Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
1.
Front Immunol ; 15: 1440667, 2024.
Article in English | MEDLINE | ID: mdl-39176090

ABSTRACT

Foot and mouth disease (FMD) is a highly contagious infection caused by FMD-virus (FMDV) that affects livestock worldwide with significant economic impact. The main strategy for the control is vaccination with FMDV chemically inactivated with binary ethylenimine (FMDVi). In FMDV infection and vaccination, B cell response plays a major role by providing neutralizing/protective antibodies in animal models and natural hosts. Extracellular vesicles (EVs) and small EVs (sEVs) such as exosomes are important in cellular communication. EVs secreted by antigen-presenting cells (APC) like dendritic cells (DCs) participate in the activation of B and T cells through the presentation of native antigen membrane-associated to B cells or by transferring MHC-peptide complexes to T cells and even complete antigens from DCs. In this study, we demonstrate for the first time that APC activated with the FMDVi O1 Campos vaccine-antigens secrete EVs expressing viral proteins/peptides that could stimulate FMDV-specific immune response. The secretion of EVs-FMDVi is a time-dependent process and can only be isolated within the first 24 h post-activation. These vesicles express classical EVs markers (CD9, CD81, and CD63), along with immunoregulatory molecules (MHC-II and CD86). With an average size of 155 nm, they belong to the category of EVs. Studies conducted in vitro have demonstrated that EVs-FMDVi express antigens that can stimulate a specific B cell response against FMDV, including both marginal zone B cells (MZB) and follicular B cells (FoB). These vesicles can also indirectly or directly affect T cells, indicating that they express both B and T epitopes. Additionally, lymphocyte expansion induced by EVs-FMDVi is greater in splenocytes that have previously encountered viral antigens in vivo. The present study sheds light on the role of EVs derived from APC in regulating the adaptive immunity against FMDV. This novel insight contributes to our current understanding of the immune mechanisms triggered by APC during the antiviral immune response. Furthermore, these findings may have practical implications for the development of new vaccine platforms, providing a rational basis for the design of more effective vaccines against FMDV and other viral diseases.


Subject(s)
Antigen-Presenting Cells , Antigens, Viral , B-Lymphocytes , Extracellular Vesicles , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Viral Vaccines , Animals , Foot-and-Mouth Disease Virus/immunology , Extracellular Vesicles/immunology , B-Lymphocytes/immunology , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/prevention & control , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigens, Viral/immunology , Viral Vaccines/immunology , Viral Proteins/immunology , Lymphocyte Activation/immunology , Dendritic Cells/immunology , Antigen Presentation/immunology
2.
J Nanobiotechnology ; 22(1): 476, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135064

ABSTRACT

BACKGROUND: Current needle-based vaccination for respiratory viruses is ineffective at producing sufficient, long-lasting local immunity in the elderly. Direct pulmonary delivery to the resident local pulmonary immune cells can create long-term mucosal responses. However, criteria for drug vehicle design rules that can overcome age-specific changes in immune cell functions have yet to be established. RESULTS: Here, in vivo charge-based nanoparticle (NP) uptake was compared in mice of two age groups (2- and 16-months) within the four notable pulmonary antigen presenting cell (APC) populations: alveolar macrophages (AM), interstitial macrophages (IM), CD103+ dendritic cells (DCs), and CD11b+ DCs. Both macrophage populations exhibited preferential uptake of anionic nanoparticles but showed inverse rates of phagocytosis between the AM and IM populations across age. DC populations demonstrated preferential uptake of cationic nanoparticles, which remarkably did not significantly change in the aged group. Further characterization of cell phenotypes post-NP internalization demonstrated unique surface marker expression and activation levels for each APC population, showcasing heightened DC inflammatory response to NP delivery in the aged group. CONCLUSION: The age of mice demonstrated significant preferences in the charge-based NP uptake in APCs that differed greatly between macrophages and DCs. Carefully balance of the targeting and activation of specific types of pulmonary APCs will be critical to produce efficient, age-based vaccines for the growing elderly population.


Subject(s)
Antigen-Presenting Cells , Dendritic Cells , Lung , Mice, Inbred C57BL , Nanoparticles , Phagocytosis , Animals , Nanoparticles/chemistry , Mice , Lung/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Antigen-Presenting Cells/immunology , Macrophages, Alveolar/metabolism , Polyethylene Glycols/chemistry , Aging , Female , Age Factors
3.
Gut Microbes ; 16(1): 2390135, 2024.
Article in English | MEDLINE | ID: mdl-39161185

ABSTRACT

Growing evidence highlights the pivotal role of RORγt-innate lymphoid cells (ILCs) in the establishment of antitumor immune response and in enhancing tumor sensitivity to immunotherapy. Noteworthy, type 3 ILCs (ILC3s) have been recently acknowledged as an important class of antigen-presenting cells (APCs) in the context of host-microorganism interactions shaping the adaptive immune response in the intestinal mucosa. Although a broad range of mouse models has led to significant progress in untangling the role of ILC3s as APCs, the outcome of major histocompatibility complex (MHC)-dependent ILC-T cell crosstalk in colorectal cancer (CRC) remains underexplored in human. Moreover, expression of MHCII is confined to ILC3 subset, endowed with lymphoid tissue-inducing properties, that adopts tissue-specific fates and functions. Intestinal microbiota could dictate the plasticity of antigen-presenting ILC3s and we here summarize our current understanding of the functions of these cells in both mouse and human CRC discussing the role of microbiota as a key modulator of their tumor-suppressive activity.


Subject(s)
Antigen-Presenting Cells , Colorectal Neoplasms , Gastrointestinal Microbiome , Lymphocytes , Humans , Animals , Gastrointestinal Microbiome/immunology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/microbiology , Antigen-Presenting Cells/immunology , Lymphocytes/immunology , Mice , Immunity, Innate , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology
4.
Sci Rep ; 14(1): 18847, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39143087

ABSTRACT

Photothermal therapy is an alternative cancer therapy that uses a photothermal agent with light irradiation to induce fatal hyperthermia in cancer cells. In a previous study, we found that ex vivo photothermal (PT) treatment induced expression of heat shock proteins (HSPs), such as HSP70, HSP27, and HSP90, in cancer cells; moreover, immunization with lysates from PT-treated tumor cells resulted in significant tumor growth inhibition in tumor-bearing mice. In this study, we hypothesized that sublethal PT treatment of antigen-presenting cells regulates their immunogenicity. We observed the upregulation of expression of intracellular HSP70 and surface activation markers, such as CD40, CD80, CD86, and MHC class II, in sublethal PT-treated cells. The protumoral activity of myeloid-derived suppressor cells (MDSCs) was reduced by sublethal hyperthermia. Furthermore, poorly immunogenic MDSCs were converted into immunogenic antigen-presenting cells by PT treatment. The differences in immunogenicity between MDSCs untreated or treated with the PT technique were evaluated using the Student's t-test or Mann-Whitney rank sum test. Collectively, direct hyperthermic treatment resulted in phenotypic changes and the functional regulation of immune cells.


Subject(s)
Heat-Shock Response , Myeloid-Derived Suppressor Cells , Photothermal Therapy , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Animals , Mice , Photothermal Therapy/methods , Cell Line, Tumor , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , HSP70 Heat-Shock Proteins/metabolism , Hyperthermia, Induced/methods , Mice, Inbred C57BL , Female , Humans
5.
Cancer Cell ; 42(7): 1152-1154, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981434

ABSTRACT

In this issue of Cancer Cell, Espinosa-Carrasco et al. show that the efficacy of cancer immunotherapies depends upon the formation of intratumoral immune triads between antigen-presenting cells and antigen-specific CD4+ and CD8+ T cells. This interaction reprograms tumor-specific CD8+ T cells to exert potent effector functions and eradicate established solid tumors.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , CD8-Positive T-Lymphocytes/immunology , Humans , Neoplasms/immunology , Neoplasms/therapy , Immunotherapy/methods , Animals , CD4-Positive T-Lymphocytes/immunology , Antigen-Presenting Cells/immunology , Mice
6.
Biomaterials ; 311: 122703, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39002516

ABSTRACT

An obstacle in current tumor immunotherapies lies in the challenge of achieving sustained and tumor-targeting T cell immunity, impeded by the limited antigen processing and cross-presentation of tumor antigens. Here, we propose a hydrogel-based multicellular immune factory within the body that autonomously converts tumor cells into an antitumor vaccine. Within the body, the scaffold, formed by a calcium-containing chitosan hydrogel complex (ChitoCa) entraps tumor cells and attracts immune cells to establish a durable and multicellular microenvironment. Within this context, tumor cells are completely eliminated by antigen-presenting cells (APCs) and processed for cross-antigen presentation. The regulatory mechanism relies on the Mincle receptor, a cell-phagocytosis-inducing C-type lectin receptor specifically activated on ChitoCa-recruited APCs, which serves as a recognition synapse, facilitating a tenfold increase in tumor cell engulfment and subsequent elimination. The ChitoCa-induced tumor cell processing further promotes the cross-presentation of tumor antigens to prime protective CD8+ T cell responses. Therefore, the ChitoCa treatment establishes an immune niche within the tumor microenvironment, resulting in effective tumor regression either used alone or in combination with other immunotherapies. This hydrogel-induced immune factory establishes a functional organ-like multicellular colony for tumor-specific immunotherapy, paving the way for innovative strategies in cancer treatment.


Subject(s)
Hydrogels , Immunotherapy , Lectins, C-Type , Immunotherapy/methods , Animals , Hydrogels/chemistry , Lectins, C-Type/metabolism , Humans , Cell Line, Tumor , Neoplasms/therapy , Neoplasms/immunology , Mice, Inbred C57BL , Tumor Microenvironment/immunology , Chitosan/chemistry , Antigen-Presenting Cells/immunology , Cancer Vaccines/immunology , Mice , Membrane Proteins/metabolism , Receptors, Immunologic/metabolism , CD8-Positive T-Lymphocytes/immunology
7.
J Biotechnol ; 391: 57-63, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38851397

ABSTRACT

Antigen-presenting cells (APCs) play an important role in virus infection control by bridging innate and adaptive immune responses. Macrophages and dendritic cells (DCs) possess various surface receptors to recognize/internalize antigens, and antibody binding can enhance pathogen-opsonizing uptake by these APCs via interaction of antibody fragment crystallizable (Fc) domains with Fc receptors, evoking profound pathogen control in certain settings. Here, we examined phagocytosis-enhancing potential of Fc domains directly oriented on a retroviral virion/virus-like particle (VLP) surface. We generated an expression vector coding a murine Fc fragment fused to the transmembrane region (TM) of a retroviral envelope protein, deriving expression of the Fc-TM fusion protein on the transfected cell surface and production of virions incorporating the chimeric Fc upon co-transfection. Incubation of Fc-displaying simian immunodeficiency virus (SIV) with murine J774 macrophages and bone marrow-derived DCs derived Fc receptor-dependent enhanced uptake, being visualized by imaging cytometry. Alternative preparation of a murine leukemia virus (MLV) backbone-based Fc-displaying VLP loading an influenza virus hemagglutinin (HA) antigen resulted in enhanced HA internalization by macrophages, stating antigen compatibility of the design. Results show that the Fc-TM fusion molecule can be displayed on certain viruses/VLPs and may be utilized as a molecular adjuvant to facilitate APC antigen uptake.


Subject(s)
Antigen-Presenting Cells , Dendritic Cells , Immunoglobulin Fc Fragments , Virion , Animals , Mice , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Virion/metabolism , Virion/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Macrophages/metabolism , Macrophages/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/immunology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Cell Line , Leukemia Virus, Murine/genetics , Phagocytosis , Humans
8.
HLA ; 103(6): e15541, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923358

ABSTRACT

Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Dendritic Cells , Epitopes, T-Lymphocyte , Immunodominant Epitopes , Humans , Cytomegalovirus/immunology , Cytomegalovirus Infections/immunology , Immunodominant Epitopes/immunology , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A11 Antigen/immunology , HLA-A11 Antigen/genetics , Fibroblasts/immunology , Fibroblasts/virology , Antigen-Presenting Cells/immunology
9.
Traffic ; 25(6): e12950, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923715

ABSTRACT

Processes such as cell migration, phagocytosis, endocytosis, and exocytosis refer to the intense exchange of information between the internal and external environment in the cells, known as vesicular trafficking. In eukaryotic cells, these essential cellular crosstalks are controlled by Rab GTPases proteins through diverse adaptor proteins like SNAREs complex, coat proteins, phospholipids, kinases, phosphatases, molecular motors, actin, or tubulin cytoskeleton, among others, all necessary for appropriate mobilization of vesicles and distribution of molecules. Considering these molecular events, Rab GTPases are critical components in specific biological processes of immune cells, and many reports refer primarily to macrophages; therefore, in this review, we address specific functions in immune cells, concretely in the mechanism by which the GTPase contributes in dendritic cells (DCs) and, T/B lymphocytes.


Subject(s)
T-Lymphocytes , rab GTP-Binding Proteins , Humans , rab GTP-Binding Proteins/metabolism , Animals , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Dendritic Cells/metabolism , Dendritic Cells/immunology , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/immunology
10.
Proc Natl Acad Sci U S A ; 121(25): e2322264121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865265

ABSTRACT

Despite the tremendous clinical potential of nucleic acid-based vaccines, their efficacy to induce therapeutic immune response has been limited by the lack of efficient local gene delivery techniques in the human body. In this study, we develop a hydrogel-based organic electronic device (µEPO) for both transdermal delivery of nucleic acids and in vivo microarrayed cell electroporation, which is specifically oriented toward one-step transfection of DNAs in subcutaneous antigen-presenting cells (APCs) for cancer immunotherapy. The µEPO device contains an array of microneedle-shaped electrodes with pre-encapsulated dry DNAs. Upon a pressurized contact with skin tissue, the electrodes are rehydrated, electrically triggered to release DNAs, and then electroporate nearby cells, which can achieve in vivo transfection of more than 50% of the cells in the epidermal and upper dermal layer. As a proof-of-concept, the µEPO technique is employed to facilitate transdermal delivery of neoantigen genes to activate antigen-specific immune response for enhanced cancer immunotherapy based on a DNA vaccination strategy. In an ovalbumin (OVA) cancer vaccine model, we show that high-efficiency transdermal transfection of APCs with OVA-DNAs induces robust cellular and humoral immune responses, including antigen presentation and generation of IFN-γ+ cytotoxic T lymphocytes with a more than 10-fold dose sparing over existing intramuscular injection (IM) approach, and effectively inhibits tumor growth in rodent animals.


Subject(s)
Electroporation , Immunotherapy , Vaccines, DNA , Animals , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Electroporation/methods , Mice , Immunotherapy/methods , Administration, Cutaneous , Neoplasms/therapy , Neoplasms/immunology , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Ovalbumin/immunology , Ovalbumin/administration & dosage , Antigen-Presenting Cells/immunology , Female , Mice, Inbred C57BL , Humans , Vaccination/methods
11.
Drug Resist Updat ; 75: 101098, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833804

ABSTRACT

Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.


Subject(s)
Antigen-Presenting Cells , Cancer Vaccines , Immunotherapy , Nanoparticles , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Nanoparticles/administration & dosage , Antigen-Presenting Cells/immunology , Biomimetics/methods , Biomimetic Materials/administration & dosage , Animals , Liposomes , Nanovaccines
12.
Adv Sci (Weinh) ; 11(31): e2400260, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896803

ABSTRACT

Skin-resident antigen-presenting cells (APC) play an important role in maintaining peripheral tolerance via immune checkpoint proteins and induction of T regulatory cells (Tregs). However, there is a lack of knowledge on how to expand or recruit immunoregulatory cutaneous cells without causing inflammation. Here, it is shown that administration of a non-coding single-stranded oligonucleotide (ssON) leads to CCR2-dependent accumulation of CD45+CD11b+Ly6C+ cells in the skin that express substantial levels of PD-L1 and ILT3. Transcriptomic analyses of skin biopsies reveal the upregulation of key immunosuppressive genes after ssON administration. Functionally, the cutaneous CD11b+ cells inhibit Th1/2/9 responses and promote the induction of CD4+FoxP3+ T-cells. In addition, ssON treatment of imiquimod-induced inflammation results in significantly reduced Th17 responses. It is also shown that induction of IL-10 production in the presence of cutaneous CD11b+ cells isolated after ssON administrations is partly PD-L1 dependent. Altogether, an immunomodulatory ssON is identified that can be used therapeutically to recruit cutaneous CD11b+ cells with the capacity to dampen Th cells.


Subject(s)
CD11b Antigen , Skin , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Mice , Animals , CD11b Antigen/metabolism , CD11b Antigen/genetics , CD11b Antigen/immunology , Skin/immunology , Skin/metabolism , Mice, Inbred C57BL , Oligonucleotides/pharmacology , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Female , Disease Models, Animal
13.
Cell Immunol ; 401-402: 104845, 2024.
Article in English | MEDLINE | ID: mdl-38909549

ABSTRACT

CD147 is a T cell activation-associated molecule which is closely involved in the formation of the immune synapse (IS). However, the precise role of CD147 in T cell activation and IS formation remains unclear. In the present study, we demonstrated that CD147 translocated to the IS upon T cell activation and was primarily distributed in the peripheral super molecular cluster (p-SMAC). The knock down of CD147 expression in T cells, but not in B cells, impaired IS formation. CD147 participated in IS formation between T cells and different types of antigen-presenting cells (APCs), including macrophages and dendritic cells. Ligation of CD147 with its monoclonal antibody (mAb) HAb18 effectively inhibited T cell activation and IL-2 secretion. CD98, a critical molecule interacting with CD147, was distributed in IS in a CD147-dependent way. Phosphorylation levels of T cell receptor (TCR) related molecules, like ZAP-70, ERK, and cJun, were down-regulated by CD147 ligation, which is crucial for the interaction of CD147 and TCR signaling transduction. CD147 is indispensable for the formation of immune synapses and plays an important role in the regulation of its function.


Subject(s)
Basigin , Immunological Synapses , Lymphocyte Activation , T-Lymphocytes , Basigin/metabolism , Basigin/immunology , Immunological Synapses/metabolism , Immunological Synapses/immunology , Lymphocyte Activation/immunology , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Phosphorylation , Antibodies, Monoclonal/immunology , Macrophages/immunology , Macrophages/metabolism , B-Lymphocytes/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Interleukin-2/metabolism , Interleukin-2/immunology , Animals , Jurkat Cells
14.
Adv Drug Deliv Rev ; 210: 115329, 2024 07.
Article in English | MEDLINE | ID: mdl-38729265

ABSTRACT

Autoimmune diseases are burdensome conditions that affect a significant fraction of the global population. The hallmark of autoimmune disease is a host's immune system being licensed to attack its tissues based on specific antigens. There are no cures for autoimmune diseases. The current clinical standard for treating autoimmune diseases is the administration of immunosuppressants, which weaken the immune system and reduce auto-inflammatory responses. However, people living with autoimmune diseases are subject to toxicity, fail to mount a sufficient immune response to protect against pathogens, and are more likely to develop infections. Therefore, there is a concerted effort to develop more effective means of targeting immunomodulatory therapies to antigen-presenting cells, which are involved in modulating the immune responses to specific antigens. In this review, we highlight approaches that are currently in development to target antigen-presenting cells and improve therapeutic outcomes in autoimmune diseases.


Subject(s)
Antigen-Presenting Cells , Autoimmune Diseases , Autoimmunity , Immunotherapy , Humans , Antigen-Presenting Cells/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Immunotherapy/methods , Animals , Autoimmunity/immunology
15.
Int J Pharm ; 660: 124254, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38795934

ABSTRACT

Cancer vaccines can be utilized in combination with checkpoint inhibitors to optimally stimulate the anti-tumor immune response. Uptake of vaccine antigen by antigen presenting cells (APCs) is a prerequisite for T cell priming, but often relies on non-specific mechanisms. Here, we have developed a novel vaccination strategy consisting of cancer antigen-containing liposomes conjugated with CD169- or DC-SIGN-specific nanobodies (single domain antibodies) to achieve specific uptake by APCs. Our studies demonstrate efficient nanobody liposome uptake by human and murine CD169+ and DC-SIGN+ APCs in vitro and in vivo when compared to control liposomes or liposomes with natural ligands for CD169 and DC-SIGN. Uptake of CD169 nanobody liposomes resulted in increased T cell activation by human APCs and stimulated naive T cell priming in mouse models. In conclusion, while nanobody liposomes have previously been utilized to direct drugs to tumors, here we show that nanobody liposomes can be applied as vaccination strategy that can be extended to other receptors on APCs in order to elicit a potent immune response against tumor antigens.


Subject(s)
Antigen-Presenting Cells , Cancer Vaccines , Liposomes , Mice, Inbred C57BL , Single-Domain Antibodies , T-Lymphocytes , Animals , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/administration & dosage , Humans , T-Lymphocytes/immunology , Mice , Antigen-Presenting Cells/immunology , Female , Antigens, Neoplasm/immunology , Antigens, Neoplasm/administration & dosage , Lymphocyte Activation/drug effects
16.
Front Immunol ; 15: 1386160, 2024.
Article in English | MEDLINE | ID: mdl-38779658

ABSTRACT

The study of peptide repertoires presented by major histocompatibility complex (MHC) molecules and the identification of potential T-cell epitopes contribute to a multitude of immunopeptidome-based treatment approaches. Epitope mapping is essential for the development of promising epitope-based approaches in vaccination as well as for innovative therapeutics for autoimmune diseases, infectious diseases, and cancer. It also plays a critical role in the immunogenicity assessment of protein therapeutics with regard to safety and efficacy concerns. The main challenge emerges from the highly polymorphic nature of the human leukocyte antigen (HLA) molecules leading to the requirement of a peptide mapping strategy for a single HLA allele. As many autoimmune diseases are linked to at least one specific antigen, we established FASTMAP, an innovative strategy to transiently co-transfect a single HLA allele combined with a disease-specific antigen into a human cell line. This approach allows the specific identification of HLA-bound peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using FASTMAP, we found a comparable spectrum of endogenous peptides presented by the most frequently expressed HLA alleles in the world's population compared to what has been described in literature. To ensure a reliable peptide mapping workflow, we combined the HLA alleles with well-known human model antigens like coagulation factor VIII, acetylcholine receptor subunit alpha, protein structures of the SARS-CoV-2 virus, and myelin basic protein. Using these model antigens, we have been able to identify a broad range of peptides that are in line with already published and in silico predicted T-cell epitopes of the specific HLA/model antigen combination. The transient co-expression of a single affinity-tagged MHC molecule combined with a disease-specific antigen in a human cell line in our FASTMAP pipeline provides the opportunity to identify potential T-cell epitopes/endogenously processed MHC-bound peptides in a very cost-effective, fast, and customizable system with high-throughput potential.


Subject(s)
Epitope Mapping , Epitopes, T-Lymphocyte , HLA-E Antigens , Proteomics , Proteomics/methods , HLA-E Antigens/analysis , Epitopes, T-Lymphocyte/analysis , Epitope Mapping/methods , Epitope Mapping/standards , Autoimmune Diseases/diagnosis , Autoimmune Diseases/immunology , Cell Line , Humans , Liquid Chromatography-Mass Spectrometry , Peptides/isolation & purification , Antigen-Presenting Cells/immunology , Artificial Cells/immunology
17.
Nano Lett ; 24(19): 5808-5815, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710049

ABSTRACT

In multicellular organisms, individual cells are coordinated through complex communication networks to accomplish various physiological tasks. Aiming to establish new biological functions in the multicellular community, we used DNA as the building block to develop a cascade of nongenetic reaction circuits to establish a dynamic cell-cell communication network. Utilizing membrane-anchored amphiphilic DNA tetrahedra (TDN) as the nanoscaffold, reaction circuits were incorporated into three unrelated cells in order to uniquely regulate their sense-and-response behaviors. As a proof-of-concept, this step enabled these cells to simulate significant biological events involved in T cell-mediated anticancer immunity. Such events included cancer-associated antigen recognition and the presentation of antigen-presenting cells (APCs), APC-facilitated T cell activation and dissociation, and T cell-mediated cancer targeting and killing. By combining the excellent programmability and molecular recognition ability of DNA, our cell-surface reaction circuits hold promise for mimicking and manipulating many biological processes.


Subject(s)
Antigen-Presenting Cells , Cell Communication , DNA , DNA/chemistry , Humans , Antigen-Presenting Cells/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Lymphocyte Activation , Neoplasms/pathology , Neoplasms/genetics
18.
Front Immunol ; 15: 1392316, 2024.
Article in English | MEDLINE | ID: mdl-38711516

ABSTRACT

Streptococcus pneumoniae remains a significant global threat, with existing vaccines having important limitations such as restricted serotype coverage and high manufacturing costs. Pneumococcal lipoproteins are emerging as promising vaccine candidates due to their surface exposure and conservation across various serotypes. While prior studies have explored their potential in mice, data in a human context and insights into the impact of the lipid moiety remain limited. In the present study, we examined the immunogenicity of two pneumococcal lipoproteins, DacB and MetQ, both in lipidated and non-lipidated versions, by stimulation of primary human immune cells. Immune responses were assessed by the expression of common surface markers for activation and maturation as well as cytokines released into the supernatant. Our findings indicate that in the case of MetQ lipidation was crucial for activation of human antigen-presenting cells such as dendritic cells and macrophages, while non-lipidated DacB demonstrated an intrinsic potential to induce an innate immune response. Nevertheless, immune responses to both proteins were enhanced by lipidation. Interestingly, following stimulation of dendritic cells with DacB, LipDacB and LipMetQ, cytokine levels of IL-6 and IL-23 were significantly increased, which are implicated in triggering potentially important Th17 cell responses. Furthermore, LipDacB and LipMetQ were able to induce proliferation of CD4+ T cells indicating their potential to induce an adaptive immune response. These findings contribute valuable insights into the immunogenic properties of pneumococcal lipoproteins, emphasizing their potential role in vaccine development against pneumococcal infections.


Subject(s)
Adaptive Immunity , Bacterial Proteins , Cytokines , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/immunology , Cytokines/metabolism , Bacterial Proteins/immunology , Lipoproteins/immunology , Lipoproteins/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Pneumococcal Vaccines/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Macrophages/immunology , Macrophages/metabolism , Cells, Cultured
19.
Blood Adv ; 8(14): 3691-3704, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38701354

ABSTRACT

ABSTRACT: Despite therapeutic advancements, graft-versus-host disease (GVHD) is a major complication of hematopoietic stem cell transplantation (HSCT). In current models of GVHD, tissue injury induced by cytotoxic conditioning regimens, along with translocation of microbes expressing pathogen-associated molecular patterns, result in activation of host antigen-presenting cells (APCs) to stimulate alloreactive donor T lymphocytes. Recent studies have demonstrated that in many pathologic states, tissue injury results in the release of mitochondria from the cytoplasm to the extracellular space. We hypothesized that extracellular mitochondria, which are related to archaebacteria, could also trigger GVHD by stimulation of host APCs. We found that clinically relevant doses of radiation or busulfan induced extracellular release of mitochondria by various cell types, including cultured intestinal epithelial cells. Conditioning-mediated mitochondrial release was associated with mitochondrial damage and impaired quality control but did not affect the viability of the cells. Extracellular mitochondria directly stimulated host APCs to express higher levels of major histocompatibility complex II (MHC-II), costimulatory CD86, and proinflammatory cytokines, resulting in increased donor T-cell activation, and proliferation in mixed lymphocyte reactions. Analyses of plasma from both experimental mice and a cohort of children undergoing HSCT demonstrated that conditioning induced extracellular mitochondrial release in vivo. In mice undergoing MHC-mismatched HSCT, administration of purified syngeneic extracellular mitochondria increased host APC activation and exacerbated GVHD. Our data suggest that pre-HSCT conditioning results in extracellular release of damaged mitochondria, which increase alloreactivity and exacerbate GVHD. Therefore, decreasing the extracellular release of damaged mitochondria after conditioning could serve as a novel strategy for GVHD prevention.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mitochondria , Transplantation Conditioning , Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , Animals , Hematopoietic Stem Cell Transplantation/adverse effects , Mitochondria/metabolism , Mice , Humans , Transplantation Conditioning/methods , Disease Models, Animal , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/immunology
20.
Theranostics ; 14(6): 2290-2303, 2024.
Article in English | MEDLINE | ID: mdl-38646651

ABSTRACT

Background: Neoantigen nanovaccine has been recognized as a promising treatment modality for personalized cancer immunotherapy. However, most current nanovaccines are carrier-dependent and the manufacturing process is complicated, resulting in potential safety concerns and suboptimal codelivery of neoantigens and adjuvants to antigen-presenting cells (APCs). Methods: Here we report a facile and general methodology for nanoassembly of peptide and oligonucleotide by programming neoantigen peptide with a short cationic module at N-terminus to prepare nanovaccine. The programmed peptide can co-assemble with CpG oligonucleotide (TLR9 agonist) into monodispersed nanostructures without the introduction of artificial carrier. Results: We demonstrate that the engineered nanovaccine promoted the codelivery of neoantigen peptides and adjuvants to lymph node-residing APCs and instigated potent neoantigen-specific T-cell responses, eliciting neoantigen-specific antitumor immune responses with negligible systemic toxicity. Furthermore, the antitumor T-cell immunity is profoundly potentiated when combined with anti-PD-1 therapy, leading to significant inhibition or even complete regression of established melanoma and MC-38 colon tumors. Conclusions: Collectively, this work demonstrates the feasibility and effectiveness of personalized cancer nanovaccine preparation with high immunogenicity and good biosafety by programming neoantigen peptide for nanoassembly with oligonucleotides without the aid of artificial carrier.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Peptides , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Animals , Mice , Antigens, Neoplasm/immunology , Peptides/immunology , Peptides/chemistry , Mice, Inbred C57BL , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Oligodeoxyribonucleotides/chemistry , Antigen-Presenting Cells/immunology , Cell Line, Tumor , Immunotherapy/methods , Humans , Female , T-Lymphocytes/immunology , Nanostructures/chemistry , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Colonic Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL