Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16226, 2024 07 14.
Article in English | MEDLINE | ID: mdl-39003307

ABSTRACT

The classical androgens, testosterone and dihydrotestosterone, together with dehydroepiandrosterone, the precusrsor to all androgens, are generally included in diagnostic steroid evaluations of androgen excess and deficiency disorders and monitored in androgen replacement and androgen suppressive therapies. The C11-oxy androgens also contribute to androgen excess disorders and are still often excluded from clinical and research-based steroids analysis. The contribution of the C11-oxy androgens to the androgen pool has not been considered in androgen deficiency. An exploratory investigation into circulating adrenal and gonadal steroid hormones in men was undertaken as neither the classical androgens nor the C11-oxy androgens have been evaluated in the context of concurrent measurement of all adrenal steroid hormones. Serum androgens, mineralocorticoids, glucocorticoids, progesterones and androgens were assessed in 70 healthy young men using ultra high performance supercritical fluid chromatography and tandem mass spectrometry. Testosterone, 24.5 nmol/L was the most prominent androgen detected in all participants while dihydrotestosterone, 1.23 nmol/L, was only detected in 25% of the participants. The 11-oxy androgens were present in most of the participants with 11-hydroxyandrostenedione, 3.37 nmol, in 98.5%, 11-ketoandrostenedione 0.764 in 77%, 11-hydroxytestosterone, 0.567 in 96% and 11-ketotestosterone: 0.440 in 63%. A third of the participants with normal testosterone and comparable 11-ketotestosterone, had significantly lower dehydroepiandrosterone (p < 0.001). In these males 11-hydroxyandrostenedione (p < 0.001), 11-ketoandrostenedione (p < 0.01) and 11-hydroxytestosterone (p < 0.006) were decreased. Glucocorticoids were also lower: cortisol (p < 0.001), corticosterone (p < 0.001), cortisone (p < 0.006) 11-dehydrocorticosterone (p < 0.001) as well as cortisol:cortisone (p < 0.001). The presence of dehydroepiandrosterone was associated with 16-hydroxyprogesterone (p < 0.001), which was also significantly lower. Adrenal and gonadal steroid analysis showed unexpected steroid heterogeneity in normal young men. Testosterone constitutes 78% of the circulating free androgens with the 11-oxy androgens abundantly present in all participants significantly contributing 22%. In addition, a subset of men were identified with low circulating dehydroepiandrosterone who showed altered adrenal steroids with decreased glucocorticoids and decreased C11-oxy androgens. Analysis of the classical and 11-oxy androgens with the additional measurement of dehydroepiandrosterone and 16-hydroxyprogesterone may allow better diagnostic accuracy in androgen excess or deficiency.


Subject(s)
Androgens , Testosterone , Humans , Male , Adult , Androgens/blood , Young Adult , Testosterone/blood , Testosterone/analogs & derivatives , Gonadal Steroid Hormones/blood , Dehydroepiandrosterone/blood , Dehydroepiandrosterone/analogs & derivatives , Androstenedione/blood , Androstenedione/analogs & derivatives , Tandem Mass Spectrometry , Dihydrotestosterone/blood , Adolescent
2.
Biotechnol J ; 19(1): e2300439, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129322

ABSTRACT

9α-Hydroxyandroster-4-ene-3,17-dione (9-OH-AD) is a representative steroid drug intermediate that can be prepared by phytosterols (PS) biotransformation with mycobacteria in a resting cell-cyclodextrin system. In this study, over-expression of 17ß-hydroxysteroid dehydrogenase (Hsd4A) was testified to enhance the side-chain degradation of PS and to reduce the incomplete degradation by-products. Meanwhile, the complete degradation product 4-androstene-3,17-dione (AD) was increased due to the lack of 3-Ketosteroid 9α-Hydroxylase (KshA1) activities. To increase the production and purity of 9-OH-AD, the metabolic pathway of the side-chain degradation of PS and 9-position hydroxylation was modulated by balancing the over-expression of Hsd4A and KshA1 in mycobacteria and reducing the bioconversion rate via lowering the ratio of PS and cyclodextrin. The production and purity of 9-OH-AD in broth were improved from 22.18 g L-1 and 77.13% to 28.27 g L-1 and 87.84%, with a molar yield of 78.32%.


Subject(s)
Androstenedione/analogs & derivatives , Cyclodextrins , Mycobacteriaceae , Mycobacterium , Phytosterols , Phytosterols/metabolism , Hydroxylation , Biotransformation , Cyclodextrins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL