Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.041
Filter
1.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 239-242, 2024 May 23.
Article in Chinese | MEDLINE | ID: mdl-38952308

ABSTRACT

The global malaria epidemic is still severe. Because of simple procedures, rapid detection and accuracy results, rapid diagnostic test (RDT) has become the most important and the most widely used diagnostic tool for malaria prevention and control. However, deletions in the RDT target Plasmodium falciparum histidine-rich protein 2/3 (Pfhrp2/3) genes may cause false-negative results of RDT, which has been included as one of the four biological threats to global malaria elimination. This article reviews the applications of RDT in the global malaria diagnosis, analyzes the threats and challenges caused by Pfhrp2/3 gene deletion, proposes methods for monitoring Pfhrp2/3 gene deletion, and summarizes the causes and countermeasures of negative RDT detections, so as to provide insights into consolidation of malaria elimination achievements in China and contributions to global malaria elimination.


Subject(s)
Antigens, Protozoan , Gene Deletion , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Protozoan Proteins/genetics , Humans , Antigens, Protozoan/genetics , Plasmodium falciparum/genetics , Malaria, Falciparum/diagnosis , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Diagnostic Tests, Routine/methods , China/epidemiology , Rapid Diagnostic Tests
2.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 279-285, 2024 Jun 13.
Article in Chinese | MEDLINE | ID: mdl-38952314

ABSTRACT

OBJECTIVE: To prepare and characterize the mouse polyclonal antibody against the dense granule protein 24 (GRA24) of Toxoplasma gondii, and explore its preliminary applications. METHODS: The GRA24 coding sequences of different T. gondii strains were aligned using the MEGA-X software, and the dominant peptide of the GRA24 protein was analyzed with the Protean software. The base sequence encoding this peptide was amplified using PCR assay and ligated into the pET-28a vector, and the generated GRA24 truncated protein was transformed into Escherichia coli BL21. After induction by isopropyl-beta-D-thiogalactopyranoside (IPTG), the expression and purification of the recombinant GRA24 protein was analyzed using sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE). BALB/c mice were immunized by subcutaneous injection with the purified recombinant GRA24 truncated protein to generate the polyclonal antibody, and the titer of the polyclonal antibody was measured using enzyme linked immunosorbent assay (ELISA). The specificity of the polyclonal antibody was tested using Western blotting, and the intracellular localization of the polyclonal antibody was investigated using immunofluorescence assay (IFA). RESULTS: SDS-PAGE showed successful construction of the recombinant expression plasmid, and Coomassie brilliant blue staining showed the generation of the high-purity recombinant GRA24 truncated protein. ELISA measured that the titer of the polyclonal antibody against the GRA24 truncated protein was higher than 1:208 400, and Western blotting showed that the polyclonal antibody was effective to recognize the endogenous GRA24 proteins of different T. gondii strains and specifically recognize the recombinant GRA24 truncated protein. Indirect IFA showed that the GRA24 protein secreted 16 hour following T. gondii invasion in host cells. CONCLUSIONS: The polyclonal antibody against the T. gondii GRA24 protein has been successfully prepared, which has a widespread applicability, high titers and a high specificity. This polyclonal antibody is available for Western blotting and IFA, which provides the basis for investigating the function of the GRA24 protein.


Subject(s)
Antibodies, Protozoan , Mice, Inbred BALB C , Protozoan Proteins , Toxoplasma , Animals , Toxoplasma/immunology , Toxoplasma/genetics , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Mice , Antibodies, Protozoan/immunology , Female , Recombinant Proteins/immunology , Antibody Specificity , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics
3.
Parasit Vectors ; 17(1): 305, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010122

ABSTRACT

BACKGROUND: Chagas disease (CD), a neglected parasitic disease caused by Trypanosoma cruzi, poses a significant health threat in Latin America and has emerged globally because of human migration. Trypanosoma cruzi infects humans and over 100 other mammalian species, including dogs, which are important sentinels for assessing the risk of human infection. Nonetheless, the serodiagnosis of T. cruzi in dogs is still impaired by the absence of commercial tests. In this study, we investigated the diagnostic accuracy of four chimeric recombinant T. cruzi IBMP antigens (IBMP-8.1, IBMP-8.2, IBMP-8.3, and IBMP-8.4) for detecting anti-T. cruzi antibodies in dogs, using latent class analysis (LCA). METHODS: We examined 663 canine serum samples, employing indirect ELISA with the chimeric antigens. LCA was utilized to establish a latent variable as a gold standard for T. cruzi infection, revealing distinct response patterns for each antigen. RESULTS: The IBMP (Portuguese acronym for the Molecular Biology Institute of Paraná) antigens achieved area under the ROC curve (AUC) values ranging from 90.9% to 97.3%. The highest sensitivity was attributed to IBMP-8.2 (89.8%), while IBMP-8.1, IBMP-8.3, and IBMP-8.4 achieved 73.5%, 79.6%, and 85.7%, respectively. The highest specificity was observed for IBMP-8.4 (98.6%), followed by IBMP-8.2, IBMP-8.3, and IBMP-8.1 with specificities of 98.3%, 94.4%, and 92.7%, respectively. Predictive values varied according to prevalence, indicating higher effectiveness in endemic settings. CONCLUSIONS: Our findings underscore the remarkable diagnostic performance of IBMP-8.2 and IBMP-8.4 for the serodiagnosis of Trypanosoma cruzi in dogs, representing a promising tool for the diagnosis of CD in dogs. These chimeric recombinant antigens may not only enhance CD surveillance strategies but also hold broader implications for public health, contributing to the global fight against this neglected tropical disease.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Chagas Disease , Dog Diseases , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , Serologic Tests , Trypanosoma cruzi , Animals , Dogs , Chagas Disease/diagnosis , Chagas Disease/veterinary , Chagas Disease/parasitology , Trypanosoma cruzi/immunology , Trypanosoma cruzi/genetics , Dog Diseases/diagnosis , Dog Diseases/parasitology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Serologic Tests/methods , Serologic Tests/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Antibodies, Protozoan/blood , Recombinant Proteins/immunology , Recombinant Proteins/genetics
4.
Front Immunol ; 15: 1392043, 2024.
Article in English | MEDLINE | ID: mdl-38962015

ABSTRACT

In the Americas, P. vivax is the predominant causative species of malaria, a debilitating and economically significant disease. Due to the complexity of the malaria parasite life cycle, a vaccine formulation with multiple antigens expressed in various parasite stages may represent an effective approach. Based on this, we previously designed and constructed a chimeric recombinant protein, PvRMC-1, composed by PvCyRPA, PvCelTOS, and Pvs25 epitopes. This chimeric protein was strongly recognized by naturally acquired antibodies from exposed population in the Brazilian Amazon. However, there was no investigation about the induced immune response of PvRMC-1. Therefore, in this work, we evaluated the immunogenicity of this chimeric antigen formulated in three distinct adjuvants: Stimune, AddaVax or Aluminum hydroxide (Al(OH)3) in BALB/c mice. Our results suggested that the chimeric protein PvRMC-1 were capable to generate humoral and cellular responses across all three formulations. Antibodies recognized full-length PvRMC-1 and linear B-cell epitopes from PvCyRPA, PvCelTOS, and Pvs25 individually. Moreover, mice's splenocytes were activated, producing IFN-γ in response to PvCelTOS and PvCyRPA peptide epitopes, affirming T-cell epitopes in the antigen. While aluminum hydroxide showed notable cellular response, Stimune and Addavax induced a more comprehensive immune response, encompassing both cellular and humoral components. Thus, our findings indicate that PvRMC-1 would be a promising multistage vaccine candidate that could advance to further preclinical studies.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Malaria, Vivax , Mice, Inbred BALB C , Plasmodium vivax , Protozoan Proteins , Animals , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Mice , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Malaria, Vivax/immunology , Malaria, Vivax/prevention & control , Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Disease Models, Animal , Adjuvants, Immunologic , Immunogenicity, Vaccine , Antigens, Surface
5.
Protein Sci ; 33(8): e5095, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38988315

ABSTRACT

The Duffy-binding protein (DBP) is a promising antigen for a malaria vaccine that would protect against clinical symptoms caused by Plasmodium vivax infection. Region II of DBP (DBP-II) contains the receptor-binding domain that engages host red blood cells, but DBP-II vaccines elicit many non-neutralizing antibodies that bind distal to the receptor-binding surface. Here, we engineered a truncated DBP-II immunogen that focuses the immune response to the receptor-binding surface. This immunogen contains the receptor-binding subdomain S1S2 and lacks the immunodominant subdomain S3. Structure-based computational design of S1S2 identified combinatorial amino acid changes that stabilized the isolated S1S2 without perturbing neutralizing epitopes. This immunogen elicited DBP-II-specific antibodies in immunized mice that were significantly enriched for blocking activity compared to the native DBP-II antigen. This generalizable design process successfully stabilized an integral core fragment of a protein and focused the immune response to desired epitopes to create a promising new antigen for malaria vaccine development.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Epitopes , Malaria Vaccines , Plasmodium vivax , Protozoan Proteins , Receptors, Cell Surface , Protozoan Proteins/immunology , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Plasmodium vivax/immunology , Animals , Malaria Vaccines/immunology , Malaria Vaccines/chemistry , Epitopes/immunology , Epitopes/chemistry , Mice , Antibodies, Protozoan/immunology , Receptors, Cell Surface/immunology , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Models, Molecular , Malaria, Vivax/immunology , Malaria, Vivax/prevention & control , Mice, Inbred BALB C
6.
Sci Rep ; 14(1): 16291, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39009685

ABSTRACT

Hard-to-reach communities represent Peru's main challenge for malaria elimination, but information about transmission in these areas is scarce. Here, we assessed Plasmodium vivax (Pv) and P. falciparum (Pf) transmission dynamics, resistance markers, and Pf hrp2/3 deletions in Nueva Jerusalén (NJ), a remote, indigenous community in the Peruvian Amazon with high population mobility. We collected samples from November 2019 to May 2020 by active (ACD) and passive case detection (PCD) in NJ. Parasites were identified with microscopy and PCR. Then, we analyzed a representative set of positive-PCR samples (Pv = 68, Pf = 58) using highly-multiplexed deep sequencing assays (AmpliSeq) and compared NJ parasites with ones from other remote Peruvian areas using population genetics indexes. The ACD intervention did not reduce malaria cases in the short term, and persistent malaria transmission was observed (at least one Pv infection was detected in 96% of the study days). In Nueva Jerusalen, the Pv population had modest genetic diversity (He = 0.27). Pf population had lower diversity (He = 0.08) and presented temporal clustering, one of these clusters linked to an outbreak in February 2020. Moreover, Pv and Pf parasites from NJ exhibited variable levels of differentiation (Pv Fst = 0.07-0.52 and Pf Fst = 0.11-0.58) with parasites from other remote areas. No artemisin resistance mutations but chloroquine (57%) and sulfadoxine-pyrimethamine (35-67%) were detected in NJ's Pf parasites. Moreover, pfhrp2/3 gene deletions were common (32-50% of parasites with one or both genes deleted). The persistent Pv transmission and the detection of a Pf outbreak with parasites genetically distinct from the local ones highlight the need for tailored interventions focusing on mobility patterns and imported infections in remote areas to eliminate malaria in the Peruvian Amazon.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Plasmodium falciparum , Plasmodium vivax , Protozoan Proteins , Peru/epidemiology , Humans , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Protozoan Proteins/genetics , Female , Male , Child , Adult , Antimalarials/therapeutic use , Antimalarials/pharmacology , Adolescent , Drug Resistance/genetics , Middle Aged , Indigenous Peoples/genetics , Young Adult , Child, Preschool , Genomics/methods , Genetic Variation , Antigens, Protozoan/genetics
7.
Sci Rep ; 14(1): 16024, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38992085

ABSTRACT

South Africa's efforts toward eliminating malaria have positioned the country in the pre-elimination stage. Imported and sub-microscopic cases still contribute to the persistence of malaria in regions of low transmission as identified in this study where diagnostics is built largely on the use of Rapid Diagnostic Test (RDT). However, the presence of Pfhrp2/3 gene deletion is known to interfere with the accuracy of diagnosis with the use of RDT. Malaria elimination and detection of Pfhrp2/3 gene deletion in the pre-elimination setting requires accurate molecular surveillance. With the core objective of this study being the determination of the presence sub-microscopic malaria cases and deleted Pfhrp2/3 gene markers, a total of 354 samples were collected from five districts of KwaZulu Natal, South Africa. These samples were prepared for molecular analysis using primers and PCR conditions specific for amplification of 18S rRNA and msp-1gene. Positive amplicons were analysed for the presence of Pfhrp2/3 and flanking genes, along with Sanger sequencing and phylogenetic studies. Out of 354 samples collected 339 were tested negative with PfHRP2 based RDTs. Of these Pfhrp2 and Pfhrp3 gene deletions were confirmed in 94.7% (18/19) and 100% (19/19) respectively. High migration rate (75%) among the study participants was noted and phylogenetic analysis of sequenced isolates showed close evolutionary relatedness with India, United Kingdom, Iran, and Myanmar and China isolates. Molecular-based test is recommended as an essential surveillance tool for malaria management programs as the target focuses on elimination.


Subject(s)
Antigens, Protozoan , Gene Deletion , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Protozoan Proteins/genetics , South Africa/epidemiology , Humans , Plasmodium falciparum/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/genetics , Malaria, Falciparum/prevention & control , Antigens, Protozoan/genetics , Phylogeny
8.
Vet Parasitol ; 330: 110240, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959671

ABSTRACT

Theileriosis caused by Theileria parva infections is responsible for high cattle mortalities in Zambia. Although infected buffalo are a risk to cattle, the characterization of T. parva parasites occurring in this host in Zambia has not been reported. Furthermore, considering the advances in the development of a p67 subunit vaccine, the knowledge of p67 genetic and antigenic diversity in both cattle and buffalo associated T. parva is crucial. Therefore, blood samples from buffalo (n=43) from Central, Eastern and Southern provinces, and cattle (n=834) from Central, Copperbelt, Eastern, Lusaka, and Southern provinces, were tested for T. parva infection and the parasites characterized by sequencing the gene encoding the p67 antigen. About 76.7 % of buffalo and 19.3 % of cattle samples were PCR positive for T. parva. Three of the four known p67 allele types (1, 2 and 3) were identified in parasites from buffalo, of which two (allele types 2 and 3) are associated with T. parva parasites responsible for Corridor disease. Only allele type 1, associated with East Coast fever, was identified from cattle samples, consistent with previous reports from Zambia. Phylogenetic analysis revealed segregation between allele type 1 sequences from cattle and buffalo samples as they grouped separately within the same sub-clade. The high occurrence of T. parva infection in buffalo samples investigated demonstrates the risk of Corridor disease infection, or even outbreaks, should naïve cattle co-graze with infected buffalo in the presence of the tick vector. In view of a subunit vaccine, the antigenic diversity in buffalo associated T. parva should be considered to ensure broad protection. The current disease control measures in Zambia may require re-evaluation to ensure that cattle are protected against buffalo-derived T. parva infections. Parasite stocks used in 'infection and treatment' immunization in Zambia, have not been evaluated for protection against buffalo-derived T. parva parasites currently circulating in the buffalo population.


Subject(s)
Alleles , Antigens, Protozoan , Buffaloes , Theileria parva , Theileriasis , Animals , Buffaloes/parasitology , Theileria parva/genetics , Theileria parva/immunology , Theileriasis/parasitology , Theileriasis/epidemiology , Zambia/epidemiology , Cattle , Antigens, Protozoan/genetics , Phylogeny , Cattle Diseases/parasitology , Cattle Diseases/epidemiology , Protozoan Proteins
9.
Malar J ; 23(1): 215, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026276

ABSTRACT

BACKGROUND: Pfhrp2 and pfhrp3 deletions are threatening Plasmodium falciparum malaria diagnosis by rapid diagnostic tests (RDT) due to false negatives. This study assesses the changes in the frequencies of pfhrp2 and pfhrp3 deletions (pfhrp2Del and pfhrp3Del, respectively) and the genes in their flaking regions, before and after RDT introduction in Equatorial Guinea. METHODS: A total of 566 P. falciparum samples were genotyped to assess the presence of pfhrp2 and pfhrp3 deletions and their flanking genes. The specimens were collected 18 years apart from two provinces of Equatorial Guinea, North Bioko (Insular Region) and Litoral Province (Continental Region). Orthologs of pfhrp2 and pfhrp3 genes from other closely related species were used to compare sequencing data to assess pfhrp2 and pfhrp3 evolution. Additionally, population structure was studied using seven neutral microsatellites. RESULTS: This study found that pfhrp2Del and pfhrp3Del were present before the introduction of RDT; however, they increased in frequency after their use, reaching more than 15%. Haplotype networks suggested that pfhrp2Del and pfhrp3Del emerged multiple times. Exon 2 of pfhrp2 and pfhrp3 genes had high variability, but there were no significant changes in amino acid sequences. CONCLUSIONS: Baseline sampling before deploying interventions provides a valuable context to interpret changes in genetic markers linked to their efficacy, such as the dynamic of deletions affecting RDT efficacy.


Subject(s)
Antigens, Protozoan , Plasmodium falciparum , Protozoan Proteins , Equatorial Guinea , Protozoan Proteins/genetics , Antigens, Protozoan/genetics , Plasmodium falciparum/genetics , Evolution, Molecular , Malaria, Falciparum , Diagnostic Tests, Routine , Humans , Sequence Deletion , Gene Deletion
10.
Acta Trop ; 257: 107302, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959992

ABSTRACT

Toxoplasma gondii is an important protozoan pathogen, which can cause severe diseases in the newborns and immunocompromised individuals. Developing an effective vaccine against Toxoplasma infection is a critically important global health priority. Immunofluorescence staining analysis revealed that TgSAG2 and TgSRS2 are membrane associated and displayed on the surface of the parasite. Immunizations with pBud-SAG2, pBud-SRS2 and pBud-SAG2-SRS2 DNA vaccines significantly increased the production of specific IgG antibodies. Immunization with pBud-SAG2-SRS2 elicited cellular immune response with higher concentrations of IFN-γ and IL-4 compared to the control group. Antigen-specific lymphocyte proliferations in the pBud-SRS2 and pBud-SAG2-SRS2 groups were significantly higher compared to that in the control group. Furthermore, 30 % of mice immunized with pBud-SAG2-SRS2 survived after the challenge infection with virulent T. gondii RH tachyzoites. This study revealed that immunization with pBud-SAG2-SRS2 induced potent immune responses, and has the potential as a promising vaccine candidate for the control of T. gondii infection.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Immunoglobulin G , Protozoan Proteins , Protozoan Vaccines , Toxoplasma , Toxoplasmosis, Animal , Vaccines, DNA , Animals , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Vaccines, DNA/administration & dosage , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Toxoplasma/immunology , Toxoplasma/genetics , Antibodies, Protozoan/blood , Protozoan Vaccines/immunology , Protozoan Vaccines/administration & dosage , Protozoan Vaccines/genetics , Mice , Immunoglobulin G/blood , Female , Toxoplasmosis, Animal/prevention & control , Toxoplasmosis, Animal/immunology , Mice, Inbred BALB C , Interferon-gamma/immunology , Disease Models, Animal , Cell Proliferation , Interleukin-4/immunology , Survival Analysis
11.
mBio ; 15(8): e0107924, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38995021

ABSTRACT

Surveillance and sustained control of visceral leishmaniasis (VL) require reliable serodiagnostic tools. rK39, the gold standard antigen for VL diagnosis, is limited by its documented poor sensitivity in certain endemic regions, such as East Africa, and by the longevity of its antibodies, making it difficult to distinguish active from cured infections. In a recent publication in mBio, Roberts et al. (A. J. Roberts, H.B. Ong, S. Clare, C. Brandt, et al., mBio 15:e00859-24, 2024, https://doi.org/10.1128/mbio.00859-24) identified new immunogenic Leishmania candidates in dogs and humans. In dogs, combined antigens LdBPK_290790.1 + LdBPK_362700.1 (D4 +D46) distinguished symptomatic from asymptomatic infections. For humans, LdBPK_323600.1 (D36) antigen produced short-lived antibodies and performed well in patient cohorts from Bangladesh and Ethiopia, but not Kenya. This study adds promising new candidates to our serodiagnostic toolbox but highlights the need for more antigen discovery studies that may have to be focused on regional performance.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Dog Diseases , Leishmaniasis, Visceral , Serologic Tests , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/immunology , Dogs , Animals , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Serologic Tests/methods , Humans , Dog Diseases/diagnosis , Dog Diseases/parasitology , Dog Diseases/immunology , Antibodies, Protozoan/blood , Sensitivity and Specificity , Ethiopia
12.
Infect Immun ; 92(7): e0021524, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38884473

ABSTRACT

Human babesiosis is a malaria-like illness caused by protozoan parasites of the genus Babesia. Babesia microti is responsible for most cases of human babesiosis in the United States, particularly in the Northeast and the Upper Midwest. Babesia microti is primarily transmitted to humans through the bite of infected deer ticks but also through the transfusion of blood components, particularly red blood cells. There is a high risk of severe and even fatal disease in immunocompromised patients. To date, serology testing relies on an indirect immunofluorescence assay that uses the whole Babesia microti antigen. Here, we report the construction of phage display cDNA libraries from Babesia microti-infected erythrocytes as well as human reticulocytes obtained from donors with hereditary hemochromatosis. Plasma samples were obtained from patients who were or had been infected with Babesia microti. The non-specific antibody reactivity of these plasma samples was minimized by pre-exposure to the human reticulocyte library. Using this novel experimental strategy, immunoreactive segments were identified in three Babesia microti antigens termed BmSA1 (also called BMN1-9; BmGPI12), BMN1-20 (BMN1-17; Bm32), and BM4.12 (N1-15). Moreover, our findings indicate that the major immunoreactive segment of BmSA1 does not overlap with the segment that mediates BmSA1 binding to mature erythrocytes. When used in combination, the three immunoreactive segments form the basis of a sensitive and comprehensive diagnostic immunoassay for human babesiosis, with implications for vaccine development.


Subject(s)
Antigens, Protozoan , Babesia microti , Babesiosis , Gene Library , Babesia microti/immunology , Babesia microti/genetics , Humans , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Babesiosis/immunology , Babesiosis/parasitology , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Erythrocytes/parasitology , Erythrocytes/immunology , Cell Surface Display Techniques , Animals
13.
PLoS Negl Trop Dis ; 18(6): e0012020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924064

ABSTRACT

Bovine trypanosomosis, caused by Trypanosoma vivax, currently affects cattle and has a significant economic impact in sub-Saharan Africa and South America. The development of new diagnostic antigens is essential to improve and refine existing methods. Our study evaluated the efficacy of two recombinant antigens in detecting specific antibodies in cattle. These antigens are derivatives of an invariant surface glycoprotein (ISG) from T. vivax. A fraction of a previously described antigen (TvY486_0045500), designated TvISGAf, from an African strain was evaluated, and a new ISG antigen from an American isolate, TvISGAm, was identified. The two antigens were expressed as fusion proteins in Escherichia coli: TvISGAf was fused to the MBP-His-tag, and TvISGAm was obtained as a His-tag fused protein. An ELISA evaluation was conducted using these antigens on 149 positive and 63 negative bovine samples. The diagnostic performance was enhanced by the use of a combination of both antigens (referred to as TvISG-based ELISA), achieving a sensitivity of 89.6% and specificity of 93.8%. Following the validation of the TvISG-based ELISA, the seroprevalence of T. vivax infection in 892 field samples from cattle in the central region of Argentina was determined. The mean seroprevalence of T. vivax was 53%, with variation ranging from 21% to 69% among the six departments studied. These results support the use of the TvISG ELISA as a valuable serological tool for the detection and monitoring of T. vivax infection in cattle. Furthermore, we report for the first time the seroprevalence of T. vivax in Argentina, which highlights the widespread endemic nature of the disease in the region. In order to effectively manage the increasing spread of T. vivax in the vast livestock production areas of South America, it is essential to implement consistent surveillance programs and to adopt preventive strategies.


Subject(s)
Antigens, Protozoan , Cattle Diseases , Enzyme-Linked Immunosorbent Assay , Serologic Tests , Trypanosoma vivax , Animals , Cattle , Argentina/epidemiology , Trypanosoma vivax/immunology , Trypanosoma vivax/genetics , Trypanosoma vivax/isolation & purification , Serologic Tests/methods , Serologic Tests/veterinary , Cattle Diseases/diagnosis , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Antibodies, Protozoan/blood , Sensitivity and Specificity , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/veterinary , Trypanosomiasis, African/epidemiology , Livestock/parasitology
14.
PLoS Negl Trop Dis ; 18(6): e0012231, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865344

ABSTRACT

BACKGROUND: Malaria transmission-blocking vaccines (TBVs) aim to inhibit malaria parasite development in mosquitoes and prevent further transmission to the human host. The putative-secreted ookinete protein 25 (PSOP25), highly conserved in Plasmodium spp., is a promising TBV target. Here, we investigated PvPSOP25 from P. vivax as a TBV candidate using transgenic murine parasite P. berghei and clinical P. vivax isolates. METHODS AND FINDINGS: A transgenic P. berghei line expressing PvPSOP25 (TrPvPSOP25Pb) was generated. Full-length PvPSOP25 was expressed in the yeast Pichia pastoris and used to immunize mice to obtain anti-rPvPSOP25 sera. The transmission-blocking activity of the anti-rPvPSOP25 sera was evaluated through in vitro assays and mosquito-feeding experiments. The antisera generated by immunization with rPvPSOP25 specifically recognized the native PvPSOP25 antigen expressed in TrPvPSOP25Pb ookinetes. In vitro assays showed that the immune sera significantly inhibited exflagellation and ookinete formation of the TrPvPSOP25Pb parasite. Mosquitoes feeding on mice infected with the transgenic parasite and passively transferred with the anti-rPvPSOP25 sera showed a 70.7% reduction in oocyst density compared to the control group. In a direct membrane feeding assay conducted with five clinical P. vivax isolates, the mouse anti-rPvPSOP25 antibodies significantly reduced the oocyst density while showing a negligible influence on mosquito infection prevalence. CONCLUSIONS: This study supported the feasibility of transgenic murine malaria parasites expressing P. vivax antigens as a useful tool for evaluating P. vivax TBV candidates. Meanwhile, the moderate transmission-reducing activity of the generated anti-rPvPSOP25 sera necessitates further research to optimize its efficacy.


Subject(s)
Malaria Vaccines , Malaria, Vivax , Plasmodium berghei , Plasmodium vivax , Protozoan Proteins , Animals , Mice , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Humans , Malaria, Vivax/transmission , Malaria, Vivax/parasitology , Malaria, Vivax/prevention & control , Malaria, Vivax/immunology , Female , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Malaria/transmission , Malaria/prevention & control , Malaria/parasitology , Malaria/immunology , Mice, Inbred BALB C
15.
Mol Biochem Parasitol ; 259: 111630, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38795969

ABSTRACT

Toxoplasma gondii is an intracellular protozoan parasite that infects all nucleated cells except the red blood cells. Currently, nucleic acid vaccines are being widely investigated in Toxoplasma gondii control, and several nucleic acid vaccine candidate antigens have shown good protection in various studies. The aim of this study was to construct a nucleic acid vaccine with Toxoplasma gondii SRS29C as the target gene. We explored the nucleic acid vaccine with Toxoplasma surface protein SRS29C and the combined gene of SRS29C and SAG1 and evaluated its immunoprotective effect against Toxoplasma gondii. To amplify the gene fragment and clone it to the expression vector, the recombinant plasmid pEGFP-SRS29C was constructed by PCR. Eukaryotic cells were transfected with the plasmid, and the expression of the target protein was assessed using the Western blot method. The level of serum IgG was determined via ELISA, and the splenic lymphocyte proliferation ability was detected using the CCK-8 method. The percentages of CD4+ and CD8+ T cells were measured by flow cytometry. Mice were immunised three times with single-gene nucleic acid vaccine and combination vaccine. Splenic lymphocytokine expression was determined using ELISA kits. The mice's survival time was monitored and recorded during an in vivo insect assault experiment, and the vaccine's protective power was assessed. The outcomes showed that PCR-amplification of an SRS29C gene fragment was successful. The 4,733-bp vector fragment and the 1,119-bp target segment were both recognised by double digestion. Additionally, after transfection of the recombinant plasmid pEGFP-SRS29C, Western blot examination of the extracted protein revealed the presence of a target protein strip at 66 kDa. The test results demonstrated that the IgG content in the serum of the pEGFP-SRS29C group and the co-immunization group was significantly higher than that of the PBS group and the empty vector group. The IgG potency induced by the co-immunization group was higher than that of the pEGFP-SRS29C group and the pEGFP-SAG1 group, the number of splenic lymphocyte proliferation number was higher than that of the PBS group and the empty vector group. The CD4+/CD8+ T ratio was higher than that of the PBS group and the empty vector group. The expression of IFN-γ and TNF-α in the splenocytes of the pEGFP-SRS29C group and the combined immunisation group was significantly higher following antigen stimulation. In the worm attack experiments, mice in the PBS and empty vector groups perished within 9 days of the worm attack, whereas mice in the pEGFP-SRS29C group survived for 18 days, mice in the pEGFP-SAG1 group survived for 21 days, and mice in the co-immunization group survived for 24 days. This demonstrates that the constructed Toxoplasma gondii nucleic acid vaccine pEGFP-SRS29C and the combined gene vaccine can induce mice to develop certain humoral and cellular immune responses, and enhance their ability to resist Toxoplasma gondii infection.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Immunoglobulin G , Protozoan Proteins , Protozoan Vaccines , Toxoplasma , Vaccines, DNA , Animals , Toxoplasma/immunology , Toxoplasma/genetics , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Vaccines, DNA/administration & dosage , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Protozoan Vaccines/immunology , Protozoan Vaccines/genetics , Mice , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Toxoplasmosis, Animal/prevention & control , Toxoplasmosis, Animal/immunology , Mice, Inbred BALB C , CD8-Positive T-Lymphocytes/immunology , Spleen/immunology , Spleen/parasitology , Cell Proliferation , Plasmids/genetics , Plasmids/immunology , Cytokines/metabolism
16.
Indian J Med Microbiol ; 49: 100616, 2024.
Article in English | MEDLINE | ID: mdl-38761865

ABSTRACT

PURPOSE: Genetically diverse parasites enhances resistance against antimalarials, vaccines and host immune responses. The present study was designed to evaluate the role played by Plasmodium falciparum genetic diversity in predicting the real world malarial population. METHODS: Initially, the incidence pattern of all four northern Indian malarial species was examined using 18S rRNA gene and performed principal component analysis (PCA) based on frequencies of Plasmodium species. Consequently, genetic variance of Plasmodium falciparum histidine-rich protein-2 (Pfhrp2) gene among different malarial populations were compared using phylogenetic analysis. Multi-dimensional scaling was performed to assess genetic similarities and distances among studied populations. RESULTS: Of total 2168 patients screened, 561 patients with fever of unknown origin were included. 18S rRNA and Pfhrp2 genes were amplified in 78 and 45 samples, respectively. Among them 13.9%(78/561) patients had Plasmodium infection. Infections by P. falciparum, P. vivax and mixed infections were diagnosed among 47(60.2%) and 28(35.9%) and 3(3.8%) patients, respectively. We found eight types of Pfhrp2 amino acid sequence repeats among northern Indian population. The PCA findings were in line with genetic diversity and phylogenetic data. Temporal analysis showed the proportion of total diversity present in total subpopulation (ΔS/ΔT) was maximum for P. falciparum. CONCLUSIONS: Higher incidence of Pfhrp2 sequence variation through genetic recombination among multiple strains during sexual reproduction is potentially correlated with high transmission activity. This sequence variation might alter RDT detection sensitivities for different parasites by modulating the structure and frequency of antigenic epitopes.


Subject(s)
Antigens, Protozoan , Genetic Variation , Malaria, Falciparum , Phylogeny , Plasmodium falciparum , Protozoan Proteins , RNA, Ribosomal, 18S , Humans , Protozoan Proteins/genetics , Plasmodium falciparum/genetics , Antigens, Protozoan/genetics , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , India/epidemiology , RNA, Ribosomal, 18S/genetics , Male , Female , Adult , Adolescent , Child , Young Adult , Child, Preschool , Middle Aged
17.
Infect Genet Evol ; 122: 105605, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759940

ABSTRACT

Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) is a promising candidate target for the development of multi-component vaccines. Therefore, determining the genetic variation pattern of Pvmsp8 is essential in providing a reference for the rational design of the P. vivax malaria vaccines. This study delves into the genetic characteristics of the Pvmsp8 gene, specifically focusing on samples from the China-Myanmar border (CMB) region, and contrasts these findings with broader global patterns. The study uncovers that Pvmsp8 exhibits a notable level of conservation across different populations, with limited polymorphisms and relatively low nucleotide diversity (0.00023-0.00120). This conservation contrasts starkly with the high polymorphisms found in other P. vivax antigens such as Pvmsp1. A total of 25 haplotypes and 14 amino acid mutation sites were identified in the global populations, and all mutation sites were confined to non-functional regions. The study also notes that most CMB Pvmsp8 haplotypes are shared among Burmese, Cambodian, Thai, and Vietnamese populations, indicating less geographical variance, but differ notably from those found in Pacific island regions or the Panama. The findings underscore the importance of considering regional genetic diversity in P. vivax when developing targeted malaria vaccines. Non departure from neutral evolution were found by Tajima's D test, however, statistically significant differences were observed between the kn/ks rates. The study's findings are crucial in understanding the evolution and population structure of the Pvmsp8 gene, particularly during regional malaria elimination efforts. The highly conserved nature of Pvmsp8, combined with the lack of mutations in its functional domain, presents it as a promising candidate for developing a broad and effective P. vivax vaccine. This research thus lays a foundation for the rational development of multivalent malaria vaccines targeting this genetically stable antigen.


Subject(s)
Genetic Variation , Haplotypes , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Selection, Genetic , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Mutation , Phylogeny , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology
18.
Front Cell Infect Microbiol ; 14: 1384393, 2024.
Article in English | MEDLINE | ID: mdl-38720960

ABSTRACT

The clinical consequences of toxoplasmosis are greatly dependent on the Toxoplasma gondii strain causing the infection. To better understand its epidemiology and design appropriate control strategies, it is important to determine the strain present in infected animals. Serotyping methods are based on the detection of antibodies that react against segments of antigenic proteins presenting strain-specific polymorphic variations, offering a cost-effective, sensitive, and non-invasive alternative to genotyping techniques. Herein, we evaluated the applicability of a panel of peptides previously characterized in mice and humans to serotype sheep and pigs. To this end, we used 51 serum samples from experimentally infected ewes (32 type II and 19 type III), 20 sheep samples from naturally infected sheep where the causative strain was genotyped (18 type II and 2 type III), and 40 serum samples from experimentally infected pigs (22 type II and 18 type III). Our ELISA test results showed that a combination of GRA peptide homologous pairs can discriminate infections caused by type II and III strains of T. gondii in sheep and pigs. Namely, the GRA3-I/III-43 vs. GRA3-II-43, GRA6-I/III-213 vs. GRA6-II-214 and GRA6-III-44 vs. GRA6-II-44 ratios showed a statistically significant predominance of the respective strain-type peptide in sheep, while in pigs, in addition to these three peptide pairs, GRA7-II-224 vs. GRA7-III-224 also showed promising results. Notably, the GRA6-44 pair, which was previously deemed inefficient in mice and humans, showed a high prediction capacity, especially in sheep. By contrast, GRA5-38 peptides failed to correctly predict the strain type in most sheep and pig samples, underpinning the notion that individual standardization is needed for each animal species. Finally, we recommend analyzing for each animal at least 2 samples taken at different time points to confirm the obtained results.


Subject(s)
Antigens, Protozoan , Serotyping , Sheep Diseases , Swine Diseases , Toxoplasmosis, Animal , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Enzyme-Linked Immunosorbent Assay/methods , Genotype , Peptides/immunology , Serotyping/methods , Sheep , Sheep Diseases/parasitology , Sheep Diseases/diagnosis , Swine , Swine Diseases/parasitology , Swine Diseases/diagnosis , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/parasitology
19.
Parasit Vectors ; 17(1): 239, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802961

ABSTRACT

BACKGROUND: The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS: Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS: In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS: Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.


Subject(s)
Antigens, Protozoan , Collagen Type I , Fibroblasts , Plasmodium vivax , Signal Transduction , Spleen , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Fibroblasts/parasitology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Animals , Collagen Type I/metabolism , Collagen Type I/genetics , Spleen/immunology , Spleen/parasitology , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/immunology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/immunology , Tryptophan/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Computational Biology
20.
Front Cell Infect Microbiol ; 14: 1375249, 2024.
Article in English | MEDLINE | ID: mdl-38808064

ABSTRACT

Introduction: Diversity in malarial antigens is an immune evasion mechanism that gives malaria parasites an edge over the host. Immune responses against one variant of a polymorphic antigen are usually not fully effective against other variants due to altered epitopes. This study aimed to evaluate diversity in the Plasmodium falciparum antigens apical membrane antigen 1 (PfAMA1) and circumsporozoite protein (PfCSP) from circulating parasites in a malaria-endemic community in southern Ghana and to determine the effects of polymorphisms on antibody response specificity. Methods: The study involved 300 subjects, whose P. falciparum infection status was determined by microscopy and PCR. Diversity within the two antigens was evaluated by msp2 gene typing and molecular gene sequencing, while the host plasma levels of antibodies against PfAMA1, PfCSP, and two synthetic 24mer peptides from the conserved central repeat region of PfCSP, were measured by ELISA. Results: Of the 300 subjects, 171 (57%) had P. falciparum infection, with 165 of the 171 (96.5%) being positive for either or both of the msp2 allelic families. Gene sequencing of DNA from 55 clonally infected samples identified a total of 56 non-synonymous single nucleotide polymorphisms (SNPs) for the Pfama1 gene and these resulted in 44 polymorphic positions, including two novel positions (363 and 365). Sequencing of the Pfcsp gene from 69 clonal DNA samples identified 50 non-synonymous SNPs that resulted in 42 polymorphic positions, with half (21) of these polymorphic positions being novel. Of the measured antibodies, only anti-PfCSP antibodies varied considerably between PCR parasite-positive and parasite-negative persons. Discussion: These data confirm the presence of a considerable amount of unique, previously unreported amino acid changes, especially within PfCSP. Drivers for this diversity in the Pfcsp gene do not immediately seem apparent, as immune pressure will be expected to drive a similar level of diversity in the Pfama1 gene.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria, Falciparum , Membrane Proteins , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Ghana , Humans , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Female , Adult , Male , Adolescent , Young Adult , Child , Genetic Variation , Child, Preschool , Middle Aged , Sequence Analysis, DNA , Enzyme-Linked Immunosorbent Assay , Polymerase Chain Reaction , Antigenic Variation , DNA, Protozoan/genetics
SELECTION OF CITATIONS
SEARCH DETAIL