Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.581
1.
Trop Anim Health Prod ; 56(5): 182, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38825622

Proteomics, the large-scale study of proteins in biological systems has emerged as a pivotal tool in the field of animal and veterinary sciences, mainly for investigating local and rustic breeds. Proteomics provides valuable insights into biological processes underlying animal growth, reproduction, health, and disease. In this review, we highlight the key proteomics technologies, methodologies, and their applications in domestic animals, particularly in the tropical context. We also discuss advances in proteomics research, including integration of multi-omics data, single-cell proteomics, and proteogenomics, all of which are promising for improving animal health, adaptation, welfare, and productivity. However, proteomics research in domestic animals faces challenges, such as sample preparation variation, data quality control, privacy and ethical considerations relating to animal welfare. We also provide recommendations for overcoming these challenges, emphasizing the importance of following best practices in sample preparation, data quality control, and ethical compliance. We therefore aim for this review to harness the full potential of proteomics in advancing our understanding of animal biology and ultimately improve animal health and productivity in local breeds of diverse animal species in a tropical context.


Proteomics , Animals , Animal Husbandry/methods , Tropical Climate , Animals, Domestic
2.
Sci Rep ; 14(1): 12621, 2024 06 01.
Article En | MEDLINE | ID: mdl-38824201

Anaplasma and Ehrlichia are tick-borne bacterial pathogens that cause anaplasmoses and ehrlichioses in humans and animals. In this study, we examined the prevalence of Anaplasma and Ehrlichia species in ticks and domesticated animals in Suizhou County, Hubei Province in the central China. We used PCR amplification and DNA sequencing of the 16S rRNA, groEL, and gltA genes to analyze. We collected 1900 ticks, including 1981 Haemaphysalis longicornis and 9 Rhipicephalus microplus, 159 blood samples of goats (n = 152), cattle (n = 4), and dogs (n = 3) from May to August of 2023. PCR products demonstrated that Anaplasma bovis, Anaplasma capra, and an Ehrlichia species were detected in the H. longicornis with the minimum infection rates (MIR) of 1.11%, 1.32%, and 0.05%, respectively; A. bovis, A. capra, and unnamed Anaplasma sp. were detected in goats with an infection rate of 26.31%, 1.31% and 1.97%, respectively. Anaplasma and Ehrlichia species were not detected from cattle, dogs and R. microplus ticks. The genetic differences in the groEL gene sequences of the Anaplasma in the current study were large, whereas the 16S rRNA and gltA gene sequences were less disparate. This study shows that ticks and goats in Suizhou County, Hubei Province carry multiple Anaplasma species and an Ehrlichia species, with relatively higher infection rate of A. bovis in goats. Our study indicates that multiple Anaplasma and Ehrlichia species exist in ticks and goats in the central China with potential to cause human infection.


Anaplasma , Anaplasmosis , Animals, Domestic , Ehrlichia , Genetic Variation , Goats , RNA, Ribosomal, 16S , Animals , Anaplasma/genetics , Anaplasma/isolation & purification , China/epidemiology , Ehrlichia/genetics , Ehrlichia/isolation & purification , Goats/microbiology , Dogs , Cattle , Anaplasmosis/epidemiology , Anaplasmosis/microbiology , Prevalence , Animals, Domestic/microbiology , RNA, Ribosomal, 16S/genetics , Ticks/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/microbiology , Phylogeny
3.
Chronobiol Int ; 41(6): 888-903, 2024 Jun.
Article En | MEDLINE | ID: mdl-38832548

This review highlights recent findings on biological rhythms and discusses their implications for the management and production of domestic animals. Biological rhythms provide temporal coordination between organs and tissues in order to anticipate environmental changes, orchestrating biochemical, physiological and behavioural processes as the right process may occur at the right time. This allows animals to adapt their internal physiological functions, such as sleep-wake cycles, body temperature, hormone secretion, food intake and regulation of physical performance to environmental stimuli that constantly change. The study and evaluation of biological rhythms of various physiological parameters allows the assessment of the welfare status of animals. Alteration of biological rhythms represents an imbalance of the state of homeostasis that can be found in different management conditions.


Animals, Domestic , Circadian Rhythm , Animals , Circadian Rhythm/physiology , Animals, Domestic/physiology , Sleep/physiology , Body Temperature/physiology , Behavior, Animal/physiology
4.
PLoS One ; 19(6): e0301611, 2024.
Article En | MEDLINE | ID: mdl-38843180

Coxiella burnetii is the worldwide zoonotic infectious agent for Q fever in humans and animals. Farm animals are the main reservoirs of C. burnetii infection, which is mainly transmitted via tick bites. In humans, oral, percutaneous, and respiratory routes are the primary sources of infection transmission. The clinical signs vary from flu-like symptoms to endocarditis for humans' acute and chronic Q fever. While it is usually asymptomatic in livestock, abortion, stillbirth, infertility, mastitis, and endometritis are its clinical consequences. Infected farm animals shed C. burnetii in birth products, milk, feces, vaginal mucus, and urine. Milk is an important source of infection among foods of animal origin. This study aimed to determine the prevalence and molecular characterization of C. burnetii in milk samples of dairy animals from two districts in Punjab, Pakistan, as it has not been reported there so far. Using a convenience sampling approach, the current study included 304 individual milk samples from different herds of cattle, buffalo, goats, and sheep present on 39 farms in 11 villages in the districts of Kasur and Lahore. PCR targeting the IS1111 gene sequence was used for its detection. Coxiella burnetii DNA was present in 19 of the 304 (6.3%) samples. The distribution was 7.2% and 5.2% in districts Kasur and Lahore, respectively. The results showed the distribution in ruminants as 3.4% in buffalo, 5.6% in cattle, 6.7% in goats, and 10.6% in sheep. From the univariable analysis, the clinical signs of infection i.e. mastitis and abortion were analyzed for the prevalence of Coxiella burnetii. The obtained sequences were identical to the previously reported sequence of a local strain in district Lahore, Sahiwal and Attock. These findings demonstrated that the prevalence of C. burnetii in raw milk samples deserves more attention from the health care system and veterinary organizations in Kasur and Lahore of Punjab, Pakistan. Future studies should include different districts and human populations, especially professionals working with animals, to estimate the prevalence of C. burnetii.


Buffaloes , Coxiella burnetii , Goats , Milk , Q Fever , Coxiella burnetii/genetics , Coxiella burnetii/isolation & purification , Animals , Pakistan/epidemiology , Milk/microbiology , Q Fever/epidemiology , Q Fever/microbiology , Q Fever/veterinary , Cattle , Buffaloes/microbiology , Goats/microbiology , Sheep/microbiology , Animals, Domestic/microbiology , Female , DNA, Bacterial/genetics , Prevalence , Farms , Humans
5.
Sci Rep ; 14(1): 11266, 2024 05 17.
Article En | MEDLINE | ID: mdl-38760454

Horse welfare is the product of multiple factors, including behavioral and physiological adjustments to cope with stressful situation regarding environment and housing condition. Collectively, it is supposed that a horse kept in the wild has a lower level of stress than other housing system, and the aim of the present study was to investigate the level of stress in domestic horses reared in the wild and then moved to human controlled housing, through saliva analysis. Twelve clinically healthy Catria (Italian local breed) mares, usually reared in the wild, were moved into collective paddocks for a folkloric event. Saliva samples were obtained before and after the change of housing condition to evaluate stress biomarkers including salivary cortisol, salivary alpha-amylase, and butyrylcholinesterase (BChol). The mares were also scored using the Welfare Aggregation and Guidance (WAG) Tool to highlight the presence of abnormal behaviors. Despite the absence of differences in behavioral scores between wild and paddocks, salivary cortisol and BChol were found to be higher in the wild and lower when mares were moved to paddocks. The highest concentrations in stress biomarkers like salivary cortisol and BChol in the wild was unexpected, but the need for managing hierarchical relationships, and the exposure to feral animals, predators, and weather changes, might explain these findings. The overall results of the present study may provide further knowledge toward stress response in domesticated horses living in the wild moved to human controlled housing system.


Hydrocortisone , Saliva , Animals , Horses , Saliva/metabolism , Saliva/chemistry , Hydrocortisone/metabolism , Hydrocortisone/analysis , Female , Animals, Wild/physiology , Biomarkers/metabolism , Butyrylcholinesterase/metabolism , Stress, Psychological/metabolism , Stress, Physiological , Animal Welfare , Housing, Animal , Behavior, Animal/physiology , alpha-Amylases/metabolism , Animals, Domestic
6.
PLoS One ; 19(5): e0293441, 2024.
Article En | MEDLINE | ID: mdl-38696505

SARS-CoV-2 infections in animals have been reported globally. However, the understanding of the complete spectrum of animals susceptible to SARS-CoV-2 remains limited. The virus's dynamic nature and its potential to infect a wide range of animals are crucial considerations for a One Health approach that integrates both human and animal health. This study introduces a bioinformatic approach to predict potential susceptibility to SARS-CoV-2 in both domestic and wild animals. By examining genomic sequencing, we establish phylogenetic relationships between the virus and its potential hosts. We focus on the interaction between the SARS-CoV-2 genome sequence and specific regions of the host species' ACE2 receptor. We analyzed and compared ACE2 receptor sequences from 29 species known to be infected, selecting 10 least common amino acid sites (LCAS) from key binding domains based on similarity patterns. Our analysis included 49 species across primates, carnivores, rodents, and artiodactyls, revealing complete consistency in the LCAS and identifying them as potentially susceptible. We employed the LCAS similarity pattern to predict the likelihood of SARS-CoV-2 infection in unexamined species. This method serves as a valuable screening tool for assessing infection risks in domestic and wild animals, aiding in the prevention of disease outbreaks.


Angiotensin-Converting Enzyme 2 , COVID-19 , Phylogeny , SARS-CoV-2 , Animals , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/chemistry , SARS-CoV-2/genetics , COVID-19/virology , Humans , Animals, Wild/virology , Animals, Domestic/virology , Computational Biology/methods
7.
Sci Rep ; 14(1): 10217, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702416

Mitochondrial DNA sequences are frequently transferred into the nuclear genome, generating nuclear mitochondrial DNA sequences (NUMTs). Here, we analysed, for the first time, NUMTs in the domestic yak genome. We obtained 499 alignment matches covering 340.2 kbp of the yak nuclear genome. After a merging step, we identified 167 NUMT regions with a total length of ~ 503 kbp, representing 0.02% of the nuclear genome. We discovered copies of all mitochondrial regions and found that most NUMT regions are intergenic or intronic and mostly untranscribed. 98 different NUMT regions from domestic yak showed high homology with cow and/or wild yak genomes, suggesting selection or hybridization between domestic/wild yak and cow. To rule out the possibility that the identified NUMTs could be artifacts of the domestic yak genome assembly, we validated experimentally five NUMT regions by PCR amplification. As NUMT regions show high similarity to the mitochondrial genome can potentially pose a risk to domestic yak DNA mitochondrial studies, special care is therefore needed to select primers for PCR amplification of mitochondrial DNA sequences.


Cell Nucleus , DNA, Mitochondrial , Genome, Mitochondrial , Animals , Cattle/genetics , DNA, Mitochondrial/genetics , Cell Nucleus/genetics , Animals, Domestic/genetics , Sequence Analysis, DNA/methods
8.
Parasit Vectors ; 17(1): 199, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698452

BACKGROUND: Enteric parasitic infections remain a major public health problem globally. Cryptosporidium spp., Cyclospora spp. and Giardia spp. are parasites that cause diarrhea in the general populations of both developed and developing countries. Information from molecular genetic studies on the speciation of these parasites and on the role of animals as vectors in disease transmission is lacking in Ghana. This study therefore investigated these diarrhea-causing parasites in humans, domestic rats and wildlife animals in Ghana using molecular tools. METHODS: Fecal samples were collected from asymptomatic school children aged 9-12 years living around the Shai Hills Resource Reserve (tourist site), from wildlife (zebras, kobs, baboons, ostriches, bush rats and bush bucks) at the same site, from warthogs at the Mole National Park (tourist site) and from rats at the Madina Market (a popular vegetable market in Accra, Ghana. The 18S rRNA gene (18S rRNA) and 60-kDa glycoprotein gene (gp60) for Cryptosporidium spp., the glutamate dehydrogenase gene (gdh) for Giardia spp. and the 18S rDNA for Cyclospora spp. were analyzed in all samples by PCR and Sanger sequencing as markers of speciation and genetic diversity. RESULTS: The parasite species identified in the fecal samples collected from humans and animals included the Cryptosporidium species C. hominis, C. muris, C. parvum, C. tyzzeri, C. meleagridis and C. andersoni; the Cyclopora species C. cayetanensis; and the Gardia species, G. lamblia and G. muris. For Cryptosporidium, the presence of the gp60 gene confirmed the finding of C. parvum (41%, 35/85 samples) and C. hominis (29%, 27/85 samples) in animal samples. Cyclospora cayetanensis was found in animal samples for the first time in Ghana. Only one human sample (5%, 1/20) but the majority of animal samples (58%, 51/88) had all three parasite species in the samples tested. CONCLUSIONS: Based on these results of fecal sample testing for parasites, we conclude that animals and human share species of the three genera (Cryptosporidium, Cyclospora, Giardia), with the parasitic species mostly found in animals also found in human samples, and vice-versa. The presence of enteric parasites as mixed infections in asymptomatic humans and animal species indicates that they are reservoirs of infections. This is the first study to report the presence of C. cayetanensis and C. hominis in animals from Ghana. Our findings highlight the need for a detailed description of these parasites using high-throughput genetic tools to further understand these parasites and the neglected tropical diseases they cause in Ghana where such information is scanty.


Animals, Domestic , Animals, Wild , Cryptosporidiosis , Cryptosporidium , Cyclospora , Cyclosporiasis , Feces , Animals , Ghana/epidemiology , Cyclospora/genetics , Cyclospora/isolation & purification , Cyclospora/classification , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Feces/parasitology , Cyclosporiasis/epidemiology , Cyclosporiasis/parasitology , Cyclosporiasis/veterinary , Animals, Wild/parasitology , Cryptosporidiosis/parasitology , Cryptosporidiosis/epidemiology , Cryptosporidiosis/transmission , Humans , Child , Animals, Domestic/parasitology , Rats , DNA, Protozoan/genetics , RNA, Ribosomal, 18S/genetics , Giardiasis/veterinary , Giardiasis/parasitology , Giardiasis/epidemiology , Diarrhea/parasitology , Diarrhea/veterinary , Diarrhea/epidemiology , Phylogeny , Giardia/genetics , Giardia/isolation & purification , Giardia/classification
9.
Viruses ; 16(5)2024 04 26.
Article En | MEDLINE | ID: mdl-38793568

The hepatitis E virus is a serious health concern worldwide, with 20 million cases each year. Growing numbers of autochthonous HEV infections in industrialized nations are brought on via the zoonotic transmission of HEV genotypes 3 and 4. Pigs and wild boars are the main animal reservoirs of HEV and play the primary role in HEV transmission. Consumption of raw or undercooked pork meat and close contact with infected animals are the most common causes of hepatitis E infection in industrialized countries. However, during the past few years, mounting data describing HEV distribution has led experts to believe that additional animals, particularly domestic ruminant species (cow, goat, sheep, deer, buffalo, and yak), may also play a role in the spreading of HEV. Up to now, there have not been enough studies focused on HEV infections associated with animal milk and the impact that they could have on the epidemiology of HEV. This critical analysis discusses the role of domestic ruminants in zoonotic HEV transmissions. More specifically, we focus on concerns related to milk safety, the role of mixed farming in cross-species HEV infections, and what potential consequences these may have on public health.


Animals, Domestic , Hepatitis E virus , Hepatitis E , Milk , Ruminants , Zoonoses , Animals , Hepatitis E/transmission , Hepatitis E/veterinary , Hepatitis E/virology , Hepatitis E virus/genetics , Hepatitis E virus/isolation & purification , Milk/virology , Ruminants/virology , Zoonoses/virology , Zoonoses/transmission , Humans , Animals, Domestic/virology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Goats/virology , Sheep/virology , Genotype
10.
Sci Total Environ ; 935: 173290, 2024 Jul 20.
Article En | MEDLINE | ID: mdl-38782291

Toxoplasmosis is a parasitic zoonosis of key importance in veterinary and public health. This article summarizes the available data (from 2000 to 2023) of exposition to Toxoplasma gondii in wildlife species in Spain based on a systematic bibliographic search, as well as further analysis of its potential relationship with environmental variables, biodiversity, anthropogenic impact on the habitat, and the reported human cases of toxoplasmosis. The overall seroprevalence of T. gondii in carnivorous mammals, birds, ungulate and lagomorph species in Spain was estimated at 69.3 %, 36.4 %, 18.4 %, and 16.2 %, respectively. Among the studies considered, great heterogeneity was observed both between and within taxonomic groups [Cohen's d > 0.8; X2 = 1039.10, df = 4 (p < 0.01) I2 = 97 %, r2 = 1.88, (p < 0.001)] and between and within bioregions [Cohen's d > 0.5; X2 = 368.59, df = 4 (p < 0.01)]. The results of a generalized linear model explaining T. gondii seroprevalence in wild animals suggest the influence of abiotic variables [wetland (p < 0.001), unvegetated (p < 0.001), isothermality (p < 0.001), and mean temperature during wettest quarter (p < 0.05)] and number of intermediate host species as positively associated with increased exposure of wildlife to T. gondii (p < 0.01). Toxoplasma gondii DNA was detected in both wild birds and wild mammals (range: 0.0-51.2 %) mainly from north-centre, northeast, and central-west of Spain. Regarding hospitalisation rates due to toxoplasmosis in humans, some abiotic variables [permanent crops (p < 0.05) and mean temperature during wettest quarter (p < 0.05)] showed a positive association. Despite certain limitations, this research evidences a substantial gap of knowledge on the implication of wildlife in the life cycle of T. gondii in Spain. This lack of knowledge is particularly evident in areas where the human-livestock-wildlife interface overlaps, preventing us from accurately determining its true distribution in different habitats, as well as its potential direct or indirect implications on public and veterinary health.


Animals, Wild , Toxoplasma , Toxoplasmosis, Animal , Animals , Spain/epidemiology , Humans , Toxoplasmosis, Animal/epidemiology , Animals, Domestic , Seroepidemiologic Studies , Zoonoses/epidemiology , Toxoplasmosis/epidemiology
11.
Vet Microbiol ; 294: 110120, 2024 Jul.
Article En | MEDLINE | ID: mdl-38749211

Pig production is increasing annually in Africa as it is recognized as a significant source of income, livelihood and food security, particularly in rural communities. Understanding the circulating swine pathogens is crucial for the success of this emerging industry. Although there is extensive data available on the African swine fever virus due to its devastating impact on pig production, knowledge about the presence of other viral swine pathogens on the continent is still extremely limited. This review discusses what is currently known about six swine pathogens in Africa: classical swine fever virus, porcine reproductive and respiratory syndrome virus, porcine circovirus-2, porcine circovirus-3, porcine parvovirus-1, and pseudorabies virus. Gaps in our knowledge are identified and topics of future focus discussed.


Animals, Wild , Circovirus , Swine Diseases , Animals , Swine , Swine Diseases/virology , Swine Diseases/epidemiology , Africa/epidemiology , Circovirus/isolation & purification , Circovirus/genetics , Circovirus/classification , Animals, Wild/virology , Parvovirus, Porcine/isolation & purification , Parvovirus, Porcine/genetics , Virus Diseases/veterinary , Virus Diseases/epidemiology , Virus Diseases/virology , Porcine respiratory and reproductive syndrome virus/isolation & purification , Porcine respiratory and reproductive syndrome virus/genetics , African Swine Fever Virus/isolation & purification , Animals, Domestic/virology , Herpesvirus 1, Suid/isolation & purification , Circoviridae Infections/veterinary , Circoviridae Infections/epidemiology , Circoviridae Infections/virology , Domestication
12.
Nat Commun ; 15(1): 2697, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565545

The origins and dispersal of the chicken across the ancient world remains one of the most enigmatic questions regarding Eurasian domesticated animals. The lack of agreement concerning timing and centers of origin is due to issues with morphological identifications, a lack of direct dating, and poor preservation of thin, brittle bird bones. Here we show that chickens were widely raised across southern Central Asia from the fourth century BC through medieval periods, likely dispersing along the ancient Silk Road. We present archaeological and molecular evidence for the raising of chickens for egg production, based on material from 12 different archaeological sites spanning a millennium and a half. These eggshells were recovered in high abundance at all of these sites, suggesting that chickens may have been an important part of the overall diet and that chickens may have lost seasonal egg-laying.


Animals, Domestic , Chickens , Animals , Chickens/genetics , Asia , Archaeology
13.
J Exp Zool B Mol Dev Evol ; 342(4): 342-349, 2024 Jun.
Article En | MEDLINE | ID: mdl-38591232

Wolves howl and dogs bark, both are able to produce variants of either vocalization, but we see a distinct difference in usage between wild and domesticate. Other domesticates also show distinct changes to their vocal output: domestic cats retain meows, a distinctly subadult trait in wildcats. Such differences in acoustic output are well-known, but the causal mechanisms remain little-studied. Potential links between domestication and vocal output are intriguing for multiple reasons, and offer a unique opportunity to explore a prominent hypothesis in domestication research: the neural crest/domestication syndrome hypothesis. This hypothesis suggests that in the early stages of domestication, selection for tame individuals decreased neural crest cell (NCCs) proliferation and migration, which led to a downregulation of the sympathetic arousal system, and hence reduced fear and reactive aggression. NCCs are a transitory stem cell population crucial during embryonic development that tie to diverse tissue types and organ systems. One of these neural-crest derived systems is the larynx, the main vocal source in mammals. We argue that this connection between NCCs and the larynx provides a powerful test of the predictions of the neural crest/domestication syndrome hypothesis, discriminating its predictions from those of other current hypotheses concerning domestication.


Domestication , Larynx , Neural Crest , Vocalization, Animal , Animals , Neural Crest/physiology , Vocalization, Animal/physiology , Larynx/physiology , Larynx/anatomy & histology , Animals, Domestic
14.
Open Vet J ; 14(1): 242-255, 2024 Jan.
Article En | MEDLINE | ID: mdl-38633192

Background: Clostridium perfringens (CP) is an emerging anaerobic pathogen that can aggravate severe fatal infections in different hosts and livestock. Aim: This paper was designed to monitor the antibacterial efficacy of Moringa oleifera (M. oleifera) plant against different CP isolates of variant toxin genotypes comparing that with commercial antibiotics in the veterinary field. Methods: A total of 200 examined fecal, intestinal, and liver samples from cattle, sheep, and goats were investigated bacteriologically and biochemically for CP. Then, the isolates were examined by polymerase chain reaction (PCR) for toxin gene typing. Thereafter, the antimicrobial susceptibility testing as well as the antibacterial efficacy of M. oleifera were evaluated and statistically analyzed against recovered isolates. Results: The prevalence rate of CP was 51% (102/200); of which 54.5% was from cattle, 50% from sheep, and 40% from goat. Moreover, all CP isolates were highly resistant to tetracycline and lincomycin drugs; meanwhile, they were of the least resistance against ciprofloxacin (8.3%-16.7%), cefotaxime (16.7%-25%), and gentamycin (26.7%-33.3%). For M. oleifera, high antibacterial efficacy with greater inhibition zones of the plant was recorded with its oil (20-24 mm) and ethanolic extracts (16-20 mm) against CP than the aqueous extract (≤ 10 mm). A good correlation was stated between M. oleifera oil and toxin type of CP isolates particularly type A followed by D and B types. Interestingly, the oil and ethanolic extracts of M. oleifera gave higher antibacterial efficacy than most commercial antibiotics against the recovered isolates. Conclusion: This study highlighted the potent antibacterial properties of M. oleifera for suppressing CP isolated from farm animals; hence, more investigations on M. oleifera are suggested to support its use as a medical herbal plant substituting antibiotics hazards and resistance problems worldwide.


Animals, Domestic , Moringa oleifera , Animals , Cattle , Sheep , Clostridium perfringens , Moringa oleifera/chemistry , Anti-Bacterial Agents/pharmacology , Polymerase Chain Reaction/veterinary , Goats
15.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38612650

Chagas disease (CD) is a vector-borne Neglected Zoonotic Disease (NZD) caused by a flagellate protozoan, Trypanosoma cruzi, that affects various mammalian species across America, including humans and domestic animals. However, due to an increase in population movements and new routes of transmission, T. cruzi infection is presently considered a worldwide health concern, no longer restricted to endemic countries. Dogs play a major role in the domestic cycle by acting very efficiently as reservoirs and allowing the perpetuation of parasite transmission in endemic areas. Despite the significant progress made in recent years, still there is no vaccine against human and animal disease, there are few drugs available for the treatment of human CD, and there is no standard protocol for the treatment of canine CD. In this review, we highlight human and canine Chagas Disease in its different dimensions and interconnections. Dogs, which are considered to be the most important peridomestic reservoir and sentinel for the transmission of T. cruzi infection in a community, develop CD that is clinically similar to human CD. Therefore, an integrative approach, based on the One Health concept, bringing together the advances in genomics, immunology, and epidemiology can lead to the effective development of vaccines, new treatments, and innovative control strategies to tackle CD.


Animal Diseases , Chagas Disease , Dog Diseases , Trypanosoma cruzi , Humans , Dogs , Animals , Chagas Disease/epidemiology , Chagas Disease/veterinary , Animals, Domestic , Dog Diseases/epidemiology , Mammals
16.
Sci Rep ; 14(1): 8716, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622170

Artificial selection has been widely applied to genetically fix rare phenotypic features in ornamental domesticated animals. For many of these animals, the mutated loci and alleles underlying rare phenotypes are known. However, few studies have explored whether these rare genetic mutations might have been fixed due to competition among related mutated alleles or if the fixation occurred due to contingent stochastic events. Here, we performed genetic crossing with twin-tail ornamental goldfish and CRISPR/Cas9-mutated goldfish to investigate why only a single mutated allele-chdS with a E127X stop codon (also called chdAE127X)-gives rise to the twin-tail phenotype in the modern domesticated goldfish population. Two closely related chdS mutants were generated with CRISPR/Cas9 and compared with the E127X allele in F2 and F3 generations. Both of the CRISPR/Cas9-generated alleles were equivalent to the E127X allele in terms of penetrance/expressivity of the twin-tail phenotype and viability of carriers. These findings indicate that multiple truncating mutations could have produced viable twin-tail goldfish. Therefore, the absence of polymorphic alleles for the twin-tail phenotype in modern goldfish likely stems from stochastic elimination or a lack of competing alleles in the common ancestor. Our study is the first experimental comparison of a singular domestication-derived allele with CRISPR/Cas9-generated alleles to understand how genetic fixation of a unique genotype and phenotype may have occurred. Thus, our work may provide a conceptual framework for future investigations of rare evolutionary events in domesticated animals.


CRISPR-Cas Systems , Goldfish , Animals , Goldfish/genetics , Alleles , Biological Evolution , Mutation , Phenotype , Animals, Domestic/genetics
17.
Res Vet Sci ; 171: 105236, 2024 May.
Article En | MEDLINE | ID: mdl-38531238

Leishmaniasis and toxoplasmosis are two of the most common parasitic zoonoses. Leishmaniasis is endemic to 98 countries around the world, whereas toxoplasmosis is widely distributed throughout the world, causing significant health expenditure. Horses can play a relevant role in the transmission of the disease, being a silent reservoir, as clinical signs are not common. Serum samples from 166 horses living in eastern Spain (Mediterranean basin) were analysed to determine the presence of antibodies against Leishmania spp. and T. gondii by ELISA (Enzyme-linked Immunosorbent Assay.) The risk factors evaluated were the geographical area and the relative humidity and average temperature, and epidemiological factors such as sex, reproductive status, age, breed, morphotype, living with other domestic animals, use and access to the outdoors. Seroprevalence of Leishmania spp. and T. gondii infection was found 28.92%, and 16.27% respectively, whereas co-infection of the two parasites was found only in two males. Leishmania seroprevalence was high in castrated males and several mesodolichomorphic equine breeds used for teaching, as well as in outdoor animals. The most elevated seroprevalence was found in winter with higher levels of rainfall, whereas high seroprevalence of T. gondii was found in crossbreeding animals and those used for breeding. High seroprevalence of Leishmania spp. and T. gondii was found in horses of the Mediterranean basin. These data suggest that horses can act as a silent reservoir and that this species has high potential for transmission to humans, outdoor animals and in geographical areas with high average rainfall.


Horse Diseases , Leishmania , Leishmaniasis , Toxoplasma , Toxoplasmosis, Animal , Humans , Male , Horses , Animals , Seroepidemiologic Studies , Prevalence , Spain/epidemiology , Toxoplasmosis, Animal/epidemiology , Toxoplasmosis, Animal/parasitology , Antibodies, Protozoan , Leishmaniasis/epidemiology , Leishmaniasis/veterinary , Animals, Domestic , Risk Factors , Horse Diseases/epidemiology , Horse Diseases/parasitology
18.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38473782

Microsporum canis is a widely distributed dermatophyte, which is among the main etiological agents of dermatophytosis in humans and domestic animals. This fungus invades, colonizes and nourishes itself on the keratinized tissues of the host through various virulence factors. This review will bring together the known information about the mechanisms, enzymes and their associated genes relevant to the pathogenesis processes of the fungus and will provide an overview of those virulence factors that should be better studied to establish effective methods of prevention and control of the disease. Public databases using the MeSH terms "Microsporum canis", "virulence factors" and each individual virulence factor were reviewed to enlist a series of articles, from where only original works in English and Spanish that included relevant information on the subject were selected. Out of the 147 articles obtained in the review, 46 were selected that reported virulence factors for M. canis in a period between 1988 and 2023. The rest of the articles were discarded because they did not contain information on the topic (67), some were written in different languages (3), and others were repeated in two or more databases (24) or were not original articles (7). The main virulence factors in M. canis are keratinases, fungilisins and subtilisins. However, less commonly reported are biofilms or dipeptidylpeptidases, among others, which have been little researched because they vary in expression or activity between strains and are not considered essential for the infection and survival of the fungus. Although it is known that they are truly involved in resistance, infection and metabolism, we recognize that their study could strengthen the knowledge of the pathogenesis of M. canis with the aim of achieving effective treatments, as well as the prevention and control of infection.


Microsporum , Virulence Factors , Humans , Animals , Virulence Factors/metabolism , Microsporum/genetics , Microsporum/metabolism , Animals, Domestic , Subtilisins/metabolism
19.
PLoS Negl Trop Dis ; 18(3): e0011756, 2024 Mar.
Article En | MEDLINE | ID: mdl-38427694

Rift Valley fever (RVF) is a mosquito-borne viral zoonosis caused by the Rift Valley fever virus (RVFV) that can infect domestic and wild animals. Although the RVFV transmission cycle has been well documented across Africa in savanna ecosystems, little is known about its transmission in tropical rainforest settings, particularly in Central Africa. We therefore conducted a survey in northeastern Gabon to assess RVFV circulation among wild and domestic animals. Among 163 wildlife samples tested using RVFV-specific RT-qPCR, four ruminants belonging to subfamily Cephalophinae were detected positive. The phylogenetic analysis revealed that the four RVFV sequences clustered together with a virus isolated in Namibia within the well-structured Egyptian clade. A cross-sectional survey conducted on sheep, goats and dogs living in villages within the same area determined the IgG RVFV-specific antibody prevalence using cELISA. Out of the 306 small ruminants tested (214 goats, 92 sheep), an overall antibody prevalence of 15.4% (95% CI [11.5-19.9]) was observed with a higher rate in goats than in sheep (20.1% versus 3.3%). RVFV-specific antibodies were detected in a single dog out of the 26 tested. Neither age, sex of domestic animals nor season was found to be significant risk factors of RVFV occurrence. Our findings highlight sylvatic circulation of RVFV for the first time in Gabon. These results stress the need to develop adequate surveillance plan measures to better control the public health threat of RVFV.


Rift Valley Fever , Rift Valley fever virus , Animals , Sheep , Dogs , Animals, Domestic , Animals, Wild , Gabon/epidemiology , Cross-Sectional Studies , Ecosystem , Phylogeny , Ruminants , Goats , Antibodies, Viral , Forests , Seroepidemiologic Studies
20.
Exp Parasitol ; 259: 108726, 2024 Apr.
Article En | MEDLINE | ID: mdl-38428664

Cysticercus fasciolaris is a parasitic helminth that usually infects feline and canine mammal hosts. The intermediate hosts (rodents, occasionally lagomorphs, and humans) get infected by the consumption of feed or water contaminated with eggs. Rodents are vectors of disease and reservoirs of various zoonotic parasites. The current survey was aimed at determining endoparasitic helminth infections in rodents in central Morocco. Sampled rodents after specific identification were sacrificed and examined to identify parasitic helminths following ethical guidelines. Parasites were identified using morphological characteristics. A total of 197 specimens of rodents were collected and examined in this study. Ten rodent species were identified morphologically as Rattus rattus, R. norvegicus, Apodemus sylvaticus, Mus musculus, M. spretus, Mastomys erythroleucus, Meriones shawi, M. libycus, Gerbillus campestris, and Lemniscomys barbarus. The parasitological results showed that metacestode of tapeworms was found encysted in the liver, the larval stage of Taenia taeniaeformis develops large multinodular fibrosarcomas which envelope the tapeworm cysts in the liver of the R. rattus and R. norvegicus. Based on morphological data, the metacestode was identified as C. fasciolaris in 23 (23/80) R. rattus 2 (2/8) and R. norvegicus with a prevalence of 11.7 % and 1.0 %, respectively. Rodents are major vectors of human and domestic animal diseases worldwide, and therefore, important parasitic zoonotic agents (C. fasciolaris), which are transmitted by black rats (R. rattus) and brown rats (R. norvegicus), must be considered to prevent the infectivity of humans, domestic animals, and livestock such as cattle, sheep, and rabbits.


Helminths , Rodent Diseases , Taenia , Mice , Rats , Animals , Cats , Dogs , Humans , Rabbits , Cattle , Sheep , Cysticercus , Morocco/epidemiology , Rodent Diseases/epidemiology , Rodent Diseases/parasitology , Animals, Domestic , Gerbillinae
...