Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 520
Filter
1.
Stroke ; 55(9): 2340-2352, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39129597

ABSTRACT

BACKGROUND: TGF (transforming growth factor)-ß pathway is central to blood-brain barrier development as it regulates cross talk between pericytes and endothelial cells. Murine embryos lacking TGFß receptor Alk5 (activin receptor-like kinase 5) in brain pericytes (mutants) display endothelial cell hyperproliferation, abnormal vessel morphology, and gross germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH), leading to perinatal lethality. Mechanisms underlying how ALK5 signaling in pericytes noncell autonomously regulates endothelial cell behavior remain elusive. METHODS: Transcriptomic analysis of human brain pericytes with ALK5 silencing identified differential gene expression. Brain vascular cells isolated from mutant embryonic mice with GMH-IVH and preterm human IVH brain samples were utilized for target validation. Finally, pharmacological and genetic inhibition was used to study the therapeutic effects on GMH-IVH pathology. RESULTS: Herein, we establish that the TGFß/ALK5 pathway robustly represses ANGPT2 (angiopoietin-2) in pericytes via epigenetic remodeling. TGFß-driven SMAD (suppressor of mothers against decapentaplegic) 3/4 associates with TGIF1 (TGFß-induced factor homeobox 1) and HDAC (histone deacetylase) 5 to form a corepressor complex at the Angpt2 promoter, resulting in promoter deacetylation and gene repression. Moreover, murine and human germinal matrix vessels display increased ANGPT2 expression during GMH-IVH. Isolation of vascular cells from murine germinal matrix identifies pericytes as a cellular source of excessive ANGPT2. In addition, mutant endothelial cells exhibit higher phosphorylated TIE2 (tyrosine protein kinase receptor). Pharmacological or genetic inhibition of ANGPT2 in mutants improves germinal matrix vessel morphology and attenuates GMH pathogenesis. Importantly, genetic ablation of Angpt2 in mutant pericytes prevents perinatal lethality, prolonging survival. CONCLUSIONS: This study demonstrates that TGFß-mediated ANGPT2 repression in pericytes is critical for maintaining blood-brain barrier integrity and identifies pericyte-derived ANGPT2 as an important pathological target for GMH-IVH.


Subject(s)
Angiopoietin-2 , Pericytes , Transforming Growth Factor beta , Pericytes/metabolism , Pericytes/pathology , Animals , Mice , Humans , Angiopoietin-2/metabolism , Angiopoietin-2/genetics , Transforming Growth Factor beta/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/genetics , Signal Transduction/physiology , Receptors, Transforming Growth Factor beta/metabolism , Receptors, Transforming Growth Factor beta/genetics , Endothelial Cells/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
2.
Pharmacogenomics J ; 24(4): 22, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992025

ABSTRACT

Bevacizumab-induced hypertension poses a therapeutic challenge and identifying biomarkers for hypertension can enhance therapy safety. Lower plasma levels of VEGF-A, angiopoietin-2, and rs6770663 in KCNAB1 were previously associated with increased risk of bevacizumab-induced hypertension. This study investigated whether these factors independently contribute to grade 2-3 bevacizumab-induced hypertension risk in 277 cancer patients (CALGB/Alliance 90401). Multivariable analyses assessed the independent association of each factor and hypertension. Likelihood ratio test (LRT) evaluated the explanatory significance of combining protein levels and rs6770663 in predicting hypertension. Boostrap was employed to assess the mediation effect of protein levels on the rs6770663 association with hypertension. Lower protein levels and rs6770663 were independently associated with increased hypertension risk. Adding rs6770663 to protein levels improved the prediction of hypertension (LRT p = 0.0002), with no mediation effect observed. Protein levels of VEGF-A, angiopoietin-2 and rs6770663 in KCNAB1 are independent risk factors and, when combined, may improve prediction of bevacizumab-induced hypertension. ClinicalTrials.gov Identifier: NCT00110214.


Subject(s)
Angiopoietin-2 , Bevacizumab , Hypertension , Vascular Endothelial Growth Factor A , Adult , Aged , Female , Humans , Male , Middle Aged , Angiogenesis Inhibitors/adverse effects , Angiopoietin-2/blood , Angiopoietin-2/genetics , Bevacizumab/adverse effects , Bevacizumab/therapeutic use , Hypertension/genetics , Hypertension/chemically induced , Hypertension/blood , Neoplasms/drug therapy , Neoplasms/blood , Neoplasms/genetics , Polymorphism, Single Nucleotide/genetics , Risk Factors , Shab Potassium Channels/genetics , Vascular Endothelial Growth Factor A/blood , Vascular Endothelial Growth Factor A/genetics
3.
Cell Biochem Biophys ; 82(2): 1555-1566, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762714

ABSTRACT

The activation of the angiopoietin (Angpt)-Tie system is linked to endothelial dysfunction during sepsis. Bacterial quorum-sensing molecules function as pathogen-associated molecular patterns. However, their impact on the endothelium and the Angpt-Tie system remains unclear. Therefore, this study investigated whether treatment with N-3-oxododecanoyl homoserine lactone (3OC12-HSL), a quorum-sensing molecule derived from Pseudomonas aeruginosa, impaired endothelial function in human umbilical vein endothelial cells. 3OC12-HSL treatment impaired tube formation even at sublethal concentrations, and immunocytochemistry analysis revealed that it seemed to reduce vascular endothelial-cadherin expression at the cell-cell interface. Upon assessing the mRNA expression patterns of genes associated with the Angpt-Tie axis, the expressions of Angpt2, Forkhead box protein O1, Tie1, and vascular endothelial growth factor 2 were found to be upregulated in the 3OC12-HSL-treated cells. Moreover, western blot analysis revealed that 3OC12-HSL treatment increased Angpt2 expression. A co-immunoprecipitation assay was conducted to assess the effect of 3OC12-HSL on the IQ motif containing GTPase activating protein 1 (IQGAP1) and Rac1 complex and the interaction between these proteins was consistently maintained regardless of 3OC12-HSL treatment. Next, recombinant human (rh)-Angpt1 was added to assess whether it modulated the effects of 3OC12-HSL treatment. rh-Angpt1 addition increased cellular viability, improved endothelial function, and reversed the overall patterns of mRNA and protein expression in endothelial cells treated with 3OC12-HSL. Additionally, it was related to the increased expression of phospho-Akt and the IQGAP1 and Rac1 complex. Collectively, our findings indicated that 3OC12-HSL from Pseudomonas aeruginosa can impair endothelial integrity via the activation of the Angpt-Tie axis, which appeared to be reversed by rh-Angpt1 treatment.


Subject(s)
4-Butyrolactone , Angiopoietin-2 , Homoserine , Human Umbilical Vein Endothelial Cells , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Angiopoietin-2/metabolism , Angiopoietin-2/genetics , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Homoserine/analogs & derivatives , Homoserine/pharmacology , Homoserine/metabolism , Cadherins/metabolism , Cadherins/genetics , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Signal Transduction/drug effects , Antigens, CD/metabolism , Antigens, CD/genetics , Angiopoietin-1/metabolism , Angiopoietin-1/genetics
4.
Sci Rep ; 14(1): 10539, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719941

ABSTRACT

Abnormal angiogenesis leads to tumor progression and metastasis in colorectal cancer (CRC). This study aimed to elucidate the association between angiogenesis-related genes, including VEGF-A, ANGPT-1, and ANGPT-2 with both metastatic and microsatellite alterations at selected tetranucleotide repeats (EMAST) subtypes of CRC. We conducted a thorough assessment of the ANGPT-1, ANGPT-2, and VEGF-A gene expression utilizing publicly available RNA sequencing and microarray datasets. Then, the experimental validation was performed in 122 CRC patients, considering their disease metastasis and EMAST+/- profile by using reverse transcription polymerase chain reaction (RT-PCR). Subsequently, a competing endogenous RNA (ceRNA) network associated with these angiogenesis-related genes was constructed and analyzed. The expression level of VEGF-A and ANGPT-2 genes were significantly higher in tumor tissues as compared with normal adjacent tissues (P-value < 0.001). Nevertheless, ANGPT-1 had a significantly lower expression in tumor samples than in normal colon tissue (P-value < 0.01). We identified a significantly increased VEGF-A (P-value = 0.002) and decreased ANGPT-1 (P-value = 0.04) expression in EMAST+ colorectal tumors. Regarding metastasis, a significantly increased VEGF-A and ANGPT-2 expression (P-value = 0.001) and decreased ANGPT-1 expression (P-value < 0.05) were established in metastatic CRC patients. Remarkably, co-expression analysis also showed a strong correlation between ANGPT-2 and VEGF-A gene expressions. The ceRNA network was constructed by ANGPT-1, ANGPT-2, VEGF-A, and experimentally validated miRNAs (hsa-miR-190a-3p, hsa-miR-374c-5p, hsa-miR-452-5p, and hsa-miR-889-3p), lncRNAs (AFAP1-AS1, KCNQ1OT1 and MALAT1), and TFs (Sp1, E2F1, and STAT3). Network analysis revealed that colorectal cancer is amongst the 82 significant pathways. We demonstrated a significant differential expression of VEGF-A and ANGPT-1 in colorectal cancer patients exhibiting the EMAST+ phenotype. This finding provides novel insights into the molecular pathogenesis of colorectal cancer, specifically in EMAST subtypes. Yet, the generalization of in silico findings to EMAST+ colorectal cancer warrants future experimental investigations. In the end, this study proposes that the EMAST biomarker could serve as an additional perspective on CMS4 biology which is well-defined by activated angiogenesis and worse overall survival.


Subject(s)
Angiopoietin-1 , Angiopoietin-2 , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic , Vascular Endothelial Growth Factor A , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Male , Female , Middle Aged , Neoplasm Metastasis , Aged , Microsatellite Repeats/genetics , Gene Expression Profiling , Gene Regulatory Networks , Angiogenesis
5.
Pediatr Blood Cancer ; 71(7): e31032, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38711167

ABSTRACT

BACKGROUND: Angiopoietin-2 (Ang-2) is increased in the blood of patients with kaposiform lymphangiomatosis (KLA) and kaposiform hemangioendothelioma (KHE). While the genetic causes of KHE are not clear, a somatic activating NRASQ61R mutation has been found in the lesions of KLA patients. PROCEDURE: Our study tested the hypothesis that the NRASQ61R mutation drives elevated Ang-2 expression in endothelial cells. Ang-2 was measured in human endothelial progenitor cells (EPC) expressing NRASQ61R and a genetic mouse model with endothelial targeted NRASQ61R. To determine the signaling pathways driving Ang-2, NRASQ61R EPC were treated with signaling pathway inhibitors. RESULTS: Ang-2 levels were increased in EPC expressing NRASQ61R compared to NRASWT by Western blot analysis of cell lysates and ELISA of the cell culture media. Ang-2 levels were elevated in the blood of NRASQ61R mutant mice. NRASQ61R mutant mice also had reduced platelet counts and splenomegaly with hypervascular lesions, like some KLA patients. mTOR inhibitor rapamycin attenuated Ang-2 expression by NRASQ61R EPC. However, MEK1/2 inhibitor trametinib was more effective blocking increases in Ang-2. CONCLUSIONS: Our studies show that the NRASQ61R mutation in endothelial cells induces Ang-2 expression in vitro and in vivo. In cultured human endothelial cells, NRASQ61R drives elevated Ang-2 through MAP kinase and mTOR-dependent signaling pathways.


Subject(s)
Angiopoietin-2 , Membrane Proteins , Animals , Humans , Mice , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Transgenic , Mutation , Signal Transduction
6.
J Clin Invest ; 134(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38747287

ABSTRACT

Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.


Subject(s)
Angiopoietin-2 , Forkhead Box Protein O1 , Ion Channels , Lymphangiogenesis , Lymphedema , Receptor, TIE-1 , Signal Transduction , Animals , Humans , Mice , ADAM17 Protein/metabolism , ADAM17 Protein/genetics , Angiopoietin-2/metabolism , Angiopoietin-2/genetics , Endothelial Cells/metabolism , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Ion Channels/metabolism , Ion Channels/genetics , Lymphangiogenesis/genetics , Lymphedema/metabolism , Lymphedema/genetics , Lymphedema/pathology , Mechanotransduction, Cellular , Receptor, TIE-1/metabolism , Receptor, TIE-1/genetics
7.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2178-2187, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812233

ABSTRACT

This paper aims to explore the effect of Xuming Decoction in the Records of Proved Prescriptions, Ancient and Modern on cerebral ischemic injury and angiogenesis in the rat model of acute cerebral infarction. SD rats were randomized into 6 groups: sham group, model group, low-, medium-, and high-dose(5.13, 10.26, and 20.52 g·kg~(-1), respectively) Xuming Decoction groups, and butylphthalide(0.06 g·kg~(-1)) group. After the successful establishment of the rat model by middle cerebral artery occlusion(MCAO), rats in the sham and model groups were administrated with distilled water and those in other groups with corresponding drugs for 7 consecutive days. After the neurological function was scored, all the rats were sacrificed, and the brain tissue samples were collected. The degree of cerebral ischemic injury was assessed by the neurological deficit score and staining with 2,3,5-triphenyltetrazolium chloride. Hematoxylin-eosin staining was performed to observe the pathological changes in the brain. Transmission electron microscopy was employed to observe the ultrastructures of neurons and microvascular endothelial cells(ECs) on the ischemic side of the brain tissue. Immunofluorescence assay was employed to detect the expression of von Willebrand factor(vWF) and hematopoietic progenitor cell antigen CD34(CD34) in the ischemic brain tissue. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of Runt-related transcription factor 1(RUNX1), vascular endothelial growth factor(VEGF), angiopoietin-1(Ang-1), angiopoietin-2(Ang-2), and VEGF receptor 2(VEGFR2) in the ischemic brain tissue. The results showed that compared with the sham group, the model group showed increased neurological deficit score and cerebral infarction area(P<0.01), pathological changes, and damaged ultrastructure of neurons and microvascular ECs in the ischemic brain tissue. Furthermore, the modeling up-regulated the mRNA levels of RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01) and the protein levels of vWF, CD34, RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.05 or P<0.01). Compared with the model group, high-dose Xuming Decoction and butylphthalide decreased the neurological deficit score and cerebral infarction area(P<0.01) and alleviated the pathological changes and damage of the ultrastructure of neurons and microvascular ECs in the ischemic brain tissue. Moreover, they up-regulated the mRNA levels of RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01) and the protein levels of vWF, CD34, RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01). The results suggest that Xuming Decoction in the Records of Proved Prescriptions, Ancient and Modern can promote the angiogenesis and collateral circulation establishment to alleviate neurological dysfunction of the ischemic brain tissue in MCAO rats by regulating the RUNX1/VEGF pathway.


Subject(s)
Brain Ischemia , Cerebral Infarction , Disease Models, Animal , Drugs, Chinese Herbal , Rats, Sprague-Dawley , Animals , Rats , Male , Drugs, Chinese Herbal/pharmacology , Cerebral Infarction/drug therapy , Cerebral Infarction/metabolism , Cerebral Infarction/genetics , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/genetics , Humans , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Neovascularization, Physiologic/drug effects , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Angiogenesis
8.
JCI Insight ; 9(10)2024 May 22.
Article in English | MEDLINE | ID: mdl-38775153

ABSTRACT

Small cell lung cancer (SCLC) is the most aggressive lung cancer entity with an extremely limited therapeutic outcome. Most patients are diagnosed at an extensive stage. However, the molecular mechanisms driving SCLC invasion and metastasis remain largely elusive. We used an autochthonous SCLC mouse model and matched samples from patients with primary and metastatic SCLC to investigate the molecular characteristics of tumor metastasis. We demonstrate that tumor cell invasion and liver metastasis in SCLC are triggered by an Angiopoietin-2 (ANG-2)/Integrin ß-1-dependent pathway in tumor cells, mediated by focal adhesion kinase/Src kinase signaling. Strikingly, CRISPR-Cas9 KO of Integrin ß-1 or blocking Integrin ß-1 signaling by an anti-ANG-2 treatment abrogates liver metastasis formation in vivo. Interestingly, analysis of a unique collection of matched samples from patients with primary and metastatic SCLC confirmed a strong increase of Integrin ß-1 in liver metastasis in comparison with the primary tumor. We further show that ANG-2 blockade combined with PD-1-targeted by anti-PD-1 treatment displays synergistic treatment effects in SCLC. Together, our data demonstrate a fundamental role of ANG-2/Integrin ß-1 signaling in SCLC cells for tumor cell invasion and liver metastasis and provide a potentially new effective treatment strategy for patients with SCLC.


Subject(s)
Angiopoietin-2 , Integrin beta1 , Liver Neoplasms , Lung Neoplasms , Signal Transduction , Small Cell Lung Carcinoma , Animals , Female , Humans , Male , Mice , Angiopoietin-2/metabolism , Angiopoietin-2/genetics , Cell Line, Tumor , Integrin beta1/metabolism , Integrin beta1/genetics , Liver Neoplasms/secondary , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Neoplasm Invasiveness , Neoplasm Metastasis , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/drug therapy
9.
Microvasc Res ; 154: 104694, 2024 07.
Article in English | MEDLINE | ID: mdl-38723844

ABSTRACT

INTRODUCTION: Critical illness is associated with organ failure, in which endothelial hyperpermeability and tissue edema play a major role. The endothelial angiopoietin/Tie2 system, a regulator of endothelial permeability, is dysbalanced during critical illness. Elevated circulating angiopoietin-2 and decreased Tie2 receptor levels are reported, but it remains unclear whether they cause edema independent of other critical illness-associated alterations. Therefore, we have studied the effect of angiopoietin-2 administration and/or reduced Tie2 expression on microvascular leakage and edema under normal conditions. METHODS: Transgenic male mice with partial deletion of Tie2 (heterozygous exon 9 deletion, Tie2+/-) and wild-type controls (Tie2+/+) received 24 or 72 pg/g angiopoietin-2 or PBS as control (n = 12 per group) intravenously. Microvascular leakage and edema were determined by Evans blue dye (EBD) extravasation and wet-to-dry weight ratio, respectively, in lungs and kidneys. Expression of molecules related to endothelial angiopoietin/Tie2 signaling were determined by ELISA and RT-qPCR. RESULTS: In Tie2+/+ mice, angiopoietin-2 administration increased EBD extravasation (154 %, p < 0.05) and wet-to-dry weight ratio (133 %, p < 0.01) in lungs, but not in the kidney compared to PBS. Tie2+/- mice had higher pulmonary (143 %, p < 0.001), but not renal EBD extravasation, compared to wild-type control mice, whereas a more pronounced wet-to-dry weight ratio was observed in lungs (155 %, p < 0.0001), in contrast to a minor higher wet-to-dry weight ratio in kidneys (106 %, p < 0.05). Angiopoietin-2 administration to Tie2+/- mice did not further increase pulmonary EBD extravasation, pulmonary wet-to-dry weight ratio, or renal wet-to-dry weight ratio. Interestingly, angiopoietin-2 administration resulted in an increased renal EBD extravasation in Tie2+/- mice compared to Tie2+/- mice receiving PBS. Both angiopoietin-2 administration and partial deletion of Tie2 did not affect circulating angiopoietin-1, soluble Tie2, VEGF and NGAL as well as gene expression of angiopoietin-1, -2, Tie1, VE-PTP, ELF-1, Ets-1, KLF2, GATA3, MMP14, Runx1, VE-cadherin, VEGFα and NGAL, except for gene and protein expression of Tie2, which was decreased in Tie2+/- mice compared to Tie2+/+ mice. CONCLUSIONS: In mice, the microvasculature of the lungs is more vulnerable to angiopoietin-2 and partial deletion of Tie2 compared to those in the kidneys with respect to microvascular leakage and edema.


Subject(s)
Angiopoietin-2 , Capillary Permeability , Lung , Receptor, TIE-2 , Animals , Receptor, TIE-2/metabolism , Receptor, TIE-2/genetics , Angiopoietin-2/metabolism , Angiopoietin-2/genetics , Male , Lung/blood supply , Lung/metabolism , Lung/pathology , Kidney/blood supply , Kidney/metabolism , Signal Transduction , Mice, Knockout , Mice , Mice, Inbred C57BL , Pulmonary Edema/metabolism , Pulmonary Edema/genetics , Pulmonary Edema/pathology , Pulmonary Edema/chemically induced , Pulmonary Edema/physiopathology , Disease Models, Animal , Edema/metabolism , Mice, Transgenic , Ribonuclease, Pancreatic
10.
Ann Clin Transl Neurol ; 11(6): 1590-1603, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38655722

ABSTRACT

OBJECTIVE: Moyamoya angiopathy (MA) is a rare cerebrovascular disorder characterized by recurrent ischemic/hemorrhagic strokes due to progressive occlusion of the intracranial carotid arteries. The lack of reliable disease severity biomarkers led us to investigate molecular features of a Caucasian cohort of MA patients. METHODS: The participants consisted of 30 MA patients and 40 controls. We measured cerebrospinal fluid (CSF) levels of angiogenic/inflammatory factors (ELISA). We then applied quantitative real-time PCR on cerebral artery specimens for expression analyses of angiogenic factors. By an immunoassay based on microfluidic technology, we examined the potential correlations between plasma protein expression and MA clinical progression. A RNA interference approach toward Ring Finger Protein 213 (RNF213) and a tube formation assay were applied in cellular model. RESULTS: We detected a statistically significant (p < 0.000001) up-regulation of Angiopoietin-2 (Ang-2) in CSF and stenotic middle cerebral arteries (RQ >2) of MA patients compared to controls. A high Ang-2 plasma concentration (p = 0.018) was associated with unfavorable outcome in a subset of MA patients. ROC curve analyses indicated Ang-2 as diagnostic CSF biomarker (>3741 pg/mL) and prognostic plasma biomarker (>1162 pg/mL), to distinguish stable-from-progressive MA. Consistently, MA cellular model showed a significant up-regulation (RQ >2) of Ang-2 in RNF213 silenced condition. INTERPRETATION: Our results pointed out Ang-2 as a reliable biomarker mirroring arterial steno-occlusion and vascular instability of MA in CSF and blood, providing a candidate factor for patient stratification. This pilot study may pave the way to the validation of a biomarker to identify progressive MA patients deserving a specific treatment path.


Subject(s)
Angiopoietin-2 , Moyamoya Disease , Humans , Moyamoya Disease/genetics , Moyamoya Disease/cerebrospinal fluid , Moyamoya Disease/diagnosis , Angiopoietin-2/cerebrospinal fluid , Angiopoietin-2/genetics , Angiopoietin-2/blood , Male , Female , Adult , Middle Aged , Prognosis , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Ubiquitin-Protein Ligases/genetics , Young Adult , Adenosine Triphosphatases
11.
PLoS One ; 18(11): e0294745, 2023.
Article in English | MEDLINE | ID: mdl-38015876

ABSTRACT

PURPOSE: Angiopoietin (Ang) 2 is released from vascular endothelial cells by the stimulation of vascular endothelial growth factor (VEGF)A. Ang2 increases the expression of leukocyte adhesion molecules on endothelial cells via nuclear factor κB. The aim of this study was to evaluate the effects of Ang2 and VEGFA on ocular autoimmune inflammation. METHODS: We measured the concentrations of Ang2 and VEGFA in vitreous samples among patients with uveitis. Vitreous samples were collected from 16 patients with idiopathic uveitis (uveitis group) and 16 patients with non-inflammatory eye disease (control group). Experimental autoimmune uveoretinitis (EAU) was induced in B10.BR mice with a human interphotoreceptor retinoid-binding protein-derived peptide. The retinochoroidal tissues of the EAU mice were removed, and the mRNA levels of Ang2 and VEGFA were examined. EAU mice treated with anti-Ang2, anti-VEGFA, a combination of anti-Ang2 and anti-VEGFA, anti-Ang2/VEGFA bispecific, or IgG control antibodies were clinically and histopathologically evaluated. RESULTS: The protein levels of Ang2 and VEGFA were significantly higher in the vitreous samples of patients with uveitis than in controls (P<0.05). The retinochoroidal mRNA levels of Ang2 and VEGFA were significantly upregulated in EAU mice compared to controls (n = 6, P<0.05). Although there was no significant difference, treatment with anti-VEGFA antibody reduced the clinical and histopathological scores. However, treatment with anti-Ang2 antibody reduced the clinical and histopathological scores (n = 18-20, P<0.05). Furthermore, these scores were further decreased when treated by inhibiting both Ang2 and VEGFA. CONCLUSIONS: Based on these results, VEGFA and Ang2 were shown to be upregulated locally in the eye of both uveitis patients and models of uveitis. Dual inhibition of Ang2 and VEGFA is suggested to be a new therapeutic strategy for uveitis.


Subject(s)
Autoimmune Diseases , Uveitis , Animals , Humans , Mice , Angiopoietin-2/genetics , Disease Models, Animal , Endothelial Cells/metabolism , Inflammation/pathology , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factors
12.
PLoS One ; 18(11): e0293673, 2023.
Article in English | MEDLINE | ID: mdl-37972011

ABSTRACT

BACKGROUND: The endothelial angiopoietin/Tie2 system is an important regulator of endothelial permeability and targeting Tie2 reduces hemorrhagic shock-induced organ edema in males. However, sexual dimorphism of the endothelium has not been taken into account. This study investigated whether there are sex-related differences in the endothelial angiopoietin/Tie2 system and edema formation. METHODS: Adult male and female heterozygous Tie2 knockout mice (Tie2+/-) and wild-type controls (Tie2+/+) were included (n = 9 per group). Renal and pulmonary injury were determined by wet/dry weight ratio and H&E staining of tissue sections. Protein levels were studied in plasma by ELISA and pulmonary and renal mRNA expression levels by RT-qPCR. RESULTS: In Tie2+/+ mice, females had higher circulating angiopoietin-2 (138%, p<0.05) compared to males. Gene expression of angiopoietin-1 (204%, p<0.01), angiopoietin-2 (542%, p<0.001) were higher in females compared to males in kidneys, but not in lungs. Gene expression of Tie2, Tie1 and VE-PTP were similar between males and females in both organs. Renal and pulmonary wet/dry weight ratio did not differ between Tie2+/+ females and males. Tie2+/+ females had lower circulating NGAL (41%, p<0.01) compared to males, whereas renal NGAL and KIM1 gene expression was unaffected. Interestingly, male Tie2+/- mice had 28% higher renal wet/dry weight ratio (p<0.05) compared to Tie2+/+ males, which was not observed in females nor in lungs. Partial deletion of Tie2 did not affect circulating angiopoietin-1 or angiopoietin-2, but soluble Tie2 was 44% and 53% lower in males and females, respectively, compared to Tie2+/+ mice of the same sex. Renal and pulmonary gene expression of angiopoietin-1, angiopoietin-2, estrogen receptors and other endothelial barrier regulators was comparable between Tie2+/- and Tie2+/+ mice in both sexes. CONCLUSION: Female sex seems to protect against renal, but not pulmonary edema in heterozygous Tie2 knock-out mice. This could not be explained by sex dimorphism in the endothelial angiopoietin/Tie2 system.


Subject(s)
Angiopoietin-1 , Angiopoietin-2 , Animals , Female , Male , Mice , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Angiopoietins , Edema , Endothelium/metabolism , Kidney/metabolism , Lipocalin-2 , Receptor, TIE-2/genetics , Receptor, TIE-2/metabolism
13.
J Clin Invest ; 133(20)2023 10 16.
Article in English | MEDLINE | ID: mdl-37843277

ABSTRACT

Improving the management of metastasis in pancreatic neuroendocrine tumors (PanNETs) is critical, as nearly half of patients with PanNETs present with liver metastases, and this accounts for the majority of patient mortality. We identified angiopoietin-2 (ANGPT2) as one of the most upregulated angiogenic factors in RNA-Seq data from human PanNET liver metastases and found that higher ANGPT2 expression correlated with poor survival rates. Immunohistochemical staining revealed that ANGPT2 was localized to the endothelial cells of blood vessels in PanNET liver metastases. We observed an association between the upregulation of endothelial ANGPT2 and liver metastatic progression in both patients and transgenic mouse models of PanNETs. In human and mouse PanNET liver metastases, ANGPT2 upregulation coincided with poor T cell infiltration, indicative of an immunosuppressive tumor microenvironment. Notably, both pharmacologic inhibition and genetic deletion of ANGPT2 in PanNET mouse models slowed the growth of PanNET liver metastases. Furthermore, pharmacologic inhibition of ANGPT2 promoted T cell infiltration and activation in liver metastases, improving the survival of mice with metastatic PanNETs. These changes were accompanied by reduced plasma leakage and improved vascular integrity in metastases. Together, these findings suggest that ANGPT2 blockade may be an effective strategy for promoting T cell infiltration and immunostimulatory reprogramming to reduce the growth of liver metastases in PanNETs.


Subject(s)
Liver Neoplasms , Neuroendocrine Tumors , Pancreatic Neoplasms , Animals , Humans , Mice , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Endothelial Cells/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Mice, Transgenic , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , T-Lymphocytes/pathology , Tumor Microenvironment
14.
Proc Natl Acad Sci U S A ; 120(29): e2303740120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428914

ABSTRACT

Defining reliable surrogate markers and overcoming drug resistance are the most challenging issues for improving therapeutic outcomes of antiangiogenic drugs (AADs) in cancer patients. At the time of this writing, no biomarkers are clinically available to predict AAD therapeutic benefits and drug resistance. Here, we uncovered a unique mechanism of AAD resistance in epithelial carcinomas with KRAS mutations that targeted angiopoietin 2 (ANG2) to circumvent antivascular endothelial growth factor (anti-VEGF) responses. Mechanistically, KRAS mutations up-regulated the FOXC2 transcription factor that directly elevated ANG2 expression at the transcriptional level. ANG2 bestowed anti-VEGF resistance as an alternative pathway to augment VEGF-independent tumor angiogenesis. Most colorectal and pancreatic cancers with KRAS mutations were intrinsically resistant to monotherapies of anti-VEGF or anti-ANG2 drugs. However, combination therapy with anti-VEGF and anti-ANG2 drugs produced synergistic and potent anticancer effects in KRAS-mutated cancers. Together, these data demonstrate that KRAS mutations in tumors serve as a predictive marker for anti-VEGF resistance and are susceptible to combination therapy with anti-VEGF and anti-ANG2 drugs.


Subject(s)
Carcinoma , Endothelial Growth Factors , Humans , Endothelial Growth Factors/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Angiopoietin-1/metabolism
15.
Genet Test Mol Biomarkers ; 27(6): 193-198, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37382908

ABSTRACT

Background: Angiopoietin-2 (Ang2)-mediated angiogenesis plays a crucial role in the pathogenesis of vascular-rich cancers. However, the genetic polymorphism and expression level of Ang2 in patients with primary liver cancer remain unknown. Methods: This study included 234 primary liver cancer patients and 199 healthy controls. The expression levels of Ang2 in liver cancer tissues and plasma were determined. Peripheral blood samples were collected to test five ANGPT2 single nucleotide polymorphisms (rs2442598, rs734701, rs1823375, rs11137037, and rs12674822). Results: Plasma Ang2 levels in patients with liver cancer were upregulated compared with that in healthy controls. The upregulation of plasma Ang2 levels was significantly associated with vascular invasion, metastasis, and clinical stage. Notably, the transcription level of ANGPT2 was elevated in tumor tissues compared with para-carcinoma tissues. Individuals with the TT genotype at rs2442598 and genotype AC and AC+CC at rs11137037 had higher liver cancer risk compared with healthy controls. Conclusions: Upregulated Ang2 levels in blood plasma and cancer tissues of liver cancer patients confirm that Ang2 plays a vital role in the pathogenesis of liver cancer. ANGPT2 rs2442588 and rs11137037 are associated with liver cancer risk, thereby highlighting their role in screening individuals susceptible to liver cancer.


Subject(s)
Angiopoietin-2 , Liver Neoplasms , Humans , Angiopoietin-2/biosynthesis , Angiopoietin-2/genetics , East Asian People , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Polymorphism, Single Nucleotide/genetics
16.
Gene ; 878: 147585, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37355149

ABSTRACT

The endocannabinoid system receptors, cannabinoid receptors type-1 (CBR-1) and -2 (CBR-2), are implicated in several behavioral and cognitive processes. Many studies have indicated a correlation between cannabinoid receptors and angiogenesis. The current study aims to reveal the possible molecular signaling involved in brain angiogenesis induced by the activation of CBR-1 and CBR-2. We investigated whether the synthetic cannabinoid XLR-11, an agonist of CBR-1 and CBR-2, influences the mRNA and protein expression of vascular endothelial growth factor (VEGF), angiopoietin-1 (ANG1) and -2 (ANG2) in human brain microvascular endothelial cells (hBMVEs). Furthermore, we determined the phosphorylation of glycogen synthase kinase 3 beta (GSK3B) expression. Treatment of hBMVEs cells with XLR-11 elevated the mRNA levels of VEGF, ANG1, and ANG2. The secretion of these proangiogenic factors was increased in the media. Furthermore, the intracellular expression of VEGF, ANG1, ANG2, and GSK3B was significantly increased. This current research provides a new possible approach by targeting the cannabinoid receptors to control and regulate brain angiogenesis for treating a variety of angiogenesis-related diseases. This could be achived by using different agonists or antagonists of the cannabinoid receptors based on the nature of the diseases.


Subject(s)
Cannabinoids , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Vascular Endothelial Growth Factors/metabolism , Cannabinoids/pharmacology , RNA, Messenger/metabolism , Brain/metabolism , Receptors, Cannabinoid/metabolism , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Receptor, TIE-2/metabolism
17.
Arterioscler Thromb Vasc Biol ; 43(8): 1384-1403, 2023 08.
Article in English | MEDLINE | ID: mdl-37288572

ABSTRACT

BACKGROUND: Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by arteriovenous malformations and blood vessel enlargements. However, there are no effective drug therapies to combat arteriovenous malformation formation in patients with HHT. Here, we aimed to address whether elevated levels of ANG2 (angiopoietin-2) in the endothelium is a conserved feature in mouse models of the 3 major forms of HHT that could be neutralized to treat brain arteriovenous malformations and associated vascular defects. In addition, we sought to identify the angiogenic molecular signature linked to HHT. METHODS: Cerebrovascular defects, including arteriovenous malformations and increased vessel calibers, were characterized in mouse models of the 3 common forms of HHT using transcriptomic and dye injection labeling methods. RESULTS: Comparative RNA sequencing analyses of isolated brain endothelial cells revealed a common, but unique proangiogenic transcriptional program associated with HHT. This included a consistent upregulation in cerebrovascular expression of ANG2 and downregulation of its receptor Tyr kinase with Ig and EGF homology domains (TIE2/TEK) in HHT mice compared with controls. Furthermore, in vitro experiments revealed TEK signaling activity was hampered in an HHT setting. Pharmacological blockade of ANG2 improved brain vascular pathologies in all HHT models, albeit to varying degrees. Transcriptomic profiling further indicated that ANG2 inhibition normalized the brain vasculature by impacting a subset of genes involved in angiogenesis and cell migration processes. CONCLUSIONS: Elevation of ANG2 in the brain vasculature is a shared trait among the mouse models of the common forms of HHT. Inhibition of ANG2 activity can significantly limit or prevent brain arteriovenous malformation formation and blood vessel enlargement in HHT mice. Thus, ANG2-targeted therapies may represent a compelling approach to treat arteriovenous malformations and vascular pathologies related to all forms of HHT.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Animals , Mice , Telangiectasia, Hereditary Hemorrhagic/drug therapy , Telangiectasia, Hereditary Hemorrhagic/genetics , Endothelial Cells/metabolism , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Arteriovenous Malformations/metabolism , Phenotype
18.
Transl Vis Sci Technol ; 12(5): 17, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37191621

ABSTRACT

Purpose: Anti-vascular endothelial growth factor (anti-VEGF) therapies, which attenuate the capacity of VEGF to bind to VEGF receptors, are standard-of-care options for various retinal disorders that are characterized by pathologic retinal angiogenesis and vascular permeability. Multiple receptors and ligands have also been reported as being involved in these pathways, including angiopoietin-1 (ANG1) and angiopoietin-2 (ANG2). Methods: Electrochemiluminescence immunoassays were used to detect human VEGF (hVEGF), as well as rabbit ANG2 and basic fibroblast growth factor protein levels in vitreous samples derived from a study evaluating the efficacy of the anti-VEGF agents ranibizumab, aflibercept, and brolucizumab in an hVEGF165-induced rabbit retinal vascular hyperpermeability model. Results: hVEGF was completely suppressed in rabbit vitreous after anti-VEGF treatment for 28 days. ANG2 protein in vitreous and ANGPT2 mRNA in retina tissue were similarly suppressed, although the anti-VEGF agents do not directly bind to ANG2. Aflibercept demonstrated the greatest inhibitory effect in ANG2 levels in vitreous, which correlated with strong, durable suppression of intraocular hVEGF levels. Conclusions: This study explored the effects of anti-VEGF therapies beyond direct binding of VEGF by evaluating protein levels and the expression of target genes involved in angiogenesis and associated molecular mechanisms in the rabbit retina and choroid. Translational Relevance: In vivo data suggest that anti-VEGF agents currently used for the treatment of retinal diseases could provide beneficial effects beyond direct binding of VEGF, including suppression of ANG2 protein and ANGPT2 mRNA.


Subject(s)
Angiopoietin-2 , Vascular Endothelial Growth Factor A , Animals , Rabbits , Humans , Vascular Endothelial Growth Factor A/genetics , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Vascular Endothelial Growth Factors , Receptors, Vascular Endothelial Growth Factor , Neovascularization, Pathologic , RNA, Messenger/metabolism
19.
Cancer Res ; 83(12): 1968-1983, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37093870

ABSTRACT

T-cell position in the tumor microenvironment determines the probability of target encounter and tumor killing. CD8+ T-cell exclusion from the tumor parenchyma is associated with poor response to immunotherapy, and yet the biology that underpins this distinct pattern remains unclear. Here we show that the vascular destabilizing factor angiopoietin-2 (ANGPT2) causes compromised vascular integrity in the tumor periphery, leading to impaired T-cell infiltration to the tumor core. The spatial regulation of ANGPT2 in whole tumor cross-sections was analyzed in conjunction with T-cell distribution, vascular integrity, and response to immunotherapy in syngeneic murine melanoma models. T-cell exclusion was associated with ANGPT2 upregulation and elevated vascular leakage at the periphery of human and murine melanomas. Both pharmacologic and genetic blockade of ANGPT2 promoted CD8+ T-cell infiltration into the tumor core, exerting antitumor effects. Importantly, the reversal of T-cell exclusion following ANGPT2 blockade not only enhanced response to anti-PD-1 immune checkpoint blockade therapy in immunogenic, therapy-responsive mouse melanomas, but it also rendered nonresponsive tumors susceptible to immunotherapy. Therapeutic response after ANGPT2 blockade, driven by improved CD8+ T-cell infiltration to the tumor core, coincided with spatial TIE2 signaling activation and increased vascular integrity at the tumor periphery where endothelial expression of adhesion molecules was reduced. These data highlight ANGPT2/TIE2 signaling as a key mediator of T-cell exclusion and a promising target to potentiate immune checkpoint blockade efficacy in melanoma. SIGNIFICANCE: ANGPT2 limits the efficacy of immunotherapy by inducing vascular destabilization at the tumor periphery to promote T-cell exclusion.


Subject(s)
Angiopoietin-2 , Melanoma , Humans , Mice , Animals , Angiopoietin-2/genetics , Immune Checkpoint Inhibitors , Melanoma/therapy , Immunotherapy , CD8-Positive T-Lymphocytes/metabolism , Tumor Microenvironment
20.
Braz J Microbiol ; 54(2): 791-801, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36877445

ABSTRACT

Helicobacter pylori colonizes the stomach and induces an inflammatory response that can develop into gastric pathologies including cancer. The infection can alter the gastric vasculature by the deregulation of angiogenic factors and microRNAs. In this study, we investigate the expression level of pro-angiogenic genes (ANGPT2, ANGPT1, receptor TEK), and microRNAs (miR-135a, miR-200a, miR-203a) predicted to regulate those genes, using H. pylori co-cultures with gastric cancer cell lines. In vitro infections of different gastric cancer cell lines with H. pylori strains were performed, and the expression of ANGPT1, ANGPT2, and TEK genes, and miR-135a, miR-200a, and miR-203a, was quantified after 24 h of infection (h.p.i.). We performed a time course experiment of H. pylori 26695 infections in AGS cells at 6 different time points (3, 6, 12, 28, 24, and 36 h.p.i.). The angiogenic response induced by supernatants of non-infected and infected cells at 24 h.p.i. was evaluated in vivo, using the chicken chorioallantoic membrane (CAM) assay. In response to infection, ANGPT2 mRNA was upregulated at 24 h.p.i, and miR-203a was downregulated in AGS cells co-cultured with different H. pylori strains. The time course of H. pylori 26695 infection in AGS cells showed a gradual decrease of miR-203a expression concomitant with an increase of ANGPT2 mRNA and protein expression. Expression of ANGPT1 and TEK mRNA or protein could not be detected in any of the infected or non-infected cells. CAM assays showed that the supernatants of AGS-infected cells with 26695 strain induced a significantly higher angiogenic and inflammatory response. Our results suggest that H. pylori could contribute to the process of carcinogenesis by downregulating miR-203a, which further promotes angiogenesis in gastric mucosa by increasing ANGPT2 expression. Further investigation is needed to elucidate the underlying molecular mechanisms.


Subject(s)
Helicobacter Infections , Helicobacter pylori , MicroRNAs , Stomach Neoplasms , Humans , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Cell Line , Cell Line, Tumor , Gastric Mucosa/metabolism , Gastric Mucosa/microbiology , Helicobacter Infections/complications , Helicobacter pylori/genetics , MicroRNAs/genetics , RNA, Messenger/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL