Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 659
Filter
1.
Fitoterapia ; 177: 106047, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38838824

ABSTRACT

This study determined chemical profiles, antibacterial and antibiofilm activities of the essential oils (EOs) obtained by A. visnaga aerial parts and F. vulgare fruits. Butanoic acid, 2-methyl-, 3-methylbutyl ester (38.8%), linalyl propionate (34.7%) and limonene (8.5%) resulted as main constituents of A. visnaga EO. In F. vulgare EO trans-anethole (76.9%) and fenchone (14.1%) resulted as main components. The two EOs were active against five bacterial strains (Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus) at different degrees. The MIC values ranged from 5 ± 2 to 10 ± 2 µL/mL except for S. aureus (MIC >20 µL/mL). EOs exhibited inhibitory effect on the formation of biofilm up to 53.56 and 48.04% against E. coli and A. baumannii, respectively and activity against bacterial metabolism against A. baumannii and E. coli, with biofilm-inhibition ranging from 61.73 to 73.55%. The binding affinity of the identified components was estimated by docking them into the binding site of S. aureus gyrase (PDB code 2XCT) and S. aureus tyrosyl-tRNA synthetase (PDB code 1JIJ). trans-Anethole and butanoic acid, 2-methyl-, 3-methylbutyl ester showed relatively moderate binding interactions with the amino acid residues of S. aureus tyrosyl-tRNA synthetase. In addition, almost all predicted compounds possess good pharmacokinetic properties with no toxicity, being inactive for cytotoxicity, carcinogenicity, hepatotoxicity, mutagenicity and immunotoxicity parameters. The results encourage the use of these EOs as natural antibacterial agents in food and pharmaceutical industries.


Subject(s)
Allylbenzene Derivatives , Anti-Bacterial Agents , Biofilms , Foeniculum , Microbial Sensitivity Tests , Molecular Docking Simulation , Oils, Volatile , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Foeniculum/chemistry , Myrtaceae/chemistry , Fruit/chemistry , Anisoles/pharmacology , Anisoles/chemistry , Anisoles/isolation & purification , Plant Components, Aerial/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Camphanes , Norbornanes
2.
Int J Biol Macromol ; 271(Pt 2): 132401, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761902

ABSTRACT

The abnormal deposition of tau protein is one of the critical causes of tauopathies including Alzheimer's disease (AD). In recent years, there has been great interest in the use of essential oils and volatile compounds in aromatherapy for treating AD, since volatile compounds can directly reach the brain through intranasal administration. The volatile compounds α-asarone (ASA) and ß-caryophyllene (BCP) have revealed various important neuroprotective properties, useful in treating AD. In this study, the volatile compounds ASA and BCP were assessed for their effectiveness in preventing tau fibrillation, disassembly of pre-formed tau fibrils, and disaggregation of tau aggregates. SDS-PAGE and AFM analyses revealed that ASA and BCP inhibited tau fibrillation/aggregation and decreased the mean size of tau oligomers. Tau samples treated with ASA and BCP, showed a reduction in ThT and ANS fluorescence intensities, and a decrease in the ß-sheet content. Additionally, ASA and BCP disassembled the pre-formed tau fibrils to the granular and linear oligomeric intermediates. Treatment of neuroblastoma SH-SY5Y cells with tau samples treated with ASA and BCP, revealed protective effects as shown by reduced toxicity of the cells, due to the inhibition of tau fibrillation/aggregation. Overall, ASA and BCP appeared to be promising therapeutic candidates for AD.


Subject(s)
Allylbenzene Derivatives , Alzheimer Disease , Anisoles , Polycyclic Sesquiterpenes , tau Proteins , tau Proteins/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/chemistry , Allylbenzene Derivatives/pharmacology , Allylbenzene Derivatives/chemistry , Anisoles/pharmacology , Anisoles/chemistry , Cell Line, Tumor , Protein Aggregates/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry
3.
Environ Sci Technol ; 58(21): 9404-9415, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739946

ABSTRACT

This study investigated the reaction pathway of 2,4-dinitroanisole (DNAN) on the pyrogenic carbonaceous matter (PCM) to assess the scope and mechanism of PCM-facilitated surface hydrolysis. DNAN degradation was observed at pH 11.5 and 25 °C with a model PCM, graphite, whereas no significant decay occurred without graphite. Experiments were performed at pH 11.5 due to the lack of DNAN decay at pH below 11.0, which was consistent with previous studies. Graphite exhibited a 1.78-fold enhancement toward DNAN decay at 65 °C and pH 11.5 relative to homogeneous solution by lowering the activation energy for DNAN hydrolysis by 54.3 ± 3.9%. This is supported by our results from the computational modeling using Car-Parrinello simulations by ab initio molecular dynamics/molecular mechanics (AIMD/MM) and DFT free energy simulations, which suggest that PCM effectively lowered the reaction barriers by approximately 8 kcal mol-1 compared to a homogeneous solution. Quaternary ammonium (QA)-modified activated carbon performed the best among several PCMs by reducing DNAN half-life from 185 to 2.5 days at pH 11.5 and 25 °C while maintaining its reactivity over 10 consecutive additions of DNAN. We propose that PCM can affect the thermodynamics and kinetics of hydrolysis reactions by confining the reaction species near PCM surfaces, thus making them less accessible to solvent molecules and creating an environment with a weaker dielectric constant that favors nucleophilic substitution reactions. Nitrite formation during DNAN decay confirmed a denitration pathway, whereas demethylation, the preferred pathway in homogeneous solution, produces 2,4-dinitrophenol (DNP). Denitration catalyzed by PCM is advantageous to demethylation because nitrite is less toxic than DNAN and DNP. These findings provide critical insights for reactive adsorbent design that has broad implications for catalyst design and pollutant abatement.


Subject(s)
Anisoles , Hydrolysis , Anisoles/chemistry , Molecular Dynamics Simulation , Carbon/chemistry
4.
J Ethnopharmacol ; 331: 118323, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38729535

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: India's ancient texts, the Charak Samhita and Sushruta Samhita, make reference to the traditional medicinal usage of Acorus calamus L. In India and China, it has long been used to cure stomach aches, cuts, diarrhea, and skin conditions. This ability of the rhizome is attributed to its antimicrobial properties. Research studies to date have shown its antimicrobial properties. However, scientific evidence on its mode of action is still lacking. AIM OF THE STUDY: Acorus calamus L. rhizome extract and its bioactive fraction exhibits antibacterial effect by modulating membrane permeability and fatty acid composition. MATERIAL AND METHOD: The secondary metabolites in the rhizome of A. calamus L. were extracted in hexane using Soxhlet apparatus. The ability of the extract to inhibit multidrug resistant bacterial isolates, namely Bacillus cereus, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa were evaluated using checkerboard assay. Further, the extract was purified using thin layer chromatography, gravity column chromatography, and combiflash chromatography. Structure elucidation of the active compound was done using GC-MS, FT-IR, and UV-Vis spectral scan. The mode of action of the bioactive fraction was determined. Bacterial membrane damage was analyzed using SEM, membrane permeability was determined using SYBR green I and PI dye, leakage of cytoplasmic contents were analyzed using Bradford assay and Fehling's reagent. The ability to inhibit efflux pump of A. baumannii was determined using EtBr accumulation assay and ß-lactamase inhibition was analyzed using nitrocefin as substrate. Also, the biofilm inhibition of B. cereus was determined using crystal violet dye. Moreover, the effect of the bioactive fraction on the fatty acid profile of the bacterial membrane was determined by GC-FAME analysis using 37 component FAME mix as standard. RESULTS: Acorus calamus L. rhizome hexane extract (AC-R-H) demonstrated broad-spectrum antibacterial activity against all the isolates tested. AC-R-H extract also significantly reduced the MIC of ampicillin against all tested bacteria, indicating its bacterial resistance modulating properties. The assay guided purification determined Asarone as the major compound present in the bioactive fraction (S-III-BAF). S-III-BAF was found to reduce the MIC of ampicillin against Escherichia coli (100-25 mg/mL), Pseudomonas aeruginosa (15-3.25 mg/mL), Acinetobacter baumannii (12.5-1.56 mg/ml), and Bacillus cereus (10-1.25 mg/mL). Further, it recorded synergistic activity with ampicillin against B. cereus (FICI = 0.365), P. aeruginosa (FICI = 0.456), and A. baumannii (FICI = 0.245). The mode of action of S-III-BAF can be attributed to its ability to disturb the membrane integrity, enhance membrane permeability, reduce biofilm formation, and possibly alter the fatty acid composition of the bacterial cell membranes. CONCLUSION: The bioactive fraction of AC-R-H extract containing Asarone as the active compound showed antibacterial activity and synergistic interactions with ampicillin against the tested bacterial isolates. Such activity can be attributed to the modulation of fatty acids present in bacterial membranes, which enhances membrane permeability and causes membrane damage.


Subject(s)
Acorus , Anti-Bacterial Agents , Cell Membrane Permeability , Fatty Acids , Microbial Sensitivity Tests , Plant Extracts , Rhizome , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Rhizome/chemistry , Acorus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Membrane Permeability/drug effects , Fatty Acids/pharmacology , Fatty Acids/chemistry , Allylbenzene Derivatives , Anisoles/pharmacology , Anisoles/isolation & purification , Anisoles/chemistry
5.
Talanta ; 276: 126280, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788380

ABSTRACT

The sensitive materials of current gas sensors are fabricated on planar substrates, significantly limiting the quantity of sensitive material available on the sensor and the complete exposure of the sensitive material to the target gas. In this work, we harnessed the finest, resilient, naturally degradable, and low-cost lotus silk derived from plant fibers, to fabricate a high-performance bio-sensor for toxic and harmful gas detection, employing peptides with full surface connectivity. The proposed approach to fabricate gas sensors eliminated the need for substrates and electrodes. To ascertain the effectiveness and versatility of the sensors created via this method, sensors for three distinct representative gases (isoamyl alcohol, 4-vinylanisole, and benzene) were prepared and characterized. These sensors surpassed reported detection limits by at least one order of magnitude. The inherent pliancy of lotus silk imparts adaptability to the sensor architecture, facilitating the realization of 1D, 2D, or 3D configurations, all while upholding consistent performance characteristics. This innovative sensor paradigm, grounded in lotus silk, represents great potential toward the advancement of highly proficient bio gas sensors and associated applications.


Subject(s)
Biosensing Techniques , Lotus , Peptides , Silk , Biosensing Techniques/methods , Lotus/chemistry , Silk/chemistry , Peptides/chemistry , Peptides/analysis , Anisoles/chemistry , Anisoles/analysis , Gases/chemistry , Gases/analysis
6.
J Environ Sci (China) ; 129: 161-173, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36804233

ABSTRACT

A novel Mg-based bimetal reagent (Mg/Cu) was used as an enhanced reductive system to degrade insensitive munition 2,4-dinitroanisole (DNAN), a contaminant found in energetic-laden waste. Degradation of DNAN was significantly impacted by dissolved oxygen and studied in anoxic and oxic bimetal systems (i.e., purging with N2, air, or O2 gas). Degradation occurred through sequential nitroreduction: first one nitro group was reduced (ortho or para) to form short-lived intermediates 2-amino-4-nitroanisole or 4-amino-2-nitroanisole (2-ANAN or 4-ANAN), and then subsequent reduction of the other nitro group formed 2,4-diaminoanisole (DAAN). The nitro-amino intermediates demonstrated regioselective reduction in the ortho position to 2-ANAN; Regioselectivity was also impacted by the anoxic/oxic environment. Under O2-purging DNAN degradation rate was slightly enhanced, but most notably O2 significantly accelerated DAAN generation. DAAN also further degraded only in the oxygenated Mg/Cu system. Adsorption of DNAN byproducts to the reagent occurred regardless of anoxic/oxic condition, resulting in a partition of carbon mass between the adsorbed phase (27%-35%) and dissolved phase (59%-72%). Additional surface techniques were applied to investigate contaminant interaction with Cu. Density functional theory (DFT) calculations identified preferential adsorption structures for DNAN on Cu with binding through two O atoms of one or both nitro groups. X-ray absorption spectroscopy (XAS) measurements determined the oxidation state of catalytic metal Cu and formation of a Cu-O-N bond during treatment. Laser desorption ionization mass spectrometry (LDI-MS) measurements also identified intermediate 2-ANAN adsorbed to the bimetal surface.


Subject(s)
Anisoles , Metals , X-Ray Absorption Spectroscopy , Anisoles/chemistry , Mass Spectrometry
7.
Molecules ; 27(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36558147

ABSTRACT

Melt-cast explosive 2,4-dinitroanisole (DNAN) crystal and its cocrystals DNAN/1,3-dinitrobenzene (DNB) and DNAN/2-nitroaniline (NA) were used to identify the effects of cocrystallization on the crystal structure, non-covalent interactions, and melting points of the DNAN crystal through density functional theory and molecular dynamics. The components DNB and NA with subtle structure variations between the nitro group and amino group can significantly affect the non-covalent interactions, especially the π-π stacking and H-bonds, which can lead to different crystal stacking styles. The melting points of the DNAN crystal are decreased through the cocrystallization, which expands the utilization of the DNAN-based melt cast explosives. Our study deciphers the effects caused by the cocrystallization on the structure and properties of melt cast explosives and may help to design and optimize novel melt-cast explosives.


Subject(s)
Explosive Agents , Explosive Agents/chemistry , Anisoles/chemistry , Aniline Compounds
8.
Sci Rep ; 12(1): 22217, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36564541

ABSTRACT

Β-asarone is a phenylpropane derivative present in the rhizomes of Acorus calamus, that was proved to exhibit toxic effects in humans. Because of its presence the whole plant that is commonly used in traditional medicine for its sedative, anti-inflammatory, neuroprotective and other properties has limited application nowadays. In the study, qualitative and quantitative analysis of a collection of nine essential oil (EO) samples of European and Asian origin was performed. The final content of ß-asarone in the tested samples ranged between 0.265 and 1.885 mg/mL. Having in mind a possible application of the EO as a biopesticide, this research aimed at the development of CPC-based purification protocol that could help remove ß-asarone from EO. It was proved that the biphasic solvent system composed of n-hexane/EtOAc/MeOH/water, 9:1:9:1 (v/v/v/v) was capable of the removal of the toxic constituent in the CPC chromatograph operated in the ascending elution mode with 2200 rpm and a flow rate of 5 mL/min. The chromatographic analysis that lasted only 144 min effectively separated ß-asarone (purity of 95.5%) and α-asarone (purity of 93.7%) directly from the crude Acorus calamus rhizome EO.


Subject(s)
Acorus , Oils, Volatile , Humans , Oils, Volatile/chemistry , Anisoles/chemistry , Chromatography, Liquid
10.
J Ethnopharmacol ; 284: 114814, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34775034

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperglycemia (HG) and lipopolysaccharide (LPS) often promote superoxide accumulation, which may increase oxidative stress. Reducing superoxide production in hyperglycemia and the inflammatory condition is an emerging way to reduce protein and lipid oxidation and diabetes complication. AIM OF STUDY: To examine the effect of Agastache foeniculum essential oil (AFEO) and oil fraction (AFoil) on HG- and LPS-stimulated oxidative stress, the pathogenicity of AFEO and AFoil on oxidative stress was assessed. METHODS: The stimulatory effects of AFEO and AFoil on the activity and expression of NADH oxide (NOX), catalase (CAT), superoxide dismutase (SOD), and the expression of nuclear respiratory factor 2 (NRF2) and nuclear factor-kappa B (NF-kB) in the stimulated macrophage cell line, J774.A1, was studied. The interaction patterns of AFEO and AFoil components with NOX, SOD, CAT, NRF2, and NF-kB proteins were also deduced using molecular docking. RESULTS: Estragole was the main ingredient in AFEO (97%). Linolenic acid (32.10%), estragole (16.22%), palmitic acid (12.62%), linoleic acid (12.04%), and oleic acid (8.73%) were the major chemical components of the AFoil. NOX activation was stimulated in macrophage cells by HG and LPS. At 20 µg/mL, AFEO and AFoil decreased NOX activity while increased SOD and CAT activities in stimulated macrophages. AFoil with estragole and omega-3 fatty acids was better than AFEO with estragole in anti-hyperglycemic and anti-oxidative activity. According to molecular docking research, estragole, linoleic acid, and linolenic acid bind to different hydrophobic pockets of NOX, SOD, CAT, NFR2, and NF-kB using hydrogen bonds, van der Waals bonds, pi-alkyl, and pi-anion interactions, with different binding energies. CONCLUSION: AFEO and AFoil showed antioxidant and anti-diabetic activity. The mechanisms in lowering oxidative stress markers depended on down-regulating superoxide-producing enzymes and up-regulating superoxide-removing enzymes at gene and protein levels. The AFoil emulsion can be used to reduce the detrimental impacts of hyperglycemia and oxidative stress.


Subject(s)
Agastache/chemistry , Antioxidants/pharmacology , Hypoglycemic Agents/pharmacology , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Allylbenzene Derivatives/chemistry , Allylbenzene Derivatives/pharmacology , Animals , Anisoles/chemistry , Anisoles/pharmacology , Antioxidants/chemistry , Catalase/genetics , Catalase/metabolism , Cell Line , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Glucose , Hypoglycemic Agents/chemistry , Linoleic Acid/chemistry , Linoleic Acid/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mice , Models, Molecular , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/metabolism , Oils, Volatile/chemistry , Oxidative Stress , Plant Oils/chemistry , Protein Conformation , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , alpha-Linolenic Acid/chemistry , alpha-Linolenic Acid/pharmacology
12.
Molecules ; 26(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34361766

ABSTRACT

Hedyosmum racemosum (Ruiz & Pav.) G. is a native species of Ecuador used in traditional medicine for treatment of rheumatism, bronchitis, cold, cough, asthma, bone pain, and stomach pain. In this study, fresh H. racemosum leaves of male and female specimens were collected and subjected to hydrodistillation for the extraction of the essential oil. The chemical composition of male and female essential oil was determined by gas chromatography-gas chromatography equipped with a flame ionization detector and coupled to a mass spectrometer using a non-polar and a polar chromatographic column. The antibacterial activity was assayed against five Gram-positive and two Gram-negative bacteria, and two dermatophytes fungi. The scavenging radical properties of the essential oil were evaluated by DPPH and ABTS assays. The chemical analysis allowed us to identify forty-three compounds that represent more than 98% of the total composition. In the non-polar and polar column, α-phellandrene was the principal constituent in male (28.24 and 25.90%) and female (26.47 and 23.90%) essential oil. Other main compounds were methyl chavicol, germacrene D, methyl eugenol, and α-pinene. Female essential oil presented a strong activity against Klebsiella pneumoniae (ATCC 9997) with an minimum inhibitory concentration (MIC) of 500 µg/mL and a scavenging capacity SC50 of 800 µg/mL.


Subject(s)
Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Cyclohexane Monoterpenes/chemistry , Magnoliopsida/chemistry , Oils, Volatile/chemistry , Allylbenzene Derivatives/chemistry , Allylbenzene Derivatives/isolation & purification , Anisoles/chemistry , Anisoles/isolation & purification , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antioxidants/isolation & purification , Antioxidants/pharmacology , Arthrodermataceae/drug effects , Arthrodermataceae/growth & development , Benzothiazoles/antagonists & inhibitors , Bicyclic Monoterpenes/chemistry , Bicyclic Monoterpenes/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Cyclohexane Monoterpenes/isolation & purification , Ecuador , Eugenol/analogs & derivatives , Eugenol/chemistry , Eugenol/isolation & purification , Female , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Humans , Magnoliopsida/metabolism , Male , Microbial Sensitivity Tests , Picrates/antagonists & inhibitors , Plant Leaves/chemistry , Plants, Medicinal , Sesquiterpenes, Germacrane/chemistry , Sesquiterpenes, Germacrane/isolation & purification , Sex Factors , Sulfonic Acids/antagonists & inhibitors
13.
Int J Mol Sci ; 22(14)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34299276

ABSTRACT

1-cyclohexyl-x-methoxybenzene is a novel psychoactive substance (NPS), first discovered in Europe in 2012 as unknown racemic mixture of its three stereoisomers: ortho, meta and para. Each of these has structural similarities with the analgesic tramadol and the dissociative anesthetic phencyclidine. In light of these structural analogies, and based on the fact that both tramadol and phencyclidine are substances that cause toxic effects in humans, the aim of this study was to investigate the in vitro and in vivo pharmacodynamic profile of these molecules, and to compare them with those caused by tramadol and phencyclidine. In vitro studies demonstrated that tramadol, ortho, meta and para were inactive at mu, kappa and delta opioid receptors. Systemic administration of the three stereoisomers impairs sensorimotor responses, modulates spontaneous motor activity, induces modest analgesia, and alters thermoregulation and cardiorespiratory responses in the mouse in some cases, with a similar profile to that of tramadol and phencyclidine. Naloxone partially prevents only the visual sensorimotor impairments caused by three stereoisomers, without preventing other effects. The present data show that 1-cyclohexyl-x-methoxybenzene derivatives cause pharmaco-toxicological effects by activating both opioid and non-opioid mechanisms and suggest that their use could potentially lead to abuse and bodily harm.


Subject(s)
Analgesics, Opioid/toxicity , Anisoles/toxicity , Benzene Derivatives/toxicity , Hallucinogens/toxicity , Phencyclidine/toxicity , Psychotropic Drugs/toxicity , Receptors, Opioid/metabolism , Tramadol/toxicity , Analgesics, Opioid/chemistry , Animals , Anisoles/chemistry , Benzene Derivatives/chemistry , Cells, Cultured , Cricetinae , Hallucinogens/chemistry , In Vitro Techniques , Male , Mice , Mice, Inbred ICR , Models, Animal , Phencyclidine/chemistry , Psychotropic Drugs/chemistry , Tramadol/chemistry
14.
Bioorg Chem ; 115: 105179, 2021 10.
Article in English | MEDLINE | ID: mdl-34332232

ABSTRACT

In the present study, we compared the antiepileptic effects of α-asarone derivatives to explore their structure-activity relationships using the PTZ-induced seizure model. Our research revealed that electron-donating methoxy groups in the 3,4,5-position on phenyl ring increased antiepileptic potency but the placement of other groups at different positions decreased activity. Besides, in allyl moiety, the optimal activity was reached with either an allyl or a 1-butenyl group in conjugation with the benzene ring. The compounds 5 and 19 exerted better neuroprotective effects against epilepsy in vitro (cell) and in vivo (mouse) models. This study provides valuable data for further exploration and application of these compounds as potential anti-seizure medicines.


Subject(s)
Allylbenzene Derivatives/chemistry , Allylbenzene Derivatives/therapeutic use , Anisoles/chemistry , Anisoles/therapeutic use , Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Allylbenzene Derivatives/chemical synthesis , Animals , Anisoles/chemical synthesis , Anticonvulsants/chemical synthesis , Cells, Cultured , Disease Models, Animal , Male , Mice , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Rats, Sprague-Dawley , Structure-Activity Relationship
15.
Phys Chem Chem Phys ; 23(15): 9500-9511, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33885085

ABSTRACT

Engineered heme enzymes such as myoglobin and cytochrome P450s metalloproteins are gaining widespread importance due to their efficiency in catalyzing non-natural reactions. In a recent strategy, the naturally occurring Fe metal in the heme unit was replaced with non-native metals such as Ir, Rh, Co, Cu, etc., and axial ligands to generate artificial metalloenzymes. Determining the best metal-ligand for a chemical transformation is not a trivial task. Here we demonstrate how computational approaches can be used in deciding the best metal-ligand combination which would be highly beneficial in designing new enzymes as well as small molecule catalysts. We have used Density Functional Theory (DFT) to shed light on the enhanced reactivity of an Ir system with varying axial ligands. We look at the insertion of a carbene group generated from diazo precursors via N2 extrusion into a C-H bond. For both Ir(Me) and Fe systems, the first step, i.e., N2 extrusion is the rate determining step. Strikingly, neither the better ligand overlap with 5d orbitals on Ir nor the electrophilicity on the carbene centre play a significant role. A comparison of Fe and Ir systems reveals that a lower distortion in the Ir(Me)-porphyrin on moving from the reactant to the transition state renders it catalytically more active. We notice that for both metal porphyrins, the free energy barriers are affected by axial ligand substitution. Further, for Fe porphyrin, the axial ligand also changes the preferred spin state. We show that for the carbene insertion into the C-H bond, Fe porphyrin systems undergo a stepwise HAT (hydrogen atom transfer) instead of a concerted hydride transfer process. Importantly, we find that the substitution of the axial Me ligand on Ir to imidazole or chloride, or without an axial substitution changes the rate determining step of the reaction. Therefore, an optimum ligand that can balance the barriers for both steps of the catalytic cycle is essential. We subsequently used the QM cluster approach to delineate the protein environment's role and mutations in improving the catalytic activity of the Ir(Me) system.


Subject(s)
Anisoles/chemistry , Azo Compounds/chemistry , Benzopyrans/chemical synthesis , Heme/chemistry , Animals , Archaeal Proteins/chemistry , Catalysis , Cytochrome P-450 Enzyme System/chemistry , Density Functional Theory , Iridium/chemistry , Iron/chemistry , Ligands , Models, Chemical , Myoglobin/chemistry , Oxidation-Reduction , Sperm Whale , Sulfolobaceae/enzymology
16.
Chem Biodivers ; 18(5): e2000843, 2021 May.
Article in English | MEDLINE | ID: mdl-33711200

ABSTRACT

One of the most common pathogens among yeasts is Candida albicans, which presents a serious health threat. The study aimed to check the antifungal properties of trans-anethole and eugenol with selected antifungal medicines (AMs) against C. albicans clinical isolates. The checkerboard method was used to tests of interactions between these compounds. Achieved results indicated that eugenol showed synergistic and additive activities with miconazole and econazole against investigated clinical isolates, respectively. Moreover, the combination - trans-anethole - miconazole also showed an additive effect against two clinical isolate. We tried to relate the results to changes in C. albicans cell sheaths under the influence of essential oils compounds (EOCs) performing the Fourier transform infrared spectra analysis to confirm the presence of particular chemical moieties in C. albicans cells. Nevertheless, no strong relationships was observed between synergistic and additive actions of used EOC-AMs combinations and chemical moieties in C. albicans cells.


Subject(s)
Allylbenzene Derivatives/pharmacology , Anisoles/pharmacology , Antifungal Agents/pharmacology , Candida albicans/drug effects , Eugenol/pharmacology , Allylbenzene Derivatives/chemistry , Anisoles/chemistry , Antifungal Agents/chemistry , Candida albicans/isolation & purification , Dose-Response Relationship, Drug , Drug Combinations , Eugenol/chemistry , Microbial Sensitivity Tests
17.
ChemSusChem ; 14(8): 1821-1824, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33651919

ABSTRACT

A general, sustainable dearomatization reaction for nitrogen-containing heterocycles was developed. Under solvent free conditions and without catalyst, the biorenewable methyl coumalate (MC) reacted as an efficient C3 partner to convert nine types of basic aromatic rings into their pyrido[1,2-a] fused derivatives in good to excellent yields. The fluorescence properties of some of the products were harnessed to conjugate fluorescent tags to bovine serum albumin (BSA) and immunoglobulin G.


Subject(s)
Fluorescent Dyes/chemistry , Heterocyclic Compounds/chemical synthesis , Hydrocarbons, Aromatic/chemical synthesis , Anisoles/chemistry , Benzofurans/chemistry , Catalysis , Cycloaddition Reaction , Immunoglobulin G/chemistry , Indoles/chemistry , Molecular Structure , Optical Imaging , Pyrones/chemistry , Pyrroles/chemistry , Serum Albumin, Bovine/chemistry , Solvents/chemistry
18.
J Agric Food Chem ; 69(2): 776-782, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33410326

ABSTRACT

α-Asarone and ß-asarone are reported as bioactive constituents of Acorus calamus. Phase I metabolism of asarone isomers results in a multiple spectrum of genotoxic metabolites. Thus, the question arises whether structural analogues of the known phase I metabolites also naturally occur in A. calamus-based food products. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for three product classes, herbal infusions, alcoholic beverages, and food supplements. High asarone contents were detected in herbal infusions (total mean 9.13 mg/kg, n = 8) and food supplements (total mean 14.52 mg/kg, n = 6); hence, these food products can highly contribute to human exposure to genotoxic asarone derivatives. Also, the occurrence of asarone oxidation products found in food and food supplements has to be taken under consideration because data on toxicity is limited so far.


Subject(s)
Acorus/chemistry , Anisoles/chemistry , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Tandem Mass Spectrometry/methods , Allylbenzene Derivatives , Isomerism , Molecular Structure
19.
Food Chem ; 350: 128364, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33461824

ABSTRACT

Haloanisoles (HAs) are known to compromise wine quality because of their mouldy off-flavours. Up to now no treatment exists to eliminate the presence of these unpleasant volatiles in wine. This research aimed i) to assess the alimentary plastic film efficacy to remove or lessen HAs content in polluted wines; and ii) to evaluate its impact on wine quality. The film-treatment reduced significantly (p < 0,05) the 2,4,6-trichloroanisole (TCA) content of initial wine. This decrease became more noticeable as the contact time film-wine increased. Chromatic characteristics, phenolic and proanthocyanidin contents, and woody aroma profile did not change because of the film-treatment. A significant sorption of certain esters was observed, but as HAs were removed under detection thresholds, fruity perception of wines was improved. Globally, the alimentary plastic film was able to improve the organoleptic quality of wines contaminated with HAs, by reducing the cork taint and enhancing their overall fruity aroma.


Subject(s)
Anisoles/chemistry , Halogens/chemistry , Wine/analysis , Phenols/analysis , Proanthocyanidins/analysis
20.
Pharmazie ; 76(12): 588-593, 2021 12 05.
Article in English | MEDLINE | ID: mdl-34986954

ABSTRACT

α-Asarone, the main bioactive phytochemicals of Acorus species, is widely used in the treatment of respiratory disorders. The solution stability study of α-asarone was investigated in the presence of various metal ions. α-Asarone was found to be unstable in the presence of the metal ions Fe3+, Cu2+ and Al3+, in which the induction of Fe3+ was highly prone to the degradation of α-asarone. Thus, an iron (III)-mediated forced degradation study of α-asarone was carried out. One oxidative and four dimeric products were formed after the degradation of α-asarone. The complete mass fragmentation patterns for α-asarone and its degradation products (DPs) were established by UPLC-MS/MS in the positive ionization mode, and their structural confirmation was accomplished with 1H and 13C NMR. Then, the mechanistic pathways for the formation of all DPs were postulated. Finally, the oxidation degradation behavior and mechanism of α-asarone in the presence of oxidative stressors viz., hydrogen peroxide and azobisisobutyronitrile were explored.


Subject(s)
Iron , Tandem Mass Spectrometry , Allylbenzene Derivatives , Anisoles/chemistry , Chromatography, High Pressure Liquid , Chromatography, Liquid
SELECTION OF CITATIONS
SEARCH DETAIL