environmental contexts. Androgens synthesized by the gonads promote aggression during the breeding season. However, aggression can be expressed during the non-breeding season, despite low androgen synthesis by the gonads. The brain can also synthesize steroids ("neurosteroids"), including androgens, which might promote aggression during the non-breeding season. Male song sparrows, Melospiza melodia, are territorial year-round and allow the study of seasonal changes in the steroid modulation of aggression. Here, we quantified steroids following a simulated territorial intrusion (STI) for 10 min in wild adult male song sparrows during the breeding and non-breeding seasons. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we examined 11 steroids: pregnenolone, progesterone, corticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17ß-estradiol, 17α-estradiol, estriol, and estrone. Steroids were measured in blood and 10 microdissected brain regions that regulate social behavior. In both seasons, STI increased corticosterone in the blood and brain. In the breeding season, STI had no rapid effects on androgens or estrogens. Intriguingly, in the non-breeding season, STI increased testosterone and androstenedione in several behaviorally relevant regions, but not in the blood, where androgens remained non-detectable. Also in the non-breeding season, STI increased progesterone in the blood and specific brain regions. Overall, rapid socially modulated changes in brain steroid levels are more prominent during the non-breeding season. Brain steroid levels vary with season and social context in a region-specific manner and suggest a role for neuroandrogens in aggression during the non-breeding season.


Aggression , Androgens , Brain , Seasons , Sparrows , Territoriality , Animals , Male , Aggression/physiology , Androgens/metabolism , Brain/metabolism , Sparrows/physiology , Sparrows/metabolism , Songbirds/metabolism
16.
J Steroid Biochem Mol Biol ; 241: 106516, 2024 Jul.
Article En | MEDLINE | ID: mdl-38582131

Epitestosterone is a stereoisomer of the active androgen testosterone and its circulating concentrations are similar to those of testosterone in women and children. However, its biological function and pathways of metabolism remain unknown. The structural similarity to testosterone suggests a potential function in the modulation of androgen receptor signalling. It is well established that the conversion of testosterone to 5α-dihydrotestosterone enhances local androgen receptor signalling. In this study, we show that epitestosterone is metabolized to 5α-dihydroepitestosterone by both human steroid 5α-reductase isoforms, SRD5A1 and SRD5A2. Using two different variations of a reporter assay for transactivation of the human androgen receptor, we show that epitestosterone is a partial AR agonist and that the 5α-reduction of epitestosterone increases its androgenic activity. In line with this, we show that 5α-reduction of epitestosterone reduces its ability to antagonize 5α-dihydrotestosterone-induced androgen receptor transactivation. In conclusion, we provide evidence that steroid 5α-reductases regulate the modulatory effect of epitestosterone on androgen receptor signalling.


3-Oxo-5-alpha-Steroid 4-Dehydrogenase , Epitestosterone , Membrane Proteins , Receptors, Androgen , Transcriptional Activation , Humans , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Transcriptional Activation/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Epitestosterone/metabolism , Dihydrotestosterone/metabolism , Androgens/metabolism , Oxidation-Reduction
17.
Science ; 384(6692): eadk6200, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38574174

Males and females exhibit profound differences in immune responses and disease susceptibility. However, the factors responsible for sex differences in tissue immunity remain poorly understood. Here, we uncovered a dominant role for type 2 innate lymphoid cells (ILC2s) in shaping sexual immune dimorphism within the skin. Mechanistically, negative regulation of ILC2s by androgens leads to a reduction in dendritic cell accumulation and activation in males, along with reduced tissue immunity. Collectively, our results reveal a role for the androgen-ILC2-dendritic cell axis in controlling sexual immune dimorphism. Moreover, this work proposes that tissue immune set points are defined by the dual action of sex hormones and the microbiota, with sex hormones controlling the strength of local immunity and microbiota calibrating its tone.


Androgens , Dendritic Cells , Immunity, Innate , Lymphocytes , Sex Characteristics , Skin , Female , Male , Androgens/metabolism , Dendritic Cells/immunology , Gonadal Steroid Hormones/metabolism , Lymphocytes/immunology , Skin/immunology , Animals , Mice , Mice, Inbred C57BL , Microbiota
18.
J Endocrinol ; 261(3)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38579776

Androgens can modulate immune cell function and may contribute to differences in the prevalence and severity of common inflammatory conditions. Although most immune cells are androgen targets, our understanding of how changes in androgen bioavailability can affect immune responses is incomplete. Androgens alter immune cell composition, phenotype, and activation by modulating the expression and secretion of inflammatory mediators or by altering the development and maturation of immune cell precursors. Androgens are generally associated with having suppressive effects on the immune system, but their impacts are cell and tissue context-dependent and can be highly nuanced even within immune cell subsets. In response to androgens, innate immune cells such as neutrophils, monocytes, and macrophages increase the production of the anti-inflammatory cytokine IL-10 and decrease nitric oxide production. Androgens promote the differentiation of T cell subsets and reduce the production of inflammatory mediators, such as IFNG, IL-4 and IL-5. Additionally, androgens/androgen receptor can promote the maturation of B cells. Thus, androgens can be considered as immunomodulatory agents, but further work is required to understand the precise molecular pathways that are regulated at the intersection between endocrine and inflammatory signals. This narrative review focusses on summarising our current understanding of how androgens can alter immune cell function and how this might affect inflammatory responses in health and disease.


Androgens , Humans , Androgens/metabolism , Androgens/physiology , Animals , Inflammation/immunology , Inflammation/metabolism , Immune System/metabolism , Immune System/physiology , Receptors, Androgen/metabolism
19.
Nature ; 629(8010): 193-200, 2024 May.
Article En | MEDLINE | ID: mdl-38600383

Sex differences in mammalian complex traits are prevalent and are intimately associated with androgens1-7. However, a molecular and cellular profile of sex differences and their modulation by androgens is still lacking. Here we constructed a high-dimensional single-cell transcriptomic atlas comprising over 2.3 million cells from 17 tissues in Mus musculus and explored the effects of sex and androgens on the molecular programs and cellular populations. In particular, we found that sex-biased immune gene expression and immune cell populations, such as group 2 innate lymphoid cells, were modulated by androgens. Integration with the UK Biobank dataset revealed potential cellular targets and risk gene enrichment in antigen presentation for sex-biased diseases. This study lays the groundwork for understanding the sex differences orchestrated by androgens and provides important evidence for targeting the androgen pathway as a broad therapeutic strategy for sex-biased diseases.


Androgens , Cells , Sex Characteristics , Single-Cell Analysis , Transcriptome , Animals , Female , Humans , Male , Mice , Androgens/metabolism , Androgens/pharmacology , Antigen Presentation/drug effects , Antigen Presentation/genetics , Immunity, Innate , Lymphocytes/metabolism , Lymphocytes/cytology , Lymphocytes/immunology , Lymphocytes/drug effects , Mice, Inbred C57BL , Transcriptome/drug effects , Transcriptome/genetics , UK Biobank , Cells/drug effects , Cells/immunology , Cells/metabolism
20.
Mol Reprod Dev ; 91(3): e23739, 2024 Mar.
Article En | MEDLINE | ID: mdl-38480999

During male fetal development, testosterone plays an essential role in the differentiation and maturation of the male reproductive system. Deficient fetal testosterone production can result in variations of sex differentiation that may cause infertility and even increased tumor incidence later in life. Fetal Leydig cells in the fetal testis are the major androgen source in mammals. Although fetal and adult Leydig cells are similar in their functions, they are two distinct cell types, and therefore, the knowledge of adult Leydig cells cannot be directly applied to understanding fetal Leydig cells. This review summarizes our current knowledge of fetal Leydig cells regarding their cell biology, developmental biology, and androgen production regulation in rodents and human. Fetal Leydig cells are present in basement membrane-enclosed clusters in between testis cords. They originate from the mesonephros mesenchyme and the coelomic epithelium and start to differentiate upon receiving a Desert Hedgehog signal from Sertoli cells or being released from a NOTCH signal from endothelial cells. Mature fetal Leydig cells produce androgens. Human fetal Leydig cell steroidogenesis is LHCGR (Luteinizing Hormone Chronic Gonadotropin Receptor) dependent, while rodents are not, although other Gαs -protein coupled receptors might be involved in rodent steroidogenesis regulation. Fetal steroidogenesis ceases after sex differentiation is completed, and some fetal Leydig cells dedifferentiate to serve as stem cells for adult testicular cell types. Significant gaps are acknowledged: (1) Why are adult and fetal Leydig cells different? (2) What are bona fide progenitor and fetal Leydig cell markers? (3) Which signaling pathways and transcription factors regulate fetal Leydig cell steroidogenesis? It is critical to discover answers to these questions so that we can understand vulnerable targets in fetal Leydig cells and the mechanisms for androgen production that when disrupted, leads to variations in sex differentiation that range from subtle to complete sex reversal.


Androgens , Leydig Cells , Animals , Male , Humans , Leydig Cells/metabolism , Androgens/metabolism , Endothelial Cells/metabolism , Hedgehog Proteins/metabolism , Testis/metabolism , Testosterone , Luteinizing Hormone/metabolism , Receptors, LH/metabolism , Mammals
...