Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 554
Filter
1.
Molecules ; 29(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38998937

ABSTRACT

Statins are cholesterol-lowering drugs with a mechanism of inhibiting 3-hydroxy-3-methylglutaryl-CoA reductase, but long-term use can cause side effects. An example of a plant capable of reducing cholesterol levels is Angelica keiskei (ashitaba). Therefore, this study aimed to obtain suitable compounds with inhibitory activity against the HMG-CoA reductase enzyme from ashitaba through in silico tests. The experiment began with screening and pharmacophore modeling, followed by molecular docking on ashitaba's compounds, statins groups, and the native ligand was (3R,5R)-7-[4-(benzyl carbamoyl)-2-(4-fluorophenyl)-5-(1-methylethyl)-1H-imidazole-1-yl]-3,5-dihydroxyheptanoic acid (4HI). Based on the results of the molecular docking simulations, 15 hit compounds had a small binding energy (ΔG). Pitavastatin, as the comparator drug (ΔG = -8.24 kcal/mol; Ki = 2.11 µM), had a lower ΔG and inhibition constant (Ki) than the native ligand 4HI (ΔG = -7.84 kcal/mol; Ki = 7.96µM). From ashitaba's compounds, it was found that 4'-O-geranylnaringenin, luteolin, isobavachalcone, dorsmannin A, and 3'-carboxymethyl-4,2'-dihydroxy-4'-methoxychalcone have low ΔG of below -6 kcal/mol. The lowest ΔG value was found in 3'-carboxymethyl-4,2'-dihydroxy-4'-methoxy chalcone with a ΔG of -6.67 kcal/mol and Ki value of 16.66 µM, which was lower than the ΔG value of the other comparator drugs, atorvastatin (ΔG = -5.49 kcal/mol; Ki = 1148.17 µM) and simvastatin (ΔG = -6.50 kcal/mol; Ki = 22.34 µM). This compound also binds to the important amino acid residues, including ASN755D, ASP690C, GLU559D, LYS735D, LYS691C, and SER684C, through hydrogen bonds. Based on the results, the compound effectively binds to six important amino acids with good binding affinity and only requires a small concentration to reduce half of the enzyme activity.


Subject(s)
Angelica , Hydroxymethylglutaryl CoA Reductases , Molecular Docking Simulation , Angelica/chemistry , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl CoA Reductases/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Secondary Metabolism , Protein Binding , Plant Extracts/chemistry , Plant Extracts/pharmacology , Ligands , Pharmacophore
2.
Chem Pharm Bull (Tokyo) ; 72(5): 498-506, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38735699

ABSTRACT

Using (S)-decursinol isolated from root of Angelica gigas Nakai (AGN), we semi-synthesized and evaluated a series of both enantiomerically pure decursin derivatives for their antiproliferative activities against A549 human lung cancer cells. All synthesized compounds showed a broad spectrum of inhibitory activities against the growth of A549 cells. Especially, compound (S)-2d with (E)-(furan-3-yl)acryloyl group showed the most potent activity (IC50: 14.03 µM) against A549 cancer cells as compared with the reference compound, decursin (IC50: 43.55 µM) and its enantiomer, (R)-2d (IC50: 151.59 µM). Western blotting assays indicated that (S)-2d more strongly inhibited Janus kinase 1 (JAK1) and signal transducer and activator of transcription activation 3 (STAT3) phosphorylation than decursin in a dose-dependent manner, while having no effect on CXCR7 overexpression and total STAT3 level. In addition, (S)-2d induced cell cycle arrest at G1 phase and subsequent apoptotic cell death in A549 cancer cells. Our combined analysis of molecular docking studies and biological data suggests that the inhibition of JAK1 with (S)-2d resulted in loss of STAT3 phosphorylation and inhibition of cell growth in A549 cancer cells. These overall results strongly suggest that (S)-2d (MRC-D-004) as a novel JAK1 inhibitor may have therapeutic potential in the treatment of A549 human lung cancers by targeting the JAK1/STAT3 signaling pathway.


Subject(s)
Apoptosis , Benzopyrans , Butyrates , Cell Proliferation , Drug Screening Assays, Antitumor , Molecular Docking Simulation , STAT3 Transcription Factor , Humans , Cell Proliferation/drug effects , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Benzopyrans/pharmacology , Benzopyrans/chemistry , Benzopyrans/chemical synthesis , Butyrates/pharmacology , Butyrates/chemistry , Butyrates/chemical synthesis , Apoptosis/drug effects , A549 Cells , Stereoisomerism , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Molecular Structure , Angelica/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/chemistry
3.
Colloids Surf B Biointerfaces ; 240: 113993, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810464

ABSTRACT

Development of high-performance joint injection lubricants has become the focus in the field of osteoarthritis treatment. Herein, natural product of angelica essential oil combined with the graphene oxide were prepared to the stable Pickering emulsion as a biological lubricant. The tribological properties of the Pickering emulsion under different friction conditions were studied. The lubricating mechanism was revealed and the biological activities were evaluated. Results showed that the prepared Pickering emulsion displayed superior lubrication property at the Ti6Al4V biological material interface. The maximum friction reduction and anti-wear abilities of the Pickering emulsion were improved by 36% and 50% compared to water, respectively. This was primarily due to the action of the double-layer lubrication films composed of the graphene oxide and angelica essential oil molecules. It was worth noting that the friction reduction effect of the Pickering emulsion at the natural cartilage interface was higher about 19% than that of HA used in clinic for OA commonly. In addition, the Pickering emulsion also displayed antioxidant activity and cell biocompatibility, showing a good clinical application prospect in the future.


Subject(s)
Angelica , Emulsions , Lubrication , Oils, Volatile , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Emulsions/chemistry , Angelica/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Graphite/chemistry , Graphite/pharmacology , Lubricants/chemistry , Lubricants/pharmacology , Humans , Surface Properties , Particle Size , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Survival/drug effects
4.
Phytomedicine ; 130: 155760, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38797029

ABSTRACT

BACKGROUND: The Xin-yi-san herbal decoction (XYS) is commonly used to treat patients with allergic rhinitis in Taiwan. Theophylline is primarily oxidized with high affinity by human cytochrome P450 (CYP)1A2, and has a narrow therapeutic index. PURPOSE: This study aimed to investigate the inhibition of human CYP1A2-catalyzed theophylline oxidation (THO) by XYS and its adverse effects in patients. METHODS: Human CYPs were studied in recombinant enzyme systems. The influence of concurrent XYS usage in theophylline-treated patients was retrospectively analyzed. RESULTS: Among the major human hepatic and respiratory CYPs, XYS inhibitors preferentially inhibited CYP1A2 activity, which determined the elimination and side effects of theophylline. Among the herbal components of XYS decoction, Angelicae Dahuricae Radix contained potent THO inhibitors. Furanocoumarin imperatorin was abundant in XYS and Angelicae Dahuricae Radix decoctions, and non-competitively inhibited THO activity with Ki values of 77‒84 nM, higher than those (20‒52 nM) of fluvoxamine, which clinically interacted with theophylline. Compared with imperatorin, the intestinal bacterial metabolite xanthotoxol caused weaker THO inhibition. Consistent with the potency of the inhibitory effects, the docking analysis generated Gold fitness values in the order-fluvoxamine > imperatorin > xanthotoxol. During 2017‒2018, 2.6 % of 201,093 theophylline users consumed XYS. After inverse probability weighting, XYS users had a higher occurrence of undesired effects than non-XYS users; in particular, there was an approximately two-fold higher occurrence of headaches (odds ratio (OR), 2.14; 95 % confidence interval (CI), 1.99‒2.30; p < 0.001) and tachycardia (OR, 1.83; 95 % CI, 1.21‒2.77; p < 0.05). The incidence of irregular heartbeats increased (OR, 1.36; 95 % CI, 1.07‒1.72; p < 0.05) only in the theophylline users who took a high cumulative dose (≥ 24 g) of XYS. However, the mortality in theophylline users concurrently taking XYS was lower than that in non-XYS users (OR, 0.24; 95 % CI, 0.14‒0.40; p < 0.001). CONCLUSION: XYS contains human CYP1A2 inhibitors, and undesirable effects were observed in patients receiving both theophylline and XYS. Further human studies are essential to reduce mortality and to adjust the dosage of theophylline in XYS users.


Subject(s)
Angelica , Cytochrome P-450 CYP1A2 Inhibitors , Cytochrome P-450 CYP1A2 , Drugs, Chinese Herbal , Furocoumarins , Theophylline , Theophylline/pharmacology , Humans , Drugs, Chinese Herbal/pharmacology , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2 Inhibitors/pharmacology , Angelica/chemistry , Furocoumarins/pharmacology , Male , Herb-Drug Interactions , Retrospective Studies , Female , Taiwan , Middle Aged , Adult , Oxidation-Reduction , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/chemically induced
5.
J Med Food ; 27(6): 502-509, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38669056

ABSTRACT

HemoHIM is a standardized medicinal herbal preparation consisting of extracts of Angelica gigas Nakai, Cnidium officinale Makino, and Paeonia lactiflora Pallas that possesses immune regulatory activities. This study aimed to research the potential antioxidant effects of HemoHIM and its capacity for reducing fatigue in aged mice subjected to forced exercise. After administering HemoHIM 125 (500 mg/kg orally) for 4 weeks in 8-month-old female C57BL/6 mice (4 groups of 10 mice), various parameters were evaluated. The analyses revealed that HemoHIM enhanced swimming time and grip strength. In addition, it significantly reduced serum lactate levels and increased liver glutathione peroxidase (GPx) levels after exercise challenge. The expression levels of antioxidant enzymes and factors, including nuclear factor erythroid 2-related factor-2 (Nrf-2), heme oxygenase 1, superoxide dismutase, GPx, and glutathione reductase, were significantly higher in liver and muscle tissues of mice treated with HemoHIM. These results indicate that HemoHIM might function as an anti-fatigue and antioxidant agent by modulating the Nrf-2 signaling pathway.


Subject(s)
Angelica , Antioxidants , Fatigue , Glutathione Peroxidase , Liver , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Plant Extracts , Superoxide Dismutase , Animals , Antioxidants/pharmacology , Fatigue/drug therapy , Female , Angelica/chemistry , Mice , Glutathione Peroxidase/metabolism , Superoxide Dismutase/metabolism , Liver/drug effects , Liver/metabolism , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , NF-E2-Related Factor 2/metabolism , Cnidium/chemistry , Paeonia/chemistry , Physical Conditioning, Animal , Glutathione Reductase/metabolism , Humans , Aging/drug effects , Heme Oxygenase-1/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Oxidative Stress/drug effects
6.
Plant Foods Hum Nutr ; 79(2): 468-473, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38668914

ABSTRACT

The objective of our study was to analyse the extracts from six medicinal herb roots (marshmallow, dandelion, liquorice, angelica, burdock, and comfrey) in terms of antioxidant capacity (ABTS, DPPH) and inhibition of advanced glycation end product (AGEs) formation. The quantification of phenolic acids and flavonoids was analysed using the UHPLC-DAD-MS method. Fifteen polyphenolic compounds were detected in the studied herbs. The higher number of polyphenols were found in marshmallows (ten polyphenols), while the lowest was in comfrey (five compounds). Liquorice root revealed the highest individual phenolic concentration (382 µg/g dm) with the higher contribution of kaempferol-3-O-rutinoside. Comfrey root extract was characterised by the most abundant TPC (Total Phenolic Content) value (29.79 mg GAE/ g dm). Burdock and comfrey showed the strongest anti-AGE activity studies with the BDA-GLU model. Burdock root was also characterised by the highest anti-AGE activity in the BSA-MGO model. The highest antioxidant capacity was determined by ABTS (72.12 µmol TE/g dw) and DPPH (143.01 µmol TE/g dw) assays for comfrey extract. The p-coumaric acid content was significantly correlated with anti-AGE activity determined by the BSA-MGO model. This research sheds new light on the bioactivity of root herbs, explaining the role of p-coumaric acid in preventing diabetes.


Subject(s)
Antioxidants , Flavonoids , Glycation End Products, Advanced , Plant Extracts , Plant Roots , Plants, Medicinal , Polyphenols , Antioxidants/analysis , Antioxidants/pharmacology , Polyphenols/analysis , Polyphenols/pharmacology , Plant Roots/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/analysis , Plants, Medicinal/chemistry , Flavonoids/analysis , Flavonoids/pharmacology , Angelica/chemistry , Glycyrrhiza/chemistry , Arctium/chemistry , Propionates , Coumaric Acids/analysis , Coumaric Acids/pharmacology , Hydroxybenzoates/analysis , Chromatography, High Pressure Liquid
7.
J Ethnopharmacol ; 329: 118133, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38580187

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Angelica roots are a significant source of traditional medicines for various cultures around the northern hemisphere, from indigenous communities in North America to Japan. Among its many applications, the roots are used to treat type 2 diabetes mellitus; however, this application is not mentioned often. Ethnopharmacological studies have reported the use of A. japonica var. hirsutiflora, A. furcijuga, A. shikokiana, and A. keiskei to treat diabetes symptoms, and further reports have demonstrated the three angelica roots, i.e., A. japonica var. hirsutiflora, A. reflexa, and A. dahurica, exhibit insulin secretagogue activity. AIM OF THE STUDY: This study aimed to phytochemically characterize and compare angelica roots monographed in the European Pharmacopeia 11th, isolate major plant metabolites, and assess extracts and isolates' capability to modulate pancreatic ß-cell function. MATERIALS AND METHODS: Root extracts of Angelica archangelica, Angelica dahurica, Angelica biserrata, and Angelica sinensis were phytochemically profiled using liquid chromatography method coupled with mass spectrometry. Based on this analysis, simple and furanocoumarins were isolated using chromatography techniques. Extracts (1.6-50 µg/mL) and isolated compounds (5-40 µmol/L) were studied for their ability to modulate insulin secretion in the rat insulinoma INS-1 pancreatic ß-cell model. Insulin was quantified by the homogeneous time-resolved fluorescence method. RESULTS: Forty-one secondary metabolites, mostly coumarins, were identified in angelica root extracts. A. archangelica, A. dahurica, and A. biserrata root extracts at concentration of 12.5-50 µg/mL potentiated glucose-induced insulin secretion, which correlated with their high coumarin content. Subsequently, 23 coumarins were isolated from these roots and screened using the same protocol. Coumarins substituted with the isoprenyl group were found to be responsible for the extracts' insulinotropic effect. CONCLUSIONS: Insulinotropic effects of three pharmacopeial angelica roots were found, the metabolite profiles and pharmacological activities of the roots were correlated, and key structures responsible for the modulation of pancreatic ß-cell function were identified. These findings may have implications for the traditional use of angelica roots in treating diabetes. Active plant metabolites may also become lead structures in the search for new antidiabetic treatments.


Subject(s)
Angelica , Insulin-Secreting Cells , Phytochemicals , Plant Extracts , Plant Roots , Angelica/chemistry , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/analysis , Rats , Insulin/metabolism , Insulin Secretion/drug effects , Coumarins/pharmacology , Coumarins/isolation & purification , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/chemistry
8.
Int Immunopharmacol ; 133: 112025, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38677093

ABSTRACT

Angelica sinensis is a perennial herb widely distributed around the world, and angelica polysaccharide (APS) is a polysaccharide extracted from Angelica sinensis. APS is one of the main active components of Angelica sinensis. A large number of studies have shown that APS has hematopoietic, promoting blood circulation, radiation resistance, lowering blood glucose, enhancing the body immunity and other pharmacological effects in a variety of diseases. However, different extraction methods and extraction sites greatly affect the efficacy of APS. In recent years, with the emerging of new technologies, there are more and more studies on the combined application and structural modification of APS. In order to promote the comprehensive development and in-depth application of APS, this narrative review systematically summarizes the effects of different drying methods and extraction sites on the biological activity of APS, and the application of APS in the treatment of diseases, hoping to provide a scientific basis for the experimental study and clinical application of APS.


Subject(s)
Angelica sinensis , Polysaccharides , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/therapeutic use , Animals , Angelica sinensis/chemistry , Angelica/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use
9.
J Nat Med ; 78(3): 792-798, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38427209

ABSTRACT

Crude drug Angelicae acutilobae radix is one of the most important crude drugs in Japanese traditional medicine and is used mainly for the treatment of gynecological disorders. In the listing in the Japanese Pharmacopoeia XVIII, Angelicae acutilobae radix is defined as the root of Angelica acutiloba (Apiaceae), which has long been produced on an industrial scale in Japan. With the aging of farmers and depopulation of production areas, the domestic supply has recently declined and the majority of the supply is now imported from China. Due to having only slightly different morphological and chemical characteristics for the Apiaceae roots used to produce dried roots for Chinese medicines, the plant species originating the crude drug Apiaceae roots may be incorrectly identified. In particular, Angelicae sinensis radix, which is widely used in China, and Angelicae acutilobae radix are difficult to accurately identify by morphology and chemical profiles. Thus, in order to differentiate among Angelicae acutilobae radix and other radixes originated from Chinese medicinal Apiaceae plants, we established DNA markers. Using DNA sequences for the chloroplast psbA-trnH intergenic spacer and nuclear internal transcribed spacer regions, Angelicae acutilobae radix and other Chinese Apiaceae roots, including Angelicae sinensis radix, can be definitively identified.


Subject(s)
Angelica sinensis , Angelica , DNA Barcoding, Taxonomic , Plant Roots , Angelica/genetics , Angelica/chemistry , Angelica/classification , Angelica sinensis/genetics , Plant Roots/genetics , Apiaceae/genetics , Apiaceae/classification , DNA, Plant/genetics , Plants, Medicinal/genetics , Plants, Medicinal/classification , Drugs, Chinese Herbal/chemistry , Phylogeny , China
10.
Redox Rep ; 29(1): 2305036, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38390941

ABSTRACT

OBJECTIVE: Angelica keiskei is a medicinal and edible plant that has been reported to possess potent antioxidant properties in several in vitro models, but its effectiveness on naturally aging organisms is still lacking. This study explores the antioxidant and health-promoting effects of Angelica keiskei in naturally aging mice. METHODS: We treated 48-week-old mice with Angelica keiskei water extract (AKWE) 30 days, and measured indicators related to aging and antioxidants. In addition, we conducted network pharmacology analysis, component-target molecular docking, real-time PCR, and MTS assays to investigate relevant factors. RESULTS: The results indicated that administration of AKWE to mice led to decrease blood glucose levels, improve muscle fiber structure, muscle strength, gait stability, and increase levels of glutathione and superoxide dismutase in serum. Additionally, it decreased pigmentation of the heart tissues. Angelica keiskei combats oxidative stress by regulating multiple redox signaling pathways, and its ingredients Coumarin and Flavonoids have the potential to bind to SIRT3 and SIRT5. CONCLUSIONS: Our findings indicated the potential of Angelica keiskei as a safe and effective dietary supplement to combat aging and revealed the broad prospects of medicinal and edible plants for addressing aging and age-related chronic diseases.


Subject(s)
Angelica , Antioxidants , Mice , Animals , Angelica/chemistry , Molecular Docking Simulation , Dietary Supplements , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry
11.
J Pharm Pharmacol ; 76(5): 559-566, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38215001

ABSTRACT

Imperatorin (IMP) is the main bioactive furanocoumarin of Angelicae dahuricae radix, which is a well-known traditional Chinese medicine. The purpose of this study was to elucidate the role of IMP in promoting absorption and the possible mechanism on the compatible drugs of Angelicae dahuricae radix. The influence of IMP on drugs' intestinal absorption was conducted by the Caco-2 cell model. The mechanism was studied by investigating the transcellular transport mode of IMP and its influence on P-glycoprotein (P-gp)-mediated efflux, protein expression of P-gp and tight junction, and cell membrane potential. The result showed IMP promoted the uptake of osthole, daidzein, ferulic acid, and puerarin and improved the transport of ferulic acid and puerarin in Caco-2 cells. The absorption-promoting mechanism of IMP might involve the reduction of the cell membrane potential, decrease of P-gp-mediated drug efflux and inhibition of the P-gp expression level in the cellular pathway, and the loosening of the tight junction protein by the downregulation of the expression levels of occludin and claudin-1 in the paracellular pathway. This study provides new insights into the understanding of the improved bioavailability of Angelicae dahuricae radix with its compatible drugs.


Subject(s)
Angelica , Coumaric Acids , Coumarins , Furocoumarins , Intestinal Absorption , Isoflavones , Furocoumarins/pharmacology , Humans , Caco-2 Cells , Angelica/chemistry , Intestinal Absorption/drug effects , Isoflavones/pharmacology , Coumaric Acids/pharmacology , Coumaric Acids/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Tight Junctions/metabolism , Tight Junctions/drug effects , Biological Transport , Occludin/metabolism , Plant Roots
12.
Sci Rep ; 13(1): 21733, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066026

ABSTRACT

Based on geographical distribution, cultivated Chinese Angelica dahurica has been divided into Angelica dahurica cv. 'Hangbaizhi' (HBZ) and Angelica dahurica cv. 'Qibaizhi' (QBZ). Long-term geographical isolation has led to significant quality differences between them. The secretory structure in medicinal plants, as a place for accumulating effective constituents and information transmission to the environment, links the environment with the quality of medicinal materials. However, the secretory tract differences between HBZ and QBZ has not been revealed. This study aimed to explore the relationship between the secretory tract and the quality of two kinds of A. dahurica. Root samples were collected at seven development phases. High-Performance Liquid Chromatography (HPLC) and Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) were used for the content determination and spatial location of coumarins. Paraffin section was used to observe and localize the root secretory tract. Origin, CaseViewer, and HDI software were used for data analysis and image processing. The results showed that compared to QBZ, HBZ, with better quality, has a larger area of root secretory tracts. Hence, the root secretory tract can be included in the quality evaluation indicators of A. dahurica. Additionally, DESI-MSI technology was used for the first time to elucidate the temporal and spatial distribution of coumarin components in A. dahurica root tissues. This study provides a theoretical basis for the quality evaluation and breeding of improved varieties of A. dahurica and references the DESI-MSI technology used to analyze the metabolic differences of various compounds, including coumarin and volatile oil, in different tissue parts of A. dahurica.


Subject(s)
Angelica , Oils, Volatile , Plants, Medicinal , Angelica/chemistry , Plant Breeding , Coumarins/chemistry , Chromatography, High Pressure Liquid/methods
13.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5172-5180, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114107

ABSTRACT

Excessive application of chemical fertilizer has caused many problems in Angelica dahurica var. formosana planting, such as yield decline and quality degradation. In order to promote the green cultivation mode of A. dahurica var. formosana and explore rhizosphere fungus resources, the rhizosphere fungi with nitrogen fixation, phosphorus solubilization, potassium solubilization, iron-producing carrier, and IAA-producing properties were isolated and screened in the rhizosphere of A. dahurica var. formosana from the genuine and non-genuine areas, respectively. The strains were identified comprehensively in light of the morphological characteristics and ITS rDNA sequences, and the growth-promoting effect of the screened strains was verified by pot experiment. The results showed that 37 strains of growth-promoting fungi were isolated and screened from the rhizosphere of A. dahurica var. formosana, mostly belonging to Fusarium. The cultured rhizosphere growth-promoting fungi of A. dahurica var. formosana were more abundant and diverse in the genuine producing areas than in the non-genuine producing areas. Among all strains, Aspergillus niger ZJ-17 had the strongest growth promotion potential. Under the condition of no fertilization outdoors, ZJ-17 inoculation significantly promoted the growth, yield, and accumulation of effective components of A. dahurica var. formosana planted in the soil of genuine and non-genuine producing areas, with yield increases of 73.59% and 37.84%, respectively. To a certain extent, it alleviated the restriction without additional fertilization on the growth of A. dahurica var. formosana. Therefore, A. niger ZJ-17 has great application prospects in increasing yield and quality of A. dahurica var. formosana and reducing fertilizer application and can be actually applied in promoting the growth of A. dahurica var. formosana and producing biofertilizer.


Subject(s)
Angelica , Fertilizers , Rhizosphere , Angelica/chemistry , Fungi/genetics , Phosphorus
14.
J Nat Med ; 77(4): 1009-1021, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37581741

ABSTRACT

Sampling surveys of Angelica acutiloba and A. acutiloba var. iwatensis, which are medicinal plants endemic to Japan, were conducted in the Chubu region in the central area of the main island of Japan. A. acutiloba grows in riverbeds in mountainous areas, while A. acutiloba. var. iwatensis grows on slopes near mountain ridges at 1000 m above sea level or on constantly collapsing rocky slopes and bare fields on developed land along asphalt roads in valleys of mountainous areas. Specimens of two wild Angelica species collected in this region were examined for maternal lineage by DNA polymorphism analysis of the atpF-atpA region for chloroplast DNA using direct sequencing and genomic component analysis by genome-wide SNP using MIG-seq. In this study area, while all A. acutiloba populations were monophyletic in both maternal and ancestral lineages, A. acutiloba var. iwatensis were genetically heterogeneous due to being composed of three maternal and three ancestral lineages to various degrees. In addition, a natural hybrid population with maternal lineage presumed to be A. acutiloba and paternal lineage A. acutiloba var. iwatensis was also found. In the present study, we report that the combined method of atpF-atpA and MIG-seq analyses is a useful tool for determining the population genetic structure of two wild Angelica species and for identifying hybrids.


Subject(s)
Angelica , Plants, Medicinal , Angelica/genetics , Angelica/chemistry , DNA, Chloroplast/genetics , Plants, Medicinal/chemistry , Genetics, Population , Japan
15.
Molecules ; 28(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446909

ABSTRACT

OBJECTIVE: To clarify the accumulation and mutual transformation patterns of the chemical components in Angelica dahurica (A. dahurica) and predict the quality markers (Q-Markers) of its antioxidant activity. METHOD: The types of and content changes in the chemical components in various parts of A. dahurica during different periods were analyzed by using gas chromatography-mass spectrometry technology (GC-MS). The antioxidant effect of the Q-Markers was predicted using network pharmacological networks, and molecular docking was used to verify the biological activity of the Q-Markers. RESULT: The differences in the content changes in the coumarin compounds in different parts were found by using GC-MS technology, with the relative content being the best in the root, followed by the leaves, and the least in the stems. The common components were used as potential Q-Markers for a network pharmacology analysis. The component-target-pathway-disease network was constructed. In the molecular docking, the Q-Markers had a good binding ability with the core target, reflecting better biological activity. CONCLUSIONS: The accumulation and mutual transformation patterns of the chemical components in different parts of A. dahurica were clarified. The predicted Q-Markers lay a material foundation for the establishment of quality standards and a quality evaluation.


Subject(s)
Angelica , Drugs, Chinese Herbal , Antioxidants/pharmacology , Angelica/chemistry , Molecular Docking Simulation , Network Pharmacology , Gas Chromatography-Mass Spectrometry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry
16.
Article in English | MEDLINE | ID: mdl-37310353

ABSTRACT

In Korea, Angelica gigas is commonly known as Danggui. However, two other species on the market, Angelica acutiloba and Angelica sinensis, are also commonly called Danggui. Since the three Angelica species have different biologically active components, thus, different pharmacological activities, clear discrimination between them is needed to prevent their misuse. A. gigas is used not only as a cut or powdered product but also in processed foods, where it is mixed with other ingredients. To discriminate between the three Angelica species, reference samples were analysed as non-targeted using liquid chromatography-quadrupole time of flight/mass spectrometry (LC-QTOF/MS) and a metabolomics approach in which a discrimination model was established by partial least squares-discriminant analysis (PLS-DA). Then, the Angelica species in the processed foods were identified. First, 32 peaks were selected as marker compounds and a discrimination model was created using PLS-DA, and its validation was confirmed. Classification of the Angelica species was undertaken using the YPredPS value, and it was confirmed that all 21 foods examined contained the appropriate Angelica species indicated on the product packaging. Likewise, it was confirmed that all three Angelica species were accurately classified in the samples to which they were added.


Subject(s)
Angelica sinensis , Angelica , Angelica/chemistry , Mass Spectrometry , Angelica sinensis/chemistry , Chromatography, Liquid , Metabolomics/methods , Chromatography, High Pressure Liquid
17.
Sci Rep ; 13(1): 6022, 2023 04 13.
Article in English | MEDLINE | ID: mdl-37055447

ABSTRACT

Angelica dahurica (Angelica dahurica Fisch. ex Hoffm.) is widely used as a traditional Chinese medicine and the secondary metabolites have significant pharmacological activities. Drying has been shown to be a key factor affecting the coumarin content of Angelica dahurica. However, the underlying mechanism of metabolism is unclear. This study sought to determine the key differential metabolites and metabolic pathways related to this phenomenon. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) based targeted metabolomics analysis was performed on Angelica dahurica that were freeze-drying (- 80 °C/9 h) and oven-drying (60 °C/10 h). Furthermore, the common metabolic pathways of paired comparison groups were performed based on KEEG enrichment analysis. The results showed that 193 metabolites were identified as key differential metabolites, most of which were upregulated under oven drying. It also displayed that many significant contents of PAL pathways were changed. This study revealed the large-scale recombination events of metabolites in Angelica dahurica. First, we identified additional active secondary metabolites apart from coumarins, and volatile oil were significantly accumulated in Angelica dahurica. We further explored the specific metabolite changes and mechanism of the phenomenon of coumarin upregulation caused by temperature rise. These results provide a theoretical reference for future research on the composition and processing method of Angelica dahurica.


Subject(s)
Angelica , Drugs, Chinese Herbal , Chromatography, Liquid , Angelica/chemistry , Tandem Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Desiccation
18.
Phytother Res ; 37(5): 2187-2211, 2023 May.
Article in English | MEDLINE | ID: mdl-37086188

ABSTRACT

Angelica species have been traditionally used for their medicinal properties. Recent studies have suggested their potential use as anticancer agents, making them an area of interest for further research. The review aims to summarize the current understanding of the potential anticancer effects of Angelica species and to provide insights for further research in this area. We searched for "Angelica" related information on Google Scholar, PubMed, ScienceDirect, Wiley, Science Citation Index Finder, and Springer link by searching keywords such as "Angelica," "Angelica phytochemical," "Angelica antitumor effect," "Angelica molecular mechanisms," and "Angelica clinical application." Included articles focused on the Angelica plant's anticancer properties and clinical studies, while non-cancer-related biological or phytochemical investigations were excluded. We conducted a comprehensive search of books, journals, and databases published between 2001 and 2023, identifying 186 articles for this narrative review. The articles were analyzed for their potential anticancer properties and therapeutic applications. Active compounds in the Angelica genus, such as coumarins, furanocoumarins, phthalides, and polysaccharides, exhibit anticancer properties through various mechanisms. Specific species, like A. archangelica, Angelica sinensis, A. gigas, and A. ksiekie, have the potential as anticancer agents by targeting cellular pathways, generating reactive oxygen species, and inducing apoptotic cell death. Further research into the properties of the Angelica genus is needed for developing new treatments for cancer. Phytochemicals from Angelica species possess potential as anticancer agents, requiring further research for the development of effective, low-cost, and low-toxicity cancer treatments compared to synthetic antitumor drugs.


Subject(s)
Angelica , Neoplasms , Humans , Phytotherapy , Angelica/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Phytochemicals/pharmacology , Neoplasms/drug therapy , Ethnopharmacology
19.
J Ethnopharmacol ; 313: 116527, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37088236

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Angelica decursiva is a perennial herb that belongs to the Umbelliferae family. It is traditionally used to treat fever, upper respiratory tract infections, bleeding and hypertension. However, despite its extensive pharmacological potential, literature reports on its antihypertensive pharmacological properties are scarce. AIM OF THE STUDY: In the study, crude extract from A. decursiva roots was examined for its antihypertensive activity and its molecular basis was explored. MATERIALS AND METHODS: A. decursiva roots were extracted with ethanol, and isolated with silica gel normal-phase chromatography and reverse-phase high performance liquid chromatography. L-NAME-induced hypertensive mouse model was used to detect in vivo hypertensive activity. Thoracic aorta ring contraction activity and electrophysiology recordings were employed to evaluate in vitro antihypertensive activity and revealed an antihypertensive target, which was transiently expressed in HEK293T cells. RESULTS: Angelica decursiva ethanol decoction (ADED) exhibited significant antihypertensive effects in L-NAME-induced hypertension models and phenylephrine-induced vasoconstriction. Further screening revealed that demethylsuberosin is an essential component accounting for the antihypertension effects of A. decursiva. Voltage-gated calcium channel CaV1.2 is the likely target of A. decursiva for its antihypertension effects. CONCLUSION: The study suggests that A. decursiva and demethylsuberosin may be effective antihypertensive agents in preclinical studies. It appears that A. decursiva and demethylsuberosin exert antihypertensive effects by inhibiting the CaV1.2 channel, which contributes to the vasodilatory effect. The present study provides experimental evidence that A. decursiva is an effective remedy for hypertension in folklore. Demethylsuberosin could be a lead molecule for antihypertension drug development.


Subject(s)
Angelica , Hypertension , Mice , Animals , Humans , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Calcium Channels, L-Type , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Angelica/chemistry , HEK293 Cells , NG-Nitroarginine Methyl Ester , Hypertension/chemically induced , Hypertension/drug therapy , Ethanol/therapeutic use
20.
Talanta ; 255: 124253, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36630786

ABSTRACT

In this study, the spatial distribution and accumulation dynamics of volatile oil in Angelica sinensis roots was realized by fluorescence imaging combined with mass spectrometry imaging. The laser scanning confocal microscopy was used to determine the optimal excitation wavelength and the fluorescent stability of volatile oil in the sections of Angelica sinensis roots. The results demonstrated that 488 nm was the most suitable excitation wavelength for the identification and quantitative analysis of volatile oil. It was observed that volatile oil accumulated in the oil chamber of the phelloderm and secondary phloem, and the oil canal of the secondary xylem. The results also indicated that there were differences in content during different periods. Furthermore, the MALDI-TOF-MSI technology was used to study the spatial distribution and compare the chemical compositions of different parts of Angelica sinensis roots during the harvest period. A total of 55, 49, 50 and 30 compounds were identified from the head, body, tail of the root and root bark, respectively. The spatial distribution of phthalides, organic acids and other compounds were revealed in Angelica sinensis roots. The method developed in this study could be used for the in situ analysis of volatile oil in Angelica sinensis roots.


Subject(s)
Angelica sinensis , Angelica , Oils, Volatile , Angelica sinensis/chemistry , Oils, Volatile/analysis , Mass Spectrometry , Optical Imaging , Technology , Plant Roots/chemistry , Angelica/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL