Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 414
Filter
1.
J Chem Inf Model ; 64(13): 5194-5206, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38870039

ABSTRACT

The serine protease trypsin forms a tightly bound inhibitor complex with the bovine pancreatic trypsin inhibitor (BPTI). The complex is stabilized by the P1 residue Lys15, which interacts with negatively charged amino acids at the bottom of the S1 pocket. Truncating the P1 residue of wildtype BPTI to α-aminobutyric acid (Abu) leaves a complex with moderate inhibitor strength, which is held in place by additional hydrogen bonds at the protein-protein interface. Fluorination of the Abu residue partially restores the inhibitor strength. The mechanism with which fluorination can restore the inhibitor strength is unknown, and accurate computational investigation requires knowledge of the binding and unbinding pathways. The preferred unbinding pathway is likely to be complex, as encounter states have been described before, and unrestrained umbrella sampling simulations of these complexes suggest additional energetic minima. Here, we use random acceleration molecular dynamics to find a new metastable state in the unbinding pathway of Abu-BPTI variants and wildtype BPTI from trypsin, which we call the prebound state. The prebound state and the fully bound state differ by a substantial shift in the position, a slight shift in the orientation of the BPTI variants, and changes in the interaction pattern. Particularly important is the breaking of three hydrogen bonds around Arg17. Fluorination of the P1 residue lowers the energy barrier of the transition between the fully bound state and prebound state and also lowers the energy minimum of the prebound state. While the effect of fluorination is in general difficult to quantify, here, it is in part caused by favorable stabilization of a hydrogen bond between Gln194 and Cys14. The interaction pattern of the prebound state offers insights into the inhibitory mechanism of BPTI and might add valuable information for the design of serine protease inhibitors.


Subject(s)
Aprotinin , Molecular Dynamics Simulation , Protein Binding , Trypsin , Trypsin/metabolism , Trypsin/chemistry , Aprotinin/chemistry , Aprotinin/metabolism , Animals , Cattle , Halogenation , Hydrogen Bonding , Protein Conformation , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/metabolism , Trypsin Inhibitors/pharmacology
2.
Microb Cell Fact ; 23(1): 166, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840157

ABSTRACT

BACKGROUND: Recombinant peptide production in Escherichia coli provides a sustainable alternative to environmentally harmful and size-limited chemical synthesis. However, in-vivo production of disulfide-bonded peptides at high yields remains challenging, due to degradation by host proteases/peptidases and the necessity of translocation into the periplasmic space for disulfide bond formation. RESULTS: In this study, we established an expression system for efficient and soluble production of disulfide-bonded peptides in the periplasm of E. coli. We chose model peptides with varying complexity (size, structure, number of disulfide bonds), namely parathyroid hormone 1-84, somatostatin 1-28, plectasin, and bovine pancreatic trypsin inhibitor (aprotinin). All peptides were expressed without and with the N-terminal, low molecular weight CASPON™ tag (4.1 kDa), with the expression cassette being integrated into the host genome. During BioLector™ cultivations at microliter scale, we found that most of our model peptides can only be sufficiently expressed in combination with the CASPON™ tag, otherwise expression was only weak or undetectable on SDS-PAGE. Undesired degradation by host proteases/peptidases was evident even with the CASPON™ tag. Therefore, we investigated whether degradation happened before or after translocation by expressing the peptides in combination with either a co- or post-translational signal sequence. Our results suggest that degradation predominantly happened after the translocation, as degradation fragments appeared to be identical independent of the signal sequence, and expression was not enhanced with the co-translational signal sequence. Lastly, we expressed all CASPON™-tagged peptides in two industry-relevant host strains during C-limited fed-batch cultivations in bioreactors. We found that the process performance was highly dependent on the peptide-host-combination. The titers that were reached varied between 0.6-2.6 g L-1, and exceeded previously published data in E. coli. Moreover, all peptides were shown by mass spectrometry to be expressed to completion, including full formation of disulfide bonds. CONCLUSION: In this work, we demonstrated the potential of the CASPON™ technology as a highly efficient platform for the production of soluble peptides in the periplasm of E. coli. The titers we show here are unprecedented whenever parathyroid hormone, somatostatin, plectasin or bovine pancreatic trypsin inhibitor were produced in E. coli, thus making our proposed upstream platform favorable over previously published approaches and chemical synthesis.


Subject(s)
Disulfides , Escherichia coli , Peptides , Periplasm , Escherichia coli/metabolism , Escherichia coli/genetics , Periplasm/metabolism , Disulfides/metabolism , Peptides/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Aprotinin/metabolism , Aprotinin/genetics
3.
Sci Rep ; 13(1): 21637, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38062077

ABSTRACT

Although it is well established that platelet-activated receptor (PAF) and protease-activated receptor 2 (PAR2) play a pivotal role in the pathophysiology of lung and airway inflammatory diseases, a role for a PAR2-PAFR cooperation in lung inflammation has not been investigated. Here, we investigated the role of PAR2 in PAF-induced lung inflammation and neutrophil recruitment in lungs of BALB/c mice. Mice were pretreated with the PAR2 antagonist ENMD1068, PAF receptor (PAFR) antagonist WEB2086, or aprotinin prior to intranasal instillation of carbamyl-PAF (C-PAF) or the PAR2 agonist peptide SLIGRL-NH2 (PAR2-AP). Leukocyte infiltration in bronchoalveolar lavage fluid (BALF), C-X-C motif ligand 1 (CXCL)1 and CXCL2 chemokines, myeloperoxidase (MPO), and N-acetyl-glycosaminidase (NAG) levels in BALF, or lung inflammation were evaluated. Intracellular calcium signaling, PAFR/PAR2 physical interaction, and the expression of PAR2 and nuclear factor-kappa B (NF-КB, p65) transcription factor were investigated in RAW 264.7 cells stimulated with C-PAF in the presence or absence of ENMD1068. C-PAF- or PAR2-AP-induced neutrophil recruitment into lungs was inhibited in mice pretreated with ENMD1068 and aprotinin or WEB2086, respectively. PAR2 blockade impaired C-PAF-induced neutrophil rolling and adhesion, lung inflammation, and production of MPO, NAG, CXCL1, and CXCL2 production in lungs of mice. PAFR activation reduced PAR2 expression and physical interaction of PAR2 and PAFR; co-activation is required for PAFR/PAR2 physical interaction. PAR2 blockade impaired C-PAF-induced calcium signal and NF-κB p65 translocation in RAW 264.7 murine macrophages. This study provides the first evidence for a cooperation between PAFR and PAR2 mediating neutrophil recruitment, lung inflammation, and macrophage activation.


Subject(s)
NF-kappa B , Pneumonia , Mice , Animals , NF-kappa B/metabolism , Platelet Activating Factor/metabolism , Receptor, PAR-2/genetics , Receptor, PAR-2/metabolism , Receptors, G-Protein-Coupled/metabolism , Aprotinin/metabolism , Neutrophil Infiltration , Transcriptional Activation , Pneumonia/chemically induced
4.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36499117

ABSTRACT

Characterization of the hydrated state of a protein is crucial for understanding its structural stability and function. In the present study, we have investigated the 3D hydration structure of the protein BPTI (bovine pancreatic trypsin inhibitor) by molecular dynamics (MD) and the integral equation method in the three-dimensional reference interaction site model (3D-RISM) approach. Both methods have found a well-defined hydration layer around the protein and revealed the localization of BPTI buried water molecules corresponding to the X-ray crystallography data. Moreover, under 3D-RISM calculations, the obtained positions of waters bound firmly to the BPTI sites are in reasonable agreement with the experimental results mentioned above for the BPTI crystal form. The analysis of the 3D hydration structure (thickness of hydration shell and hydration numbers) was performed for the entire protein and its polar and non-polar parts using various cut-off distances taken from the literature as well as by a straightforward procedure proposed here for determining the thickness of the hydration layer. Using the thickness of the hydration shell from this procedure allows for calculating the total hydration number of biomolecules properly under both methods. Following this approach, we have obtained the thickness of the BPTI hydration layer of 3.6 Å with 369 water molecules in the case of MD simulation and 3.9 Å with 333 water molecules in the case of the 3D-RISM approach. The above procedure was also applied for a more detailed description of the BPTI hydration structure near the polar charged and uncharged radicals as well as non-polar radicals. The results presented for the BPTI as an example bring new knowledge to the understanding of protein hydration.


Subject(s)
Aprotinin , Proteins , Cattle , Animals , Aprotinin/chemistry , Aprotinin/metabolism , Proteins/chemistry , Crystallography, X-Ray , Water/chemistry , Molecular Dynamics Simulation , Protein Conformation , Trypsin/metabolism
5.
Curr Med Chem ; 29(42): 6433-6445, 2022.
Article in English | MEDLINE | ID: mdl-35676854

ABSTRACT

BACKGROUND: Experimental nephrotic syndrome in mice leads to proteolytic activation of the epithelial sodium channel ENaC, possibly involving the distal polybasic tract of its γ-subunit (183RKRK). OBJECTIVE: We sought to determine if urine samples from both nephrotic mice and a cohort of patients with acute nephrotic syndrome contain a specific proteolytic activity against this region of γ-ENaC. METHODS: A peptide substrate consisting of amino acids 180-194 of murine γ-ENaC was N-terminally coupled to a fluorophore, yielding AMCA-FTGRKRKISGKIIHK. The substrate was incubated with nephrotic urine samples from mice as well as patients with or without the serine protease inhibitor, aprotinin. The digested peptides were separated on a reverse phase HPLC and detected with a fluorescence detector (350/450 nm). Peptide masses of the peaks were determined with a MALDI-TOF mass spectrometer. In addition, urinary proteolytic activity was quantitated using AMC-coupled substrates reflecting different cleavage sites within the polybasic tract. RESULTS: No significant proteolytic activity against the substrate was found in the urine of healthy humans or mice. Incubation with urine samples of nephrotic patients (n = 8) or mice subjected to three different models of experimental nephrotic syndrome (n = 4 each) led to cleavage of the substrate within the polybasic tract prevented by the serine protease inhibitor aprotinin. The most dominant cleavage product was FTGRKR in both species, which was confirmed using quantitative measurements with FTGRKR- AMC. CONCLUSION: Nephrotic urine from both humans and mice contains aprotinin-sensitive proteolytic activity against the distal polybasic tract of γ-ENaC, reflecting excretion of active proteases in the urine or proteasuria.


Subject(s)
Nephrotic Syndrome , Tranexamic Acid , Humans , Mice , Animals , Epithelial Sodium Channels/chemistry , Epithelial Sodium Channels/metabolism , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/urine , Aprotinin/metabolism , Aprotinin/pharmacology , Peptide Hydrolases/metabolism , Serine Proteinase Inhibitors , Peptides/metabolism , Amino Acids
6.
Acta Pharmacol Sin ; 43(1): 111-120, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33758357

ABSTRACT

Treatment with aprotinin, a broad-spectrum serine protease inhibitor with a molecular weight of 6512 Da, was associated with acute kidney injury, which was one of the reasons for withdrawal from the market in 2007. Inhibition of renal serine proteases regulating the epithelial sodium channel ENaC could be a possible mechanism. Herein, we studied the effect of aprotinin in wild-type 129S1/SvImJ mice on sodium handling, tubular function, and integrity under a control and low-salt diet. Mice were studied in metabolic cages, and aprotinin was delivered by subcutaneously implanted sustained release pellets (2 mg/day over 10 days). Mean urinary aprotinin concentration ranged between 642 ± 135 (day 2) and 127 ± 16 (day 8) µg/mL . Aprotinin caused impaired sodium preservation under a low-salt diet while stimulating excessive hyperaldosteronism and unexpectedly, proteolytic activation of ENaC. Aprotinin inhibited proximal tubular function leading to glucosuria and proteinuria. Plasma urea and cystatin C concentration increased significantly under aprotinin treatment. Kidney tissues from aprotinin-treated mice showed accumulation of intracellular aprotinin and expression of the kidney injury molecule 1 (KIM-1). In electron microscopy, electron-dense deposits were observed. There was no evidence for kidney injury in mice treated with a lower aprotinin dose (0.5 mg/day). In conclusion, high doses of aprotinin exert nephrotoxic effects by accumulation in the tubular system of healthy mice, leading to inhibition of proximal tubular function and counterregulatory stimulation of ENaC-mediated sodium transport.


Subject(s)
Aprotinin/metabolism , Kidney Tubules/metabolism , Serine Proteinase Inhibitors/metabolism , Animals , Aprotinin/administration & dosage , Aprotinin/adverse effects , Dose-Response Relationship, Drug , Female , Injections, Subcutaneous , Kidney Tubules/pathology , Male , Mice , Mice, Transgenic , Molecular Structure , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/administration & dosage , Serine Proteinase Inhibitors/adverse effects , Structure-Activity Relationship
7.
Biophys J ; 119(3): 652-666, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32697976

ABSTRACT

Biomolecular recognition between proteins follows complex mechanisms, the understanding of which can substantially advance drug discovery efforts. Here, we track each step of the binding process in atomistic detail with molecular dynamics simulations using trypsin and its inhibitor bovine pancreatic trypsin inhibitor (BPTI) as a model system. We use umbrella sampling to cover a range of unbinding pathways. Starting from these simulations, we subsequently seed classical simulations at different stages of the process and combine them to a Markov state model. We clearly identify three kinetically separated states (an unbound state, an encounter state, and the final complex) and describe the mechanisms that dominate the binding process. From our model, we propose the following sequence of events. The initial formation of the encounter complex is driven by long-range interactions because opposite charges in trypsin and BPTI draw them together. The encounter complex features the prealigned binding partners with binding sites still partially surrounded by solvation shells. Further approaching leads to desolvation and increases the importance of van der Waals interactions. The native binding pose is adopted by maximizing short-range interactions. Thereby side-chain rearrangements ensure optimal shape complementarity. In particular, BPTI's P1 residue adapts to the S1 pocket and prime site residues reorient to optimize interactions. After the paradigm of conformation selection, binding-competent conformations of BPTI and trypsin are already present in the apo ensembles and their probabilities increase during this proposed two-step association process. This detailed characterization of the molecular forces driving the binding process includes numerous aspects that have been discussed as central to the binding of trypsin and BPTI and protein complex formation in general. In this study, we combine all these aspects into one comprehensive model of protein recognition. We thereby contribute to enhance our general understanding of this fundamental mechanism, which is particularly critical as the development of biopharmaceuticals continuously gains significance.


Subject(s)
Aprotinin , Animals , Aprotinin/metabolism , Binding Sites , Cattle , Protein Binding , Protein Conformation , Trypsin/metabolism
8.
Arch Biochem Biophys ; 690: 108460, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32603715

ABSTRACT

BACKGROUND: Our previous research revealed that trypsin is abundantly expressed in atherosclerotic plaques and its distribution overlaps with that of matrix metalloproteinase-9 (MMP-9). This study was performed to explore the possible roles of trypsin in vulnerable atherosclerotic plaque formation. METHODS AND RESULTS: Twenty-four rabbits were randomly assigned to a normal (control) group, an atherosclerosis (experimental) group and a trypsin inhibitor (aprotinin) group. In the 13th feeding week, the aprotinin group was treated with 5 mg/kg/day aprotinin via ear vein for 4 weeks. At the end of the 16th week, coronary arterial and aortic expression of trypsin, proteinase-activated receptor-2 (PAR-2), activated MMP-9, and pro-inflammatory cytokines were significantly greater in the experimental group than in the control group. Aprotinin decreased trypsin expression and activation in plaques, blocked PAR-2 and MMP-9 activation, and decreased cytokine expression; it also increased fibrous cap thickness, decreased the intima-media thickness and intimal/medial ratio, thus significantly ameliorating plaque vulnerability. Upregulated trypsin, MMP-9 and PAR-2 were also found in coronary intimal atherosclerotic plaques of patients undergoing coronary artery bypass grafting. CONCLUSIONS: Ectopic trypsin was significantly upregulated in atherosclerotic plaques, which increased pro-inflammatory cytokine levels by activating PAR-2 and promoted plaque instability by activating proMMP-9, thereby promoting atherosclerosis and plaque vulnerability. In addition, the high trypsin expression in human coronary intimal atherosclerotic plaques suggests that targeting trypsin may be a new strategy for acute coronary syndrome prevention.


Subject(s)
Atherosclerosis/metabolism , Matrix Metalloproteinase 9/metabolism , Plaque, Atherosclerotic/chemistry , Trypsin/metabolism , Animals , Aorta/chemistry , Aprotinin/administration & dosage , Aprotinin/metabolism , Carotid Intima-Media Thickness , Cytokines/metabolism , Gene Expression Regulation , Humans , Male , Rabbits , Receptor, PAR-2/metabolism , Trypsin/genetics , Trypsin Inhibitors/administration & dosage , Trypsin Inhibitors/metabolism
9.
Nat Commun ; 11(1): 297, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941882

ABSTRACT

Quantifying the effects of various mutations on binding free energy is crucial for understanding the evolution of protein-protein interactions and would greatly facilitate protein engineering studies. Yet, measuring changes in binding free energy (ΔΔGbind) remains a tedious task that requires expression of each mutant, its purification, and affinity measurements. We developed an attractive approach that allows us to quantify ΔΔGbind for thousands of protein mutants in one experiment. Our protocol combines protein randomization, Yeast Surface Display technology, deep sequencing, and a few experimental ΔΔGbind data points on purified proteins to generate ΔΔGbind values for the remaining numerous mutants of the same protein complex. Using this methodology, we comprehensively map the single-mutant binding landscape of one of the highest-affinity interaction between BPTI and Bovine Trypsin (BT). We show that ΔΔGbind for this interaction could be quantified with high accuracy over the range of 12 kcal mol-1 displayed by various BPTI single mutants.


Subject(s)
Aprotinin/metabolism , Protein Interaction Domains and Motifs/genetics , Trypsin/metabolism , Animals , Aprotinin/genetics , Binding Sites , Cattle , High-Throughput Nucleotide Sequencing , Mutation , Protein Binding , Protein Interaction Domains and Motifs/physiology , Proteins/genetics , Proteins/metabolism , Trypsin/genetics , Yeasts/genetics
10.
Biochim Biophys Acta Proteins Proteom ; 1868(2): 140336, 2020 02.
Article in English | MEDLINE | ID: mdl-31816416

ABSTRACT

Ticks must durably suppress vertebrate host responses (hemostasis, inflammation, immunity) to avoid rejection and act as vectors of many pathogenic microorganisms that cause disease in humans and animals. Transcriptomics and proteomics studies have been used to study tick-host-pathogen interactions and have facilitated the systematic characterization of salivary composition and molecular dynamics throughout tick feeding. Tick saliva contains a complement of protease inhibitors that are differentially produced during feeding, many of which inhibit blood coagulation, platelet aggregation, vasodilation, and immunity. Here we focus on two major groups of protease inhibitors, the small molecular weight Kunitz inhibitors and cystatins. We discuss their role in tick-host-pathogen interactions, how they mediate the interaction between ticks and their hosts, and how they might be exploited both by pathogens to invade hosts and as candidates for the treatment of various human pathologies.


Subject(s)
Host-Parasite Interactions , Protease Inhibitors/metabolism , Saliva/metabolism , Salivary Glands/metabolism , Animals , Aprotinin/chemistry , Aprotinin/metabolism , Cystatins/chemistry , Cystatins/metabolism , Proteomics , Ticks , Transcriptome
11.
Sci Rep ; 9(1): 11596, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406183

ABSTRACT

Protease inhibitors, such as trypsin inhibitor, serum alpha-1 antitrypsin, or liver aprotinin, are a class of proteins that competitively bind and block the catalytic activity of proteolytic enzymes with wide ranging biological functions. A significant number of protease inhibitors have also been shown to possess antimicrobial activity, presumed to contribute in defense against pathogenic microorganisms as plants with higher levels of protease inhibitors tend to exhibit increased resistance towards pathogens. Two proposed mechanisms for the antimicrobial activity are combating microbial proteases that play roles in disease development and disruption of microbial cell wall & membrane necessary for survival. Here we show for the first time a novel activity of soybean trypsin inhibitor and bovine aprotinin that they nick supercoiled, circular plasmid DNA. A number of experiments conducted to demonstrate the observed DNA nicking activity is inherent, rather than a co-purified, contaminating nuclease. The nicking of the plasmid results in markedly reduced efficiencies in transformation of E. coli and transfection of HEK293T cells. Thus, this work reveals yet a new mechanism for the antimicrobial activity by protease inhibitors.


Subject(s)
Aprotinin/metabolism , Glycine max/metabolism , Plasmids , Trypsin Inhibitors/metabolism , Animals , Cattle , DNA/metabolism , Endopeptidase K/metabolism
12.
Biochim Biophys Acta Biomembr ; 1861(11): 183032, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31376361

ABSTRACT

Cassia leiandra is an Amazonian plant species that is used popularly for the treatment of mycoses. Recently, a protease inhibitor, named ClTI, with insecticidal activity against Aedes aegypti, was purified from the mature seeds of C. leiandra. In this work, we show that ClTI has antifungal activity against Candida species and describe its mode of action towards Candida albicans. This study is relevant because the nosocomial infections caused by Candida species are a global public health problem that, together with the growing resistance to current drugs, has increased the urgency of the search for new antifungal compounds. ClTI inhibited the growth of Candida albicans, Candida tropicalis, Candida parapsilosis, and Candida krusei. However, ClTI was more potent against C. albicans. The candidicidal mode of action of ClTI on C. albicans involves enhanced cell permeabilization, alteration of the plasma membrane proton-pumping ATPase function (H+ -ATPase), induction of oxidative stress, and DNA damage. ClTI also exhibited antibiofilm activity and non-cytotoxicity to mammalian cells. These results indicate that ClTI is a promising candidate for the future development of a new, natural, and safe agent for the treatment of infections caused by C. albicans.


Subject(s)
Aprotinin/pharmacology , Candida albicans/drug effects , Cassia/metabolism , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Aprotinin/metabolism , Candida/drug effects , Microbial Sensitivity Tests , Necrosis/metabolism , Oxidative Stress/drug effects , Seeds/metabolism , Trypsin
13.
FEBS J ; 286(20): 4122-4134, 2019 10.
Article in English | MEDLINE | ID: mdl-31175706

ABSTRACT

Protein stabilization is difficult to rationalize, but the detailed thermodynamic and structural analysis of a series of carefully designed mutants may provide experimental insights into the mechanisms underlying stabilization. Here, we report a systematic structural and thermodynamic analysis of bovine pancreatic trypsin inhibitor (BPTI) variants that are significantly stabilized through a single amino acid substitution at residue 38, which is located in a loop mostly exposed on the protein surface. Differential scanning calorimetry indicated that the BPTI-[5,55]Gly14 variants with a single mutation at position 38 were stabilized in an enthalpy-driven manner and that the magnitude of the stabilization increased as the hydrophobicity of residue 38 increased. This increase in the thermal stability of BPTI was unexpected because a hydrophobic residue on a protein surface is usually destabilizing. To identify the structural determinants of this stabilization, we determined the crystal structures of six BPTI-[5,55]Gly14 variants (Gly14 Gly38 , Gly14 Ala38 , Gly14 Val38 , Gly14 Leu38 , Gly14 Ile38 , and Gly14 Lys38 ) at high resolutions and showed that they retain essentially the same structure as the wild-type BPTI. A more detailed examination of their structures indicated that the extent of thermal stabilization correlated with both improved local packing and increased hydration around the substitution sites. In particular, the number of water molecules near residue 38 increased upon mutation to a hydrophobic residue suggesting that improved hydration contributed to the enthalpy-driven stabilization. Increasing a protein's thermal stability by the placement of a hydrophobic amino acid on the protein surface is a novel and unexpected phenomenon, and its exact nature is worth further examination, as it may provide a generic method for stabilizing proteins in an enthalpy-driven manner. DATABASE: The coordinates and structure factors of Gly14 Gly38 , Gly14 Ile38 , Gly14 Leu38 , and Gly14 Lys38 variants of BPTI-[5,55] are deposited in the Protein Data Bank under the PDB entry codes 5XX3, 5XX5, 5XX2, and 5XX4, respectively. We previously reported the structures of Gly14 Ala38 (2ZJX) and Gly14 Val38 (2ZVX).


Subject(s)
Aprotinin/chemistry , Aprotinin/metabolism , Water/chemistry , Water/metabolism , Amino Acid Sequence , Amino Acid Substitution , Amino Acids/chemistry , Amino Acids/genetics , Amino Acids/metabolism , Animals , Cattle , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Protein Conformation , Protein Folding , Protein Stability , Sequence Homology , Thermodynamics
14.
J Biol Chem ; 294(13): 5105-5120, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30700553

ABSTRACT

Serine protease inhibitors of the Kunitz-bovine pancreatic trypsin inhibitor (BPTI) family are ubiquitous biological regulators of proteolysis. These small proteins are resistant to proteolysis, but can be slowly cleaved within the protease-binding loop by target proteases, thereby compromising their activity. For the human protease mesotrypsin, this cleavage is especially rapid. Here, we aimed to stabilize the Kunitz domain structure against proteolysis through disulfide engineering. Substitution within the Kunitz inhibitor domain of the amyloid precursor protein (APPI) that incorporated a new disulfide bond between residues 17 and 34 reduced proteolysis by mesotrypsin 74-fold. Similar disulfide engineering of tissue factor pathway inhibitor-1 Kunitz domain 1 (KD1TFPI1) and bikunin Kunitz domain 2 (KD2bikunin) likewise stabilized these inhibitors against mesotrypsin proteolysis 17- and 6.6-fold, respectively. Crystal structures of disulfide-engineered APPI and KD1TFPI1 variants in a complex with mesotrypsin at 1.5 and 2.0 Å resolution, respectively, confirmed the formation of well-ordered disulfide bonds positioned to stabilize the binding loop. Long all-atom molecular dynamics simulations of disulfide-engineered Kunitz domains and their complexes with mesotrypsin revealed conformational stabilization of the primed side of the inhibitor-binding loop by the engineered disulfide, along with global suppression of conformational dynamics in the Kunitz domain. Our findings suggest that the Cys-17-Cys-34 disulfide slows proteolysis by dampening conformational fluctuations in the binding loop and minimizing motion at the enzyme-inhibitor interface. The generalizable approach developed here for the stabilization against proteolysis of Kunitz domains, which can serve as important scaffolds for therapeutics, may thus find applications in drug development.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Aprotinin/metabolism , Trypsin/metabolism , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/genetics , Animals , Aprotinin/chemistry , Aprotinin/genetics , Crystallography, X-Ray , Disulfides/chemistry , Disulfides/metabolism , Humans , Models, Molecular , Protein Conformation , Protein Domains , Protein Engineering , Proteolysis , Trypsin/chemistry
15.
J Phys Chem B ; 123(9): 1920-1930, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30753785

ABSTRACT

Using NMR and Monte Carlo (MC) methods, we investigate the stability and dynamics of superoxide dismutase 1 (SOD1) in homogeneous crowding environments, where either bovine pancreatic trypsin inhibitor (BPTI) or the B1 domain of streptococcal protein G (PGB1) serves as a crowding agent. By NMR, we show that both crowders, and especially BPTI, cause a drastic loss in the overall stability of SOD1 in its apo monomeric form. Additionally, we determine chemical shift perturbations indicating that SOD1 interacts with the crowder proteins in a residue-specific manner that further depends on the identity of the crowding protein. Furthermore, the specificity of SOD1-crowder interactions is reciprocal: chemical shift perturbations on BPTI and PGB1 identify regions that interact preferentially with SOD1. By MC simulations, we investigate the local unfolding of SOD1 in the absence and presence of the crowders. We find that the crowders primarily interact with the long flexible loops of the folded SOD1 monomer. The basic mechanisms by which the SOD1 ß-barrel core unfolds remain unchanged when adding the crowders. In particular, both with and without the crowders, the second ß-sheet of the barrel is more dynamic and unfolding-prone than the first. Notably, the MC simulations (exploring the early stages of SOD1 unfolding) and the NMR experiments (under equilibrium conditions) identify largely the same set of PGB1 and BPTI residues as prone to form SOD1 contacts. Thus, contacts stabilizing the unfolded state of SOD1 in many cases appear to form early in the unfolding reaction.


Subject(s)
Aprotinin/metabolism , Bacterial Proteins/metabolism , Protein Unfolding , Superoxide Dismutase-1/metabolism , Animals , Aprotinin/chemistry , Bacterial Proteins/chemistry , Escherichia coli/genetics , Humans , Monte Carlo Method , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Stability , Protein Structure, Secondary , Streptococcus/chemistry , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/genetics
16.
J Biomol Struct Dyn ; 37(14): 3596-3606, 2019 09.
Article in English | MEDLINE | ID: mdl-30198396

ABSTRACT

Human dipeptidyl peptidase III (hDPP III) is a zinc-exopeptidase of the family M49 involved in final steps of intracellular protein degradation and in cytoprotective pathway Keap1-Nrf2. Biochemical and structural properties of this enzyme have been extensively investigated, but the knowledge on its contacts with other proteins is scarce. Previously, polypeptide aprotinin was shown to be a competitive inhibitor of hDPP III hydrolytic activity. In this study, aprotinin was first investigated as a potential substrate of hDPP III, but no degradation products were demonstrated by MALDI-TOF mass spectrometry. Subsequently, molecular details of the protein-protein interaction between aprotinin and hDPP III were studied by molecular modeling. Docking and long molecular dynamics (MD) simulations have shown that aprotinin interacts by its canonical binding epitope with the substrate binding cleft of hDPP III. Thereby, free N-terminus of aprotinin is distant from the active-site zinc. Enzyme-inhibitor complex is stabilized by intermolecular hydrogen bonding network, electrostatic and hydrophobic interactions which mostly involve constituent amino acid residues of the hDPP III substrate binding subsites S1, S1', S2, S2' and S3'. This is the first study that gives insight into aprotinin binding to a metallopeptidase. Communicated by Ramaswamy H. Sarma.


Subject(s)
Aprotinin/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Amino Acids/chemistry , Binding Sites , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/chemistry , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Binding , Protein Interaction Mapping , Proteolysis , Solvents , Static Electricity , Substrate Specificity , Zinc/metabolism
17.
Biophys J ; 114(9): 2040-2043, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29742397

ABSTRACT

Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature of functional dynamics of biomolecules. Although anharmonic events are rare, long-timescale (µs-ms and beyond) simulations facilitate probing of such events. We have previously developed quasi-anharmonic analysis to resolve higher-order spatial correlations and characterize anharmonicity in biomolecular simulations. In this article, we have extended this toolbox to resolve higher-order temporal correlations and built a scalable Python package called anharmonic conformational analysis (ANCA). ANCA has modules to: 1) measure anharmonicity in the form of higher-order statistics and its variation as a function of time, 2) output a storyboard representation of the simulations to identify key anharmonic conformational events, and 3) identify putative anharmonic conformational substates and visualization of transitions between these substates.


Subject(s)
Molecular Dynamics Simulation , Animals , Aprotinin/chemistry , Aprotinin/metabolism , Cattle , Movement , Protein Conformation
18.
J Am Soc Mass Spectrom ; 28(7): 1450-1461, 2017 07.
Article in English | MEDLINE | ID: mdl-28585116

ABSTRACT

Charge reduction in the gas phase provides a direct means of manipulating protein charge state, and when coupled to ion mobility mass spectrometry (IM-MS), it is possible to monitor the effect of charge on protein conformation in the absence of solution. Use of the electron transfer reagent 1,3-dicyanobenzene, coupled with IM-MS, allows us to monitor the effect of charge reduction on the conformation of two proteins deliberately chosen from opposite sides of the order to disorder continuum: bovine pancreatic trypsin inhibitor (BPTI) and beta casein. The ordered BPTI presents compact conformers for each of three charge states accompanied by narrow collision cross-section distributions (TWCCSDN2→He). Upon reduction of BPTI, irrespective of precursor charge state, the TWCCSN2→He decreases to a similar distribution as found for the nESI generated ion of identical charge. The behavior of beta casein upon charge reduction is more complex. It presents over a wide charge state range (9-28), and intermediate charge states (13-18) have broad TWCCSDN2→He with multiple conformations, where both compaction and rearrangement are seen. Further, we see that the TWCCSDN2→He of the latter charge states are even affected by the presence of radical anions. Overall, we conclude that the flexible nature of some proteins result in broad conformational distributions comprised of many families, even for single charge states, and the barrier between different states can be easily overcome by an alteration of the net charge. Graphical Abstract ᅟ.


Subject(s)
Mass Spectrometry/methods , Models, Chemical , Proteins/chemistry , Proteins/metabolism , Aprotinin/chemistry , Aprotinin/metabolism , Caseins/chemistry , Caseins/metabolism , Protein Conformation
19.
J Virol ; 91(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28298600

ABSTRACT

The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a Ki value of 2.9 µM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV.IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti, continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors provide novel scaffolds that enable exploiting the prime side of the protease active site, with the aim of achieving better specificity and lower hydrophilicity than those of current scaffolds in the design of antiflaviviral inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Peptides, Cyclic/pharmacology , Protease Inhibitors/pharmacology , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Aprotinin/chemistry , Aprotinin/metabolism , Aprotinin/pharmacology , Catalytic Domain , Computer Simulation , Dengue Virus/chemistry , Dengue Virus/enzymology , Drug Discovery/methods , Humans , Hydrophobic and Hydrophilic Interactions , Kinetics , Peptides, Cyclic/chemical synthesis , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Protein Binding , Viral Nonstructural Proteins/chemistry
20.
J Chem Theory Comput ; 12(12): 6118-6129, 2016 Dec 13.
Article in English | MEDLINE | ID: mdl-27792332

ABSTRACT

Analysis of molecular dynamics, for example using Markov models, often requires the identification of order parameters that are good indicators of the rare events, i.e. good reaction coordinates. Recently, it has been shown that the time-lagged independent component analysis (TICA) finds the linear combinations of input coordinates that optimally represent the slow kinetic modes and may serve in order to define reaction coordinates between the metastable states of the molecular system. A limitation of the method is that both computing time and memory requirements scale with the square of the number of input features. For large protein systems, this exacerbates the use of extensive feature sets such as the distances between all pairs of residues or even heavy atoms. Here we derive a hierarchical TICA (hTICA) method that approximates the full TICA solution by a hierarchical, divide-and-conquer calculation. By using hTICA on distances between heavy atoms we identify previously unknown relaxation processes in the bovine pancreatic trypsin inhibitor.


Subject(s)
Aprotinin/chemistry , Animals , Aprotinin/metabolism , Cattle , Kinetics , Markov Chains , Molecular Dynamics Simulation , Peptides/chemistry , Peptides/metabolism , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...