Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 563
Filter
1.
Bioorg Med Chem ; 111: 117866, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39096785

ABSTRACT

The inhibition of angiogenesis has been considered as an attractive method for the discovery of potential anti-cancer drugs. Herein, we report our new synthesized bibenzyl compound Ae had potent anti-angiogenic activity(the lowest effective concentration is to 0.62-1.25 µM) in zebrafish in vivo and showed a concentration-dependent inhibition of inter-segmental blood vessels (ISVs) compared to control. Further, Ae exhibited the obvious inhibitory activity of proliferation, migration, invasion and tube formation in HUVEC cells in vitro. Moreover, qRT-PCR analysis revealed that the anti-angiogenic activity of compound Ae is connected with the ang-2, tek in ANGPT-TEK pathway and the kdr, kdrl signaling axle in VEGF-VEGFR pathway. Molecular docking studies revealed that compound Ae had an interaction with the angiopoietin-2 receptor(TEK) and VEGFR2. Additionally, analysis of the ADMET prediction data indicated that compound Ae possessed favorable physicochemical properties, drug-likeness, and synthetic accessibility. In conclusion, compound Ae had remarkable anti-angiogenic activity and could be served as an candidate for cancer therapy.


Subject(s)
Angiogenesis Inhibitors , Cell Proliferation , Human Umbilical Vein Endothelial Cells , Molecular Docking Simulation , Zebrafish , Animals , Humans , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/chemical synthesis , Human Umbilical Vein Endothelial Cells/drug effects , Cell Proliferation/drug effects , Bibenzyls/pharmacology , Bibenzyls/chemistry , Bibenzyls/chemical synthesis , Structure-Activity Relationship , Cell Movement/drug effects , Molecular Structure , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Dose-Response Relationship, Drug , Receptor, TIE-2/metabolism , Receptor, TIE-2/antagonists & inhibitors
2.
Bioorg Chem ; 151: 107679, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094510

ABSTRACT

Dual-target agents have more advantages than drug combinations for cancer treatment. Here, we designed and synthesized a series of novel VEGFR-2/tubulin dual-target inhibitors through a molecular hybridization strategy, and the activities of all the synthesized compounds were tested against tubulin and VEGFR-2. Among which, compound 19 exhibited strong potency against tubulin and VEGFR-2, with IC50 values of 0.76 ± 0.11 µM and 15.33 ± 2.12 nM, respectively. Additionally, compound 19 not only had significant antiproliferative effects on a series of human cancer cell lines, especially MGC-803 cells (IC50 = 0.005 ± 0.001 µM) but also overcame drug resistance in Taxol-resistant MGC-803 cells, with an RI of 1.8. Further studies showed that compound 19 could induce tumor cell apoptosis by reducing the mitochondrial membrane potential, increasing the level of ROS, facilitating the induction of G2/M phase arrest, and inhibiting the migration and invasion of tumor cells in a dose-dependent manner. In addition, compound 19 also exhibits potent antiangiogenic effects by blocking the VEGFR-2/PI3K/AKT pathway and inhibiting the tubule formation, invasion, and migration of HUVECs. More importantly, compound 19 demonstrated favorable pharmacokinetic profiles, robust in vivo antitumor efficacy, and satisfactory safety profiles. Overall, compound 19 can be used as a lead compound for the development of tubulin/VEGFR-2 dual-target inhibitors.


Subject(s)
Angiogenesis Inhibitors , Antineoplastic Agents , Apoptosis , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Tubulin Modulators , Tubulin , Vascular Endothelial Growth Factor Receptor-2 , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Humans , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Tubulin/metabolism , Structure-Activity Relationship , Cell Proliferation/drug effects , Molecular Structure , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Tubulin Modulators/chemical synthesis , Apoptosis/drug effects , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Drug Discovery , Animals , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Mice , Human Umbilical Vein Endothelial Cells/drug effects
3.
Eur J Med Chem ; 276: 116715, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39083983

ABSTRACT

In the last years, 5-pyrazolyl ureas and 5-aminopyrazoles have been investigated for their antiangiogenetic properties and their potential interaction with the ubiquitous Ca2+ binding protein Calreticulin. Based on the structure of the active compounds I and GeGe-3, novel 5-arylamino pyrazoles 2 and 3 were synthesized through a stepwise procedure. In MTT assays, all the new derivatives proved to be non-cytotoxic against eight different tumor cell lines, normal fibroblasts, and endothelial cells. Furthermore, selected derivatives showed relevant antiangiogenetic properties, resulting more effective than reference molecules I and GeGe-3 in inhibiting HUVEC endothelial tube formation. 5-Arylamino pyrazoles 2a and 2d were identified as the most interesting compounds and significantly prevented tube formation of tumor secretome-stimulated HUVEC. Furthermore, the two compounds inhibited HUVEC migration in wound healing assay and altered cell invasion capability. Additionally, 2a and 2d strongly affected Ca2+ mobilization and cytoskeletal organization of HUVEC cells, being as active as the reference compound GeGe-3. Differently from previous studies, molecular docking simulations suggested a poor affinity of 2a towards Calreticulin, one of the interacting partners of the lead compound GeGe-3. Collectively, this new amino-pyrazole library further extends the structure-activity relationships of the previously prepared derivatives and confirmed the biological attractiveness of this chemical scaffold as antiangiogenetic agents.


Subject(s)
Angiogenesis Inhibitors , Calcium , Human Umbilical Vein Endothelial Cells , Molecular Docking Simulation , Pyrazoles , Humans , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Calcium/metabolism , Structure-Activity Relationship , Human Umbilical Vein Endothelial Cells/drug effects , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Molecular Structure , Calreticulin/metabolism , Drug Screening Assays, Antitumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Neovascularization, Pathologic/drug therapy , Angiogenesis
4.
Bioorg Med Chem Lett ; 110: 129858, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38917956

ABSTRACT

Introduction of fluorine into bioactive molecules has attracted much attention in drug development. For example, tetrafluorination of the phthalimide moiety of immunomodulatory drugs (IMiDs) has a strong beneficial effect on the ability to inhibit angiogenesis. The neomorphic activity of E3 ligase complexes is induced by the binding of IMiDs to cereblon. We investigated that a set of eight thalidomide analogs, comprising non- and tetrafluorinated counterparts, did not induce the degradation of neomorphic substrates (IKZF3, GSPT1, CK1α, SALL4). Hence, the antiangiogenic activity of fluorinated IMiDs was not triggered by neosubstrate degradation features. A fluorine scanning of non-traditional IMiDs of the benzamido glutarimide chemotype was performed. By measuring the endothelial cell tube formation, no angiogenesis inhibitors were identified, confirming the narrow structure-activity window of IMiD-induced antiangiogenesis.


Subject(s)
Angiogenesis Inhibitors , Thalidomide , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/chemical synthesis , Thalidomide/pharmacology , Thalidomide/chemistry , Thalidomide/analogs & derivatives , Thalidomide/chemical synthesis , Humans , Structure-Activity Relationship , Molecular Structure , Halogenation , Dose-Response Relationship, Drug , Human Umbilical Vein Endothelial Cells/drug effects , Ubiquitin-Protein Ligases/metabolism
5.
Eur J Med Chem ; 274: 116510, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38843585

ABSTRACT

Anti-angiogenic therapy has long been used as an adjunct therapy for the resolution of tumor burden. The current findings describe the synthesis of novel marine-based azirine-containing compounds that exhibit anti-angiogenic mediated anti-tumor activity. Azirine-2-carboxylate inhibited HUVEC-mediated tubulogenesis without causing cell death in a dose-dependent manner. Ex-vivo CAM, in-vivo Matrigel implantation, and ear angiogenesis experiments have all shown that azirine-2-carboxylate effectively inhibits angiogenesis. Furthermore, azirine-2-carboxylate inhibits the migration of ECs without disrupting the preformed tubule network. Azirine-2-carboxylate had adequate intramuscular systemic exposure and inhibited tumor growth in a xenograft mouse model. DARTS analysis, competitive binding assay, and gene expression investigations revealed that azirine-2-carboxylate inhibits endothelin-1-mediated angiogenesis. Overall, the discovery of azirine-2-carboxylate demonstrated a potent inhibition of angiogenesis targeting ET1 and a possible application in anti-angiogenic therapy.


Subject(s)
Angiogenesis Inhibitors , Azirines , Human Umbilical Vein Endothelial Cells , Humans , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/chemical synthesis , Animals , Mice , Human Umbilical Vein Endothelial Cells/drug effects , Azirines/chemistry , Azirines/pharmacology , Azirines/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Cell Proliferation/drug effects , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Neovascularization, Pathologic/drug therapy
6.
Eur J Med Chem ; 272: 116495, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38744089

ABSTRACT

Angiogenesis inhibitors and photosensitizers are pivotal in tumor clinical treatment, yet their utilization is constrained. Herein, eleven novel angiogenesis inhibitors were developed through hybridization strategy to overcome their clinical limitations. These title compounds boast excitation wavelengths within the "therapeutic window", enabling deep tissue penetration. Notably, they could generate superoxide anion radicals via the Type I mechanism, with compound 36 showed the strongest superoxide anion radical generating capacity. Biological evaluation demonstrated remarkable cellular activity of all the title compounds, even under hypoxic conditions. Among them, compound 36 stood out for its superior anti-proliferative activity in both normoxic and hypoxic environments, surpassing individual angiogenesis inhibitors and photosensitizers. Compound 36 induced cell apoptosis via superoxide anion radical generation, devoid of dark toxicity. Molecular docking revealed that the target-recognizing portion of compound 36 was able to insert into the ATP binding pocket of the target protein similar to sorafenib. Collectively, our results suggested that hybridization of angiogenesis inhibitors and photosensitizers was a potential strategy to address the limitations of their clinical use.


Subject(s)
Angiogenesis Inhibitors , Cell Proliferation , Molecular Docking Simulation , Photosensitizing Agents , Superoxides , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Humans , Superoxides/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects
7.
Bioorg Chem ; 148: 107411, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733747

ABSTRACT

In a search for new anticancer agents with better activity and selectivity, the present work described the synthesis of several new series of sulfachloropyridazine hybrids with thiocarbamates 3a-e, thioureids 4a-h, 5a-e and 4-substituted sulfachloropyridazines 6a, b, 7a, b and 8. The synthesized compounds were screened in vitro against a panel of 60 cancer cell lines in one dose assay. The most potent derivatives 3a, 3c, 4c, 4d, 5e, 7a and 7b were tested for their antiangiogenic activity by measuring their ability to inhibit VEGFR-2. The most potent compounds in VEGFR-2 inhibitory assay were further evaluated for their ability to inhibit PDGFR. In addition, the ability of 4c compound to inhibit cell migration on HUVEC cells and cell cycle effect on UO-31 cells has been studied. The pro-apoptotic effect of compound 4c was studied by the evaluation of caspase-3, Bax and BCl-2. Alternatively, the IC50 of compounds 3a, 3c, 4c, 5e, 7a and 7b against certain human cancer cell lines were determined. Re-evaluation in combination with γ-radiation was carried out for compounds 4c, 5e and 7b to study the possible synergistic effect on cytotoxicity. Docking studies of the most active compounds were performed to give insights into the binding mode within VEGFR-2 active site.


Subject(s)
Angiogenesis Inhibitors , Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Screening Assays, Antitumor , Vascular Endothelial Growth Factor Receptor-2 , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Structure-Activity Relationship , Molecular Structure , Cell Proliferation/drug effects , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Dose-Response Relationship, Drug , Pyridazines/pharmacology , Pyridazines/chemistry , Pyridazines/chemical synthesis , Molecular Docking Simulation , Cell Line, Tumor , Cell Movement/drug effects
8.
Bioorg Chem ; 147: 107405, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696843

ABSTRACT

The prolonged intravitreal administration of anti-vascular endothelial growth factor (VEGF) drugs is prone to inducing aberrant retinal vascular development and causing damage to retinal neurons. Hence, we have taken an alternative approach by designing and synthesizing a series of cyclic peptides targeting CC motif chemokine receptor 3 (CCR3). Based on the binding mode of the N-terminal region in CCR3 protein to CCL11, we used computer-aided identification of key amino acid sequence, conformational restriction through different cyclization methods, designed and synthesized a series of target cyclic peptides, and screened the preferred compound IB-2 through affinity. IB-2 exhibits excellent anti-angiogenic activity in HRECs. The apoptosis level of 661W cells demonstrated a significant decrease with the escalating concentration of IB-2. This suggests that IB-2 may have a protective effect on photoreceptor cells. In vivo experiments have shown that IB-2 significantly reduces retinal vascular leakage and choroidal neovascularization (CNV) area in a laser-induced mouse model of CNV. These findings indicate the potential of IB-2 as a safe and effective therapeutic agent for AMD, warranting further development.


Subject(s)
Macular Degeneration , Peptides, Cyclic , Receptors, CCR3 , Animals , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemical synthesis , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Mice , Receptors, CCR3/antagonists & inhibitors , Receptors, CCR3/metabolism , Humans , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Molecular Structure , Structure-Activity Relationship , Mice, Inbred C57BL , Dose-Response Relationship, Drug , Apoptosis/drug effects , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/pathology , Choroidal Neovascularization/metabolism , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Angiogenesis
9.
J Med Chem ; 67(9): 7088-7111, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38634624

ABSTRACT

The novel metal(II)-based complexes HA-Cu, HA-Co, and HA-Ni with phenanthroline, sulfamethazine, and aromatic-aromatic coupled disulfamethazines as ligands were synthesized and characterized. HA-Cu, HA-Co, and HA-Ni all showed a broad spectrum of cytotoxicity and antiangiogenesis. HA-Cu was superior to HA-Co and HA-Ni, and even superior to DDP, showing significant inhibitory effect on the growth and development of tripe-negative breast cancer in vivo and in vitro. HA-Cu exhibited observable synergistic effects of antiproliferation, antiangiogenesis, anti-inflammatory, pro-apoptosis, and cuproptosis to effectively inhibited tumor survival and development. The molecular mechanism was confirmed that HA-Cu could downregulate the expression of key proteins in the VEGF/VEGFR2 signaling pathway and the expression of inflammatory cytokines, enhance the advantage of pro-apoptotic protein Bax, and enforce cuproptosis by weakening the expression of FDX1 and enhancing the expression of HSP70. Our research will provide a theoretical and practical reference for the development of metal-sulfamethazine and its derivatives as chemotherapy drugs for cancer treatment.


Subject(s)
Angiogenesis Inhibitors , Antineoplastic Agents , Apoptosis , Coordination Complexes , Phenanthrolines , Triple Negative Breast Neoplasms , Apoptosis/drug effects , Humans , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/therapeutic use , Animals , Phenanthrolines/pharmacology , Phenanthrolines/chemistry , Phenanthrolines/chemical synthesis , Female , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Mice , Cell Line, Tumor , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Drug Synergism , Structure-Activity Relationship , Mice, Inbred BALB C , Drug Screening Assays, Antitumor
10.
Bioorg Chem ; 147: 107358, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626490

ABSTRACT

VEGFR-2 is an attractive target for the development of anti-tumor drugs and plays a crucial role in tumor angiogenesis. This study reports a series of novel thiophene-3-carboxamide derivatives based on PAN-90806 as VEGFR-2 inhibitors, among which compound 14d exhibits excellent anti-proliferative activity against HCT116, MCF7, PC3, and A549 cell lines, and has effective VEGFR-2 inhibitory activity with an IC50 value of 191.1 nM. Additionally, CETSA results indicated that VEGFR-2 was a relevant target of compound 14d in the cell lines, and compound 14d could also inhibit VEGFR-2 protein phosphorylation in A549 cell line. Furthermore, compound 14d inhibited colony formation, cell migration, and HUVECs tube formation in a dose-dependent manner. The mechanism by which 14d induced cancer cell death involves blocking the cell cycle, increasing ROS production, inducing apoptosis, and dose-dependently reducing the levels of phosphorylated ERK and MEK. Molecular docking and molecular dynamics simulations had shown that compound 14d could stably bind to the active site of VEGFR-2. These results confirmed that compound 14d might be a promising lead compound for anti-angiogenesis.


Subject(s)
Angiogenesis Inhibitors , Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Protein Kinase Inhibitors , Thiophenes , Vascular Endothelial Growth Factor Receptor-2 , Humans , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Thiophenes/pharmacology , Thiophenes/chemistry , Thiophenes/chemical synthesis , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Drug Discovery , Cell Movement/drug effects , Apoptosis/drug effects , Molecular Docking Simulation , Cell Line, Tumor
11.
Molecules ; 27(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35209039

ABSTRACT

During tumor angiogenesis different growth factors, cytokines and other molecules interact closely with each other to facilitate tumor cell invasion and metastatic diffusion. The most intensively studied as molecular targets in anti-angiogenic therapies are vascular endothelial growth factor (VEGF) and related receptors, integrin receptors and matrix metalloproteinases (MMPs). Considering the poor efficacy of cancer angiogenesis monotherapies, we reasoned combining the inhibition of αvß3 and MMP2 as a multitarget approach to deliver a synergistic blockade of tumor cell migration, invasion and metastasis. Accordingly, we identified a common pharmacophore in the binding cavity of MMP2 and αvß3, demonstrating such approach with the design, synthesis and bioassays of tyrosine-derived peptidomimetics carrying the necessary functional groups to bind to key pharmacophoric elements of MMP2 and αvß3 RGD integrin.


Subject(s)
Angiogenesis Inhibitors , Antineoplastic Agents , Integrin alphaVbeta3/metabolism , Matrix Metalloproteinase 2/metabolism , Neoplasm Proteins/metabolism , Neoplasms , Neovascularization, Pathologic , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Neoplasms/blood supply , Neoplasms/drug therapy , Neoplasms/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism
12.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35162998

ABSTRACT

This review comprehensively describes the recent advances in the synthesis and pharmacological evaluation of steroid polyamines squalamine, trodusquemine, ceragenins, claramine, and their diverse analogs and derivatives, with a special focus on their complete synthesis from cholic acids, as well as an antibacterial and antiviral, neuroprotective, antiangiogenic, antitumor, antiobesity and weight-loss activity, antiatherogenic, regenerative, and anxiolytic properties. Trodusquemine is the most-studied small-molecule allosteric PTP1B inhibitor. The discovery of squalamine as the first representative of a previously unknown class of natural antibiotics of animal origin stimulated extensive research of terpenoids (especially triterpenoids) comprising polyamine fragments. During the last decade, this new class of biologically active semisynthetic natural product derivatives demonstrated the possibility to form supramolecular networks, which opens up many possibilities for the use of such structures for drug delivery systems in serum or other body fluids.


Subject(s)
Aquatic Organisms/chemistry , Steroids/chemistry , Steroids/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Cholestanes/chemistry , Cholestanols/chemistry , Humans , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Spermine/analogs & derivatives , Spermine/chemistry , Steroids/chemical synthesis , Triterpenes/chemical synthesis
13.
J Enzyme Inhib Med Chem ; 37(1): 652-665, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35109719

ABSTRACT

The screened compound DYT-1 from our in-house library was taken as a lead (inhibiting tubulin polymerisation: IC50=25.6 µM, anti-angiogenesis in Zebrafish: IC50=38.4 µM, anti-proliferation against K562 and Jurkat: IC50=6.2 and 7.9 µM, respectively). Further investigation of medicinal chemistry conditions yielded compound 29e (inhibiting tubulin polymerisation: IC50=4.8 µM and anti-angiogenesis in Zebrafish: IC50=3.6 µM) based on tubulin and zebrafish assays, which displayed noteworthily nanomolar potency against a variety of leukaemia cell lines (IC50= 0.09-1.22 µM), especially K562 cells where apoptosis was induced. Molecular docking, molecular dynamics (MD) simulation, radioligand binding assay and cellular microtubule networks disruption results showed that 29e stably binds to the tubulin colchicine site. 29e significantly inhibited HUVEC tube formation, migration and invasion in vitro. Anti-angiogenesis in vivo was confirmed by zebrafish xenograft. 29e also prominently blocked K562 cell proliferation and metastasis in blood vessels and surrounding tissues of the zebrafish xenograft model. Together with promising physicochemical property and metabolic stability, 29e could be considered an effective anti-angiogenesis and -leukaemia drug candidate that binds to the tubulin colchicine site.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Colchicine/antagonists & inhibitors , Indoles/pharmacology , Neovascularization, Pathologic/drug therapy , Tubulin Modulators/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Binding Sites/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colchicine/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Zebrafish
14.
J Enzyme Inhib Med Chem ; 37(1): 339-354, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34979843

ABSTRACT

α-Fluorinated chalcones were prepared and evaluated for their cell growth inhibitory properties against six human cancer cell lines. The most potent chalcone 4c demonstrated excellent selective toxicity against cancer cells versus normal human cells, with IC50 values at nanomolar concentration ranges against 5 cancer cell lines. A further study revealed that 4c could bind to the colchicine site of tubulin, disrupt the cell microtubule networks, and effectively inhibit tubulin polymerisation. Cellular-based mechanism studies elucidated that 4c arrested MGC-803 cell cycle at G2/M phase. In addition, 4c dose-dependently caused Caspase-induced apoptosis of MGC-803 cells through mitochondrial dysfunction. Notably, compound 4c was found to inhibit the HUVECs tube formation, migration, and invasion in vitro. Furthermore, our data suggested that treatment with 4c significantly reduced MGC-803 cells metastasis and proliferation in vitro. Overall, this work showed that chalcone hybrid 4c is a potent inhibitor of tubulin assembly with prominent anti-angiogenesis and anti-cancer properties.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Chalcones/pharmacology , Colchicine/antagonists & inhibitors , Neovascularization, Pathologic/drug therapy , Tubulin Modulators/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcones/chemical synthesis , Chalcones/chemistry , Colchicine/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Halogenation , Humans , Molecular Structure , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Polymerization/drug effects , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
15.
Inorg Chem ; 60(23): 18379-18394, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34780170

ABSTRACT

Eight new ruthenium(II) complexes of N,N-chelating pyrazolylbenzimidazole ligands of the general formula [RuII(p-cym)(L)X]+ [where the ligand L is 2-(1H-pyrazol-1-yl)-1H-benzo[d]imidazole (L1) substituted at the 4 position of the pyrazole ring by Cl (L2), Br (L3), or I (L4) and X = Cl- and I-] were synthesized and characterized using various analytical techniques. Complexes 1 and 3 were also characterized by single-crystal X-ray crystallography, and they crystallized as a monoclinic crystal system in space groups P21/n and P21/c, respectively. The complexes display good solution stability at physiological pH 7.4. The iodido-coordinated pyrazolylbenzimidazole ruthenium(II) p-cymene complexes (2, 4, 6, and 8) are more resistant toward hydrolysis and have less tendency to form monoaquated complexes in comparison to their chlorido analogues (1, 3, 5, and 7). The halido-substituted 2-(1H-pyrazol-1-yl)-1H-benzo[d]imidazole ligands, designed as organic-directing molecules, inhibit vascular endothelial growth factor receptor 2 (VEGFR2) phosphorylation. In addition, the ruthenium(II) complexes display a potential to bind to DNA bases. The cytotoxicity profile of the complexes (IC50 ca. 9-12 µM for 4-8) against the triple-negative breast cancer cells (MDA-MB-231) show that most of the complexes are efficient. The lipophilicity and cellular accumulation data of the complexes show a good correlation with the cytotoxicity profile of 1-8. The representative complexes 3 and 7 demonstrate the capability of arresting the cell cycle in the G2/M phase and induce apoptosis. The inhibition of VEGFR2 phosphorylation with the representative ligands L2 and L4 and the corresponding metal complexes 3 and 7 in vitro shows that the organic-directing ligands and their complexes inhibit VEGFR2 phosphorylation. Besides, L2, L4, 3, and 7 inhibit the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and proto-oncogene tyrosine-protein kinase (Src), capable of acting downstream of VEGFR2 as well as independently. Compounds L2, L4, 3, and 7 have a lesser effect on ERK1/2 and more prominently affect Src phosphorylation. We extended the study for L2 and 3 in the Tg(fli1:gfp) zebrafish model and found that L2 is more effective in vivo compared to 3 in inhibiting angiogenesis.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Ligands , Models, Molecular , Molecular Structure , Neovascularization, Physiologic/drug effects , Phosphorylation/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology , Tumor Cells, Cultured , Vascular Endothelial Growth Factor Receptor-2/metabolism , Zebrafish
16.
Eur J Med Chem ; 226: 113872, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34600191

ABSTRACT

Based on biological results of previous synthesized pyrazolyl ureas able to interfere with angiogenesis process, we planned and synthesized the new benzyl-urea derivatives 2-4; some of them showed an interesting anti-proliferative profile and particularly 4e potently inhibited HUVEC proliferation. To shed light on the mechanism of action of 4e, its interactome has been deeply inspected to identify the most prominent protein partners, mainly taking into account kinome and phosphatome, through drug affinity responsive target stability experiments, followed by targeted limited proteolysis analysis. From these studies, PP1γ emerged as the most reliable 4e potential target in HUVEC. Molecular docking simulations on PP1γ were carried out to predict 4e binding mode. To assess its potential anti-angiogenic effect, 4e was tested in vitro to verify interference on kinase and phosphate activities. Overall, our results evidenced for 4e an interesting anti-angiogenic action, probably due to its action at intracellular level on PP1γ signalling pathways.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Neovascularization, Physiologic/drug effects , Pyrazoles/pharmacology , Urea/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Protein Phosphatase 1/antagonists & inhibitors , Protein Phosphatase 1/metabolism , Proteolysis/drug effects , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/chemistry
17.
Bioorg Chem ; 116: 105323, 2021 11.
Article in English | MEDLINE | ID: mdl-34482170

ABSTRACT

Diabetic retinopathy (DR) remains high incidence and accounts for severe impact on vision in diabetics, but its mechanism is still poorly understood. Abnormal migration and proliferation of endothelial cells (ECs) drive neovascular retinopathies, which has an important role in promoting the occurrence and development of DR. In this study, we designed and synthesized a series of PEDF-derived peptides as angiogenesis inhibitors. Especially, compound G24 significantly inhibited the cell proliferation in VEGF-activated human umbilical vein endothelial cells (HUVECs) with IC50 values of 2.88 ± 0.19 µM. Further biological evaluation demonstrated that compound G24 exhibited strong inducing-effects on cell apoptosis and internalization of 67LR, and advanced inhibitory potency in cell migration and angiogenesis formed by HUVECs in vitro. In summary, the optimal compound G24 as a novel angiogenesis inhibitor showed the potentiality in the further research for the treatment for DR.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Eye Proteins/antagonists & inhibitors , Neovascularization, Pathologic/drug therapy , Nerve Growth Factors/antagonists & inhibitors , Peptides/pharmacology , Receptors, Laminin/antagonists & inhibitors , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Eye Proteins/metabolism , Humans , Molecular Structure , Nerve Growth Factors/metabolism , Peptides/chemical synthesis , Peptides/chemistry , Receptors, Laminin/metabolism , Serpins/metabolism , Structure-Activity Relationship
18.
Future Med Chem ; 13(22): 1963-1986, 2021 11.
Article in English | MEDLINE | ID: mdl-34581188

ABSTRACT

Background: Angiogenesis deregulation is often linked to cancer and is thus an essential target. Materials & methods: Twenty-nine compounds were developed as VEGFR-2 inhibitors. Compounds were evaluated to determine their antiangiogenic activity. Results: B1, PB11 and PB16 showed HUVEC's IC50 scores in the submicromolar range. B1, B2 and PB16 reduced cellular migration and capillary tube formation of HUVECs. VEGFR-2 inhibitory activity was found in the nanomolar range: 200 nM of B1, 500 nM of B2 and 600 nM of PB16. B1 and PB16 suppressed the formation of new capillaries on growing CAMs. B1 and PB16 occupied the ATP site and allosteric pocket of VEGFR-2 in docking studies. Conclusion: These compounds can target VEGFR-2 and are endowed with in vitro and in vivo antiangiogenic activity.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Drug Development , Neovascularization, Physiologic/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Thiazolidinediones/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Humans , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Thiazolidinediones/chemical synthesis , Thiazolidinediones/chemistry , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism
19.
Bioorg Chem ; 116: 105350, 2021 11.
Article in English | MEDLINE | ID: mdl-34547645

ABSTRACT

In the present study, two novel series of compounds incorporating naphthyl and pyridyl linker were synthesized and biological assays revealed 5-((6-(2-(5-(2-chlorophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethoxy) naphthalene-2-yl)methylene)thiazolidine-2,4-dione (14b) as the most potent dual inhibitors of vascular endothelial growth factors receptor-2 (VEGFR-2) and histone deacetylase 4 (HDAC4). Compounds 13b, 14b, 17f, and 21f were found to stabilize HDAC4; where, pyridyl linker swords were endowed with higher stabilization effects than naphthyl linker. Also, 13b and 14b showed best inhibitory activity on VEGFR-2 as compared to others. Compound 14b was most potent as evident by in-vitro and in-vivo biological assessments. It displayed anti-angiogenic potential by inhibiting endothelial cell proliferation, migration, tube formation and also suppressed new capillary formation in the growing chick chorioallantoic membranes (CAMs). It showed selectivity and potency towards HDAC4 as compared to other HDAC isoforms. Compound 14b (25 mg/kg, i.p.) also indicated exceptional antitumor efficacy on in-vivo animal xenograft model of human colorectal adenocarcinoma (HT-29). The mechanism of action of 14b was also confirmed by western blot.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Neovascularization, Pathologic/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Thiazolidinediones/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/metabolism , Humans , Mice , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Structure-Activity Relationship , Thiazolidinediones/chemical synthesis , Thiazolidinediones/chemistry , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism
20.
J Med Chem ; 64(18): 13622-13632, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34477381

ABSTRACT

Increased angiogenesis and vascular endothelial growth factor (VEGF) levels contribute to higher metastasis and mortality in uveal melanoma (UM), an aggressive malignancy of the eye in adults. (±)-MRJF22, a prodrug of the sigma (σ) ligand haloperidol metabolite II conjugated with the histone deacetylase (HDAC) inhibitor valproic acid, has previously demonstrated a promising antiangiogenic activity. Herein, the asymmetric synthesis of (R)-(+)-MRJF22 and (S)-(-)-MRJF22 was performed to investigate their contribution to (±)-MRJF22 antiangiogenic effects in human retinal endothelial cells (HREC) and to assess their therapeutic potential in primary human uveal melanoma (UM) 92-1 cell line. While both enantiomers displayed almost identical capabilities to reduce cell viability than the racemic mixture, (S)-(-)-MRJF22 exhibited the highest antimigratory effects in endothelial and tumor cells. Given the fundamental contribution of cell motility to cancer progression, (S)-(-)-MRJF22 may represent a promising candidate for novel antimetastatic therapy in patients with UM.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Butyrophenones/pharmacology , Melanoma/drug therapy , Pentanoic Acids/pharmacology , Piperidines/pharmacology , Prodrugs/pharmacology , Uveal Neoplasms/drug therapy , Valerates/pharmacology , Angiogenesis Inhibitors/chemical synthesis , Butyrophenones/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Pentanoic Acids/chemical synthesis , Piperidines/cerebrospinal fluid , Prodrugs/chemical synthesis , Stereoisomerism , Valerates/cerebrospinal fluid
SELECTION OF CITATIONS
SEARCH DETAIL