Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.100
Filter
1.
Front Immunol ; 15: 1397967, 2024.
Article in English | MEDLINE | ID: mdl-38947317

ABSTRACT

Introduction: CD39 plays an important role in the immunoregulation and inhibition of effector cells. It is expressed on immune cells, including Tregs, and on extracellular vesicles (EVs) budding from the plasma membrane. Platelet transfusion may induce alloimmunization against HLA-I antigens, leading to refractoriness to platelet transfusion with severe consequences for patients. Tregs may play a key role in determining whether alloimmunization occurs in patients with hematologic disorders. We hypothesized that CD39+ EVs might play an immunoregulatory role, particularly in the context of platelet transfusions in patients with hematologic disorders. Such alloimmunization leads to the production of alloantibodies and is sensitive to the regulatory action of CD39. Methods: We characterized CD39+ EVs in platelet concentrates by flow cytometry. The absolute numbers and cellular origins of CD39+ EVs were evaluated. We also performed functional tests to evaluate interactions with immune cells and their functions. Results: We found that CD39+ EVs from platelet concentrates had an inhibitory phenotype that could be transferred to the immune cells with which they interacted: CD4+ and CD8+ T lymphocytes (TLs), dendritic cells, monocytes, and B lymphocytes (BLs). Moreover, the concentration of CD39+ EVs in platelet concentrates varied and was very high in 10% of concentrates. The number of these EVs present was determinant for EV-cell interactions. Finally, functional interactions were observed with BLs, CD4+ TLs and CD39+ EVs for immunoglobulin production and lymphoproliferation, with potential implications for the immunological management of patients.


Subject(s)
Blood Platelets , Extracellular Vesicles , Tetraspanin 29 , Humans , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Blood Platelets/immunology , Blood Platelets/metabolism , Tetraspanin 29/metabolism , Cell Communication/immunology , Platelet Transfusion , Female , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Male , Apyrase/metabolism , Apyrase/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Antigens, CD
2.
Front Immunol ; 15: 1415102, 2024.
Article in English | MEDLINE | ID: mdl-39007132

ABSTRACT

Human regulatory T cells (Treg) suppress other immune cells. Their dysfunction contributes to the pathophysiology of autoimmune diseases, including type 1 diabetes (T1D). Infusion of Tregs is being clinically evaluated as a novel way to prevent or treat T1D. Genetic modification of Tregs, most notably through the introduction of a chimeric antigen receptor (CAR) targeting Tregs to pancreatic islets, may improve their efficacy. We evaluated CAR targeting of human Tregs to monocytes, a human ß cell line and human islet ß cells in vitro. Targeting of HLA-A2-CAR (A2-CAR) bulk Tregs to HLA-A2+ cells resulted in dichotomous cytotoxic killing of human monocytes and islet ß cells. In exploring subsets and mechanisms that may explain this pattern, we found that CD39 expression segregated CAR Treg cytotoxicity. CAR Tregs from individuals with more CD39low/- Tregs and from individuals with genetic polymorphism associated with lower CD39 expression (rs10748643) had more cytotoxicity. Isolated CD39- CAR Tregs had elevated granzyme B expression and cytotoxicity compared to the CD39+ CAR Treg subset. Genetic overexpression of CD39 in CD39low CAR Tregs reduced their cytotoxicity. Importantly, ß cells upregulated protein surface expression of PD-L1 and PD-L2 in response to A2-CAR Tregs. Blockade of PD-L1/PD-L2 increased ß cell death in A2-CAR Treg co-cultures suggesting that the PD-1/PD-L1 pathway is important in protecting islet ß cells in the setting of CAR immunotherapy. In summary, introduction of CAR can enhance biological differences in subsets of Tregs. CD39+ Tregs represent a safer choice for CAR Treg therapies targeting tissues for tolerance induction.


Subject(s)
Apyrase , Receptors, Chimeric Antigen , T-Lymphocytes, Regulatory , Humans , Apyrase/immunology , Apyrase/metabolism , T-Lymphocytes, Regulatory/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Cytotoxicity, Immunologic , Islets of Langerhans/immunology , Islets of Langerhans/metabolism , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , HLA-A2 Antigen/immunology , HLA-A2 Antigen/genetics , HLA-A2 Antigen/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Antigens, CD
3.
Nat Commun ; 15(1): 5759, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982116

ABSTRACT

Type I interferons have been well recognized for their roles in various types of immune cells during tumor immunotherapy. However, their direct effects on tumor cells are less understood. Oxidative phosphorylation is typically latent in tumor cells. Whether oxidative phosphorylation can be targeted for immunotherapy remains unclear. Here, we find that tumor cell responsiveness to type I, but not type II interferons, is essential for CD47-SIRPα blockade immunotherapy in female mice. Mechanistically, type I interferons directly reprogram tumor cell metabolism by activating oxidative phosphorylation for ATP production in an ISG15-dependent manner. ATP extracellular release is also promoted by type I interferons due to enhanced secretory autophagy. Functionally, tumor cells with genetic deficiency in oxidative phosphorylation or autophagy are resistant to CD47-SIRPα blockade. ATP released upon CD47-SIRPα blockade is required for antitumor T cell response induction via P2X7 receptor-mediated dendritic cell activation. Based on this mechanism, combinations with inhibitors of ATP-degrading ectoenzymes, CD39 and CD73, are designed and show synergistic antitumor effects with CD47-SIRPα blockade. Together, these data reveal an important role of type I interferons on tumor cell metabolic reprograming for tumor immunotherapy and provide rational strategies harnessing this mechanism for enhanced efficacy of CD47-SIRPα blockade.


Subject(s)
Adenosine Triphosphate , CD47 Antigen , Interferon Type I , Oxidative Phosphorylation , Receptors, Immunologic , Signal Transduction , Animals , CD47 Antigen/metabolism , CD47 Antigen/genetics , Interferon Type I/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Female , Mice , Adenosine Triphosphate/metabolism , Oxidative Phosphorylation/drug effects , Cell Line, Tumor , Mice, Inbred C57BL , Immunotherapy/methods , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Autophagy/drug effects , Apyrase/metabolism , Mice, Knockout , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Cytokines/metabolism
4.
Oncoimmunology ; 13(1): 2371051, 2024.
Article in English | MEDLINE | ID: mdl-38915783

ABSTRACT

Improving cancer immunotherapy efficacy hinges on identifying key T-cell populations critical for tumor control and response to Immune Checkpoint Blockade (ICB). We have recently reported that while the co-expression of PD-1 and CD28 is associated with impaired functionality in peripheral blood, it significantly enhances T-cell fitness in the tumor site of non-small cell lung cancer (NSCLC) patients. To uncover the underlying mechanisms, we explored the role of CD26, a key player in T-cell activation through its interaction with adenosine deaminase (ADA), a crucial intra/extracellular enzyme able to neutralize local adenosine (ADO). We found that an autocrine ADA/CD26 axis enhances CD8+PD-1+CD28+ T-cell function, particularly within an immunosuppressive environment marked by CD39 expression. Then, we interrogated the TCGA and OAK datasets to gain insight into the prognostic/predictive potential of our findings. We identified a signature predicting overall survival (OS) in LUAD patients and response to atezolizumab in advanced LUAD cases. These findings suggest promising avenues for therapeutic intervention targeting the ADA/CD26 axis.


Subject(s)
Adenosine Deaminase , CD28 Antigens , CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung , Dipeptidyl Peptidase 4 , Immune Checkpoint Inhibitors , Lung Neoplasms , Programmed Cell Death 1 Receptor , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD28 Antigens/metabolism , Prognosis , Programmed Cell Death 1 Receptor/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/genetics , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/administration & dosage , Female , Male , Apyrase/metabolism
5.
J Nanobiotechnology ; 22(1): 364, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915007

ABSTRACT

Photothermal therapy (PTT) is a promising cancer treatment method due to its ability to induce tumor-specific T cell responses and enhance therapeutic outcomes. However, incomplete PTT can leave residual tumors that often lead to new metastases and decreased patient survival in clinical scenarios. This is primarily due to the release of ATP, a damage-associated molecular pattern that quickly transforms into the immunosuppressive metabolite adenosine by CD39, prevalent in the tumor microenvironment, thus promoting tumor immune evasion. This study presents a photothermal nanomedicine fabricated by electrostatic adsorption among the Fe-doped polydiaminopyridine (Fe-PDAP), indocyanine green (ICG), and CD39 inhibitor sodium polyoxotungstate (POM-1). The constructed Fe-PDAP@ICG@POM-1 (FIP) can induce tumor PTT and immunogenic cell death when exposed to a near-infrared laser. Significantly, it can inhibit the ATP-adenosine pathway by dual-directional immunometabolic regulation, resulting in increased ATP levels and decreased adenosine synthesis, which ultimately reverses the immunosuppressive microenvironment and increases the susceptibility of immune checkpoint blockade (aPD-1) therapy. With the aid of aPD-1, the dual-directional immunometabolic regulation strategy mediated by FIP can effectively suppress/eradicate primary and distant tumors and evoke long-term solid immunological memory. This study presents an immunometabolic control strategy to offer a salvage option for treating residual tumors following incomplete PTT.


Subject(s)
Immunotherapy , Nanomedicine , Photothermal Therapy , Tumor Microenvironment , Animals , Photothermal Therapy/methods , Immunotherapy/methods , Mice , Nanomedicine/methods , Tumor Microenvironment/drug effects , Cell Line, Tumor , Humans , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Neoplasms/therapy , Adenosine Triphosphate/metabolism , Adenosine/pharmacology , Adenosine/chemistry , Mice, Inbred C57BL , Apyrase/metabolism , Female , Phototherapy/methods
6.
Biomolecules ; 14(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38927060

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are vital players in antiviral immune responses because of their high levels of IFN-α secretion. However, this attribute has also implicated them as critical factors behind the immunopathogenesis of inflammatory diseases, and no currently available therapy can efficiently inhibit pDCs' aberrant activation. Mesenchymal stromal cells (MSCs) possess stromal immunomodulatory functionality, regulating immune cell activation through several mechanisms, including the adenosinergic (CD39/CD73/adenosine) pathway. The IFN-γ preconditioning of bone marrow MSCs improves their inhibitory properties for therapy applications; however, isolating human gingival tissue-derived MSCs (hGMSCs) is more accessible. These cells have shown better immunomodulatory effects, yet the outcome of IFN-γ preconditioning and its impact on the adenosinergic pathway has not been evaluated. This study first validated the immunoregulatory properties of primary-cultured hGMSCs, and the results showed that IFN-γ preconditioning strengthens CD39/CD73 coexpression, adenosine production, and the regulatory properties of hGMSC, which were confirmed by describing for the first time their ability to reduce pDC activation and their IFN-α secretion and to increase the frequency of CD73+ pDC. In addition, when CD73's enzymatic activity was neutralized in hGMSCs, adenosine production and the IFN-γ preconditioning effect were restrained. This evidence might be applied to design hGMSCs- and adenosine-based immunotherapeutic strategies for treating inflammatory disorders that are associated with pDC overactivation.


Subject(s)
5'-Nucleotidase , Adenosine , Dendritic Cells , Gingiva , Interferon-gamma , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Adenosine/metabolism , Interferon-gamma/metabolism , Gingiva/cytology , 5'-Nucleotidase/metabolism , Cells, Cultured , Apyrase/metabolism , GPI-Linked Proteins
8.
Clin Immunol ; 264: 110260, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788885

ABSTRACT

Sjögren's disease (SjD) is a chronic autoimmune disease characterized by focal lymphocytic inflammation in lacrimal and salivary glands. We recently identified IL-27 as a requisite signal for the spontaneous SjD-like manifestations in nonobese diabetic (NOD) mice. Here, we define T cell-intrinsic effects of IL-27 in lacrimal gland disease in NOD mice. IL-27 receptor was required by both CD4 T effector (Te) cells and CD8 T cells to mediate focal inflammation. Intrinsic IL-27 signaling was associated with PD-1 and ICOS expressing T follicular helper (Tfh)-like CD4 Te cells within lacrimal glands, including subsets defined by CD73 or CD39 expression. CD8 T cells capable of IL-27 signaling also expressed PD-1 with subsets expressing ICOS and CD73 demonstrating a T follicular cytotoxic (Tfc)-like cell phenotype and others expressing a CD39hi exhausted-like phenotype. These findings suggest IL-27 is a key early signal driving a follicular-type response in lacrimal gland inflammation in NOD mice.


Subject(s)
CD8-Positive T-Lymphocytes , Disease Models, Animal , Lacrimal Apparatus , Mice, Inbred NOD , Sjogren's Syndrome , Animals , Sjogren's Syndrome/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Lacrimal Apparatus/immunology , Lacrimal Apparatus/pathology , Interleukins/immunology , Interleukins/metabolism , CD4-Positive T-Lymphocytes/immunology , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Female , Signal Transduction/immunology , Receptors, Interleukin/immunology , Interleukin-27/metabolism , Interleukin-27/immunology , Inducible T-Cell Co-Stimulator Protein/immunology , Inducible T-Cell Co-Stimulator Protein/metabolism , Apyrase/immunology , Apyrase/metabolism
9.
J Am Heart Assoc ; 13(11): e033985, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38804212

ABSTRACT

BACKGROUND: ADP and ATP are importantly involved in vascular and thrombotic homeostasis, via multiple receptor pathways. Blockade of ADP P2Y12 receptors inhibits platelet aggregation and represents an effective cardiovascular disease prevention strategy. AZD3366 (APT102), a long-acting recombinant form of an optimized CD39L3 human apyrase, has effectively reduced ATP, ADP, and platelet aggregation and provided tissue protection in preclinical models, features that could be very beneficial in treating patients with cardiovascular disease. METHODS AND RESULTS: We conducted this phase 1, first-in-human study of single ascending doses of intravenous AZD3366 or placebo, including doses added to dual antiplatelet therapy with ticagrelor and acetylsalicylic acid. The primary objective was safety and tolerability; secondary and exploratory objectives included pharmacokinetics, pharmacodynamics (measured as inhibition of platelet aggregation), adenosine diphosphatase (ADPase) activity, and ATP/ADP metabolism. In total, 104 participants were randomized. AZD3366 was generally well tolerated, with no major safety concerns observed. ADPase activity increased in a dose-dependent manner with a strong correlation to AZD3366 exposure. Inhibition of ADP-stimulated platelet aggregation was immediate, substantial, and durable. In addition, there was a prompt decrease in systemic ATP concentration and an increase in adenosine monophosphate concentrations, whereas ADP concentration appeared generally unaltered. At higher doses, there was a prolongation of capillary bleeding time without detectable changes in the ex vivo thromboelastometric parameters. CONCLUSIONS: AZD3366 was well tolerated in healthy participants and demonstrated substantial and durable inhibition of platelet aggregation after single dosing. Higher doses prolonged capillary bleeding time without detectable changes in ex vivo thromboelastometric parameters. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique Identifier: NCT04588727.


Subject(s)
Apyrase , Aspirin , Platelet Aggregation Inhibitors , Platelet Aggregation , Ticagrelor , Humans , Male , Ticagrelor/pharmacokinetics , Ticagrelor/administration & dosage , Ticagrelor/adverse effects , Female , Apyrase/metabolism , Apyrase/administration & dosage , Platelet Aggregation/drug effects , Aspirin/administration & dosage , Aspirin/pharmacokinetics , Aspirin/adverse effects , Platelet Aggregation Inhibitors/pharmacokinetics , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/adverse effects , Middle Aged , Adult , Double-Blind Method , Dual Anti-Platelet Therapy , Drug Therapy, Combination , Young Adult , Adenosine Diphosphate , Blood Platelets/drug effects , Blood Platelets/metabolism , Dose-Response Relationship, Drug , Treatment Outcome , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacokinetics , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Purinergic P2Y Receptor Antagonists/administration & dosage , Purinergic P2Y Receptor Antagonists/adverse effects , Purinergic P2Y Receptor Antagonists/pharmacology
10.
Oncoimmunology ; 13(1): 2346359, 2024.
Article in English | MEDLINE | ID: mdl-38737794

ABSTRACT

Immune exhaustion is a hallmark of ovarian cancer. Using multiparametric flow cytometry, the study aimed to analyze protein expression of novel immunological targets on CD3+ T cells isolated from the peripheral blood (n = 20), malignant ascites (n = 16), and tumor tissue (n = 6) of patients with ovarian cancer (OVCA). The study revealed an increased proportion of effector memory CD8+ T cells in OVCA tissue and malignant ascites. An OVCA-characteristic PD-1high CD8+ T cell population was detected, which differed from PD-1lowCD8+ T cells by increased co-expression of TIGIT, CD39, and HLA-DR. In addition, these OVCA-characteristic CD8+ T cells showed reduced expression of the transcription factor TCF-1, which may also indicate reduced effector function and memory formation. On the contrary, the transcription factor TOX, which significantly regulates terminal T cell-exhaustion, was found more frequently in these cells. Further protein and gene analysis showed that CD39 and CD73 were also expressed on OVCA tumor cells isolated from solid tumors (n = 14) and malignant ascites (n = 9). In the latter compartment, CD39 and CD73 were also associated with the expression of the "don't eat me" molecule CD24 on tumor cells. Additionally, ascites-derived CD24+EpCAM+ tumor cells showed a higher frequency of CD39+ or CD73+ cells. Furthermore, CD39 expression was associated with unfavorable clinical parameters. Expression of CD39 on T cells was upregulated through CD3/CD28 stimulation and its blockade by a newly developed nanobody construct resulted in increased proliferation (eFluor), activation (CD25 and CD134), and production of cytotoxic cytokines (IFN-γ, TNF-α, and granzyme-B) of CD8+ T cells.


Subject(s)
Apyrase , CD8-Positive T-Lymphocytes , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Apyrase/metabolism , Apyrase/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Middle Aged , Ascites/immunology , Ascites/pathology , Ascites/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Aged , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/antagonists & inhibitors , T Cell Transcription Factor 1/metabolism , T Cell Transcription Factor 1/genetics , HLA-DR Antigens/metabolism , Adult , T-Cell Exhaustion , High Mobility Group Proteins
11.
Cell Mol Life Sci ; 81(1): 231, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780647

ABSTRACT

CD200 is an anti-inflammatory protein that facilitates signal transduction through its receptor, CD200R, in cells, resulting in immune response suppression. This includes reducing M1-like macrophages, enhancing M2-like macrophages, inhibiting NK cell cytotoxicity, and downregulating CTL responses. Activation of CD200R has been found to modulate dendritic cells, leading to the induction or enhancement of Treg cells expressing Foxp3. However, the precise mechanisms behind this process are still unclear. Our previous study demonstrated that B cells in Peyer's patches can induce Treg cells, so-called Treg-of-B (P) cells, through STAT6 phosphorylation. This study aimed to investigate the role of CD200 in Treg-of-B (P) cell generation. To clarify the mechanisms, we used wild-type, STAT6 deficient, and IL-24 deficient T cells to generate Treg-of-B (P) cells, and antagonist antibodies (anti-CD200 and anti-IL-20RB), an agonist anti-CD200R antibody, CD39 inhibitors (ARL67156 and POM-1), a STAT6 inhibitor (AS1517499), and soluble IL-20RB were also applied. Our findings revealed that Peyer's patch B cells expressed CD200 to activate the CD200R on T cells and initiate the process of Treg-of-B (P) cells generation. CD200 and CD200R interaction triggers the phosphorylation of STAT6, which regulated the expression of CD200R, CD39, and IL-24 in T cells. CD39 regulated the expression of IL-24, which sustained the expression of CD223 and IL-10 and maintained the cell viability. In summary, the generation of Treg-of-B (P) cells by Peyer's patch B cells was through the CD200R-STAT6-CD39-IL-24 axis pathway.


Subject(s)
B-Lymphocytes , STAT6 Transcription Factor , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , STAT6 Transcription Factor/metabolism , Mice, Inbred C57BL , Orexin Receptors/metabolism , Orexin Receptors/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Antigens, CD/immunology , Signal Transduction , Phosphorylation , Peyer's Patches/immunology , Peyer's Patches/metabolism , Peyer's Patches/cytology , Apyrase/metabolism , Apyrase/immunology , Membrane Glycoproteins
12.
Sci Rep ; 14(1): 11609, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773214

ABSTRACT

No biomarker has yet been identified that allows accurate diagnosis and prognosis of oral cancers. In this study, we investigated the presence of key metabolites in oral cancer using proton nuclear magnetic resonance (NMR) spectroscopy to identify metabolic biomarkers of gingivobuccal oral squamous cell carcinoma (GB-OSCC). NMR spectroscopy revealed that uracil was expressed in 83.09% of tumor tissues and pyrimidine metabolism was active in GB-OSCC; these results correlated well with immunohistochemistry (IHC) and RNA sequencing data. Based on further gene and protein analyses, we proposed a pathway for the production of uracil in GB-OSCC tissues. Uridinetriphosphate (UTP) is hydrolyzed to uridine diphosphate (UDP) by CD39 in the tumor microenvironment (TME). We hypothesized that UDP enters the cell with the help of the UDP-specific P2Y6 receptor for further processing by ENTPD4/5 to produce uracil. As the ATP reserves diminish, the weakened immune cells in the TME utilize pyrimidine metabolism as fuel for antitumor activity, and the same mechanism is hijacked by the tumor cells to promote their survival. Correspondingly, the differential expression of ENTPD4 and ENTPD5 in immune and tumor cells, respectively, indicatedtheir involvement in disease progression. Furthermore, higher uracil levels were detected in patients with lymph node metastasis, indicating that metastatic potential is increased in the presence of uracil. The presence of uracil and/or expression patterns of intermediate molecules in purine and pyrimidine pathways, such asCD39, CD73, and P2Y6 receptors together with ENTPD4 and ENTPD5, hold promise as biomarker(s) for oral cancer diagnosis and prognosis.


Subject(s)
Biomarkers, Tumor , Mouth Neoplasms , Pyrimidines , Uracil , Humans , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Uracil/metabolism , Biomarkers, Tumor/metabolism , Pyrimidines/metabolism , Female , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Male , Middle Aged , Tumor Microenvironment , Aged , Apyrase/metabolism
13.
Stem Cell Rev Rep ; 20(5): 1357-1366, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38635127

ABSTRACT

Purinergic signaling is an ancient primordial signaling system regulating tissue development and specification of various types of stem cells. Thus, functional purinergic receptors are present in several types of cells in the body, including multiple populations of stem cells. However, one stem cell type that has not been evaluated for expression of purinergic receptors is very small embryonic stem cells (VSELs) isolated from postnatal tissues. Herein, we report that human umbilical cord blood (UCB) and murine bone marrow (BM) purified VSELs express mRNA for P1 and P2 purinergic receptors and CD39 and CD73 ectonucleotidases converting extracellular ATP (eATP) into its signaling metabolite extracellular adenosine (eAdo), that antagonizes eATP effects. More importantly, we demonstrate that human and murine VSELs respond by chemotaxis to eATP, and eAdo inhibits this migration. These responses to eATP are mediated by activation of Nlrp3 inflammasome, and exposure of VSELs to its specific inhibitor MCC950 abolished the chemotactic response to ATP. We conclude that purinergic signaling plays an essential, underappreciated role in the biology of these cells and their potential role in response to tissue/organ injuries.


Subject(s)
Adenosine Triphosphate , Apyrase , Cell Movement , Embryonic Stem Cells , Humans , Adenosine Triphosphate/metabolism , Animals , Mice , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Apyrase/metabolism , Receptors, Purinergic/metabolism , 5'-Nucleotidase/metabolism , 5'-Nucleotidase/genetics , Chemotaxis , Antigens, CD/metabolism , Antigens, CD/genetics , Fetal Blood/cytology , Fetal Blood/metabolism , Adenosine/metabolism , Signal Transduction
14.
PLoS Pathog ; 20(4): e1012191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38683845

ABSTRACT

An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection, specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein, we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model, we found that Treg cells play a role during the initial stages after T. cruzi infection, restraining the magnitude of CD8+ T cell responses and parasite control. Early Treg cell depletion increased the frequencies of polyfunctional short-lived, effector T cell subsets, without affecting memory precursor cell formation or the expression of activation, exhaustion and functional markers. In addition, Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell immunity. Crucially, the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses, preventing increased parasite replication in T. cruzi infected mice adoptively transferred with Treg cells. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model.


Subject(s)
Antigens, CD , Apyrase , CD8-Positive T-Lymphocytes , Chagas Disease , T-Lymphocytes, Regulatory , Trypanosoma cruzi , Animals , Chagas Disease/immunology , T-Lymphocytes, Regulatory/immunology , CD8-Positive T-Lymphocytes/immunology , Mice , Trypanosoma cruzi/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Apyrase/immunology , Apyrase/metabolism , Mice, Inbred C57BL , Disease Models, Animal
15.
Physiol Plant ; 176(3): e14320, 2024.
Article in English | MEDLINE | ID: mdl-38686642

ABSTRACT

Many nucleoside triphosphate-diphosphohydrolases (NTPDases/APYRASEs, APYs) play a key role in modulating extracellular nucleotide levels. However, the Golgi-localized APYs, which help control glycosylation, have rarely been studied. Here, we identified AtAPY1, a gene encoding an NTPDase in the Golgi apparatus, which is required for cell wall integrity and plant growth under boron (B) limited availability. Loss of function in AtAPY1 hindered cell elongation and division in root tips while increasing the number of cortical cell layers, leading to swelling of the root tip and abundant root hairs under low B stress. Further, expression pattern analysis revealed that B deficiency significantly induced AtAPY1, especially in the root meristem and stele. Fluorescent-labeled AtAPY1-GFP localized to the Golgi stack. Biochemical analysis showed that AtAPY1 exhibited a preference of UDP and GDP hydrolysis activities. Consequently, the loss of function in AtAPY1 might disturb the homoeostasis of NMP-driven NDP-sugar transport, which was closely related to the synthesis of cell wall polysaccharides. Further, cell wall-composition analysis showed that pectin content increased and borate-dimerized RG-II decreased in apy1 mutants, along with a decrease in cellulose content. Eventually, altered polysaccharide characteristics presumably cause growth defects in apy1 mutants under B deficiency. Altogether, these data strongly support a novel role for AtAPY1 in mediating responses to low B availability by regulating cell wall integrity.


Subject(s)
Apyrase , Arabidopsis Proteins , Arabidopsis , Boron , Cell Wall , Golgi Apparatus , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/enzymology , Arabidopsis/metabolism , Cell Wall/metabolism , Boron/metabolism , Boron/deficiency , Golgi Apparatus/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Apyrase/metabolism , Apyrase/genetics , Gene Expression Regulation, Plant , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Meristem/genetics , Meristem/growth & development , Meristem/metabolism , Pectins/metabolism
16.
Eur Heart J ; 45(17): 1553-1567, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38486376

ABSTRACT

BACKGROUND AND AIMS: The ecto-nucleoside triphosphate diphosphohydrolases of the CD39 family degrade ATP and ADP into AMP, which is converted into adenosine by the extracellular CD73/ecto-5-nucleotidase. This pathway has been explored in antithrombotic treatments but little in myocardial protection. We have investigated whether the administration of solCD39L3 (AZD3366) confers additional cardioprotection to that of ticagrelor alone in a pre-clinical model of myocardial infarction (MI). METHODS: Ticagrelor-treated pigs underwent balloon-induced MI (90 min) and, before reperfusion, received intravenously either vehicle, 1 mg/kg AZD3366 or 3 mg/kg AZD3366. All animals received ticagrelor twice daily for 42 days. A non-treated MI group was run as a control. Serial cardiac magnetic resonance (baseline, Day 3 and Day 42 post-MI), light transmittance aggregometry, bleeding time, and histological and molecular analyses were performed. RESULTS: Ticagrelor reduced oedema formation and infarct size at Day 3 post-MI vs. controls. A 3 mg/kg AZD3366 provided an additional 45% reduction in oedema and infarct size compared with ticagrelor and a 70% reduction vs. controls (P < .05). At Day 42, infarct size declined in all ticagrelor-administered pigs, particularly in 3 mg/kg AZD3366-treated pigs (P < .05). Left ventricular ejection fraction was diminished at Day 3 in placebo pigs and worsened at Day 42, whereas it remained unaltered in ticagrelor ± AZD3366-administered animals. Pigs administered with 3 mg/kg AZD3366 displayed higher left ventricular ejection fraction upon dobutamine stress at Day 3 and minimal dysfunctional segmental contraction at Day 42 (χ2P < .05 vs. all). Cardiac and systemic molecular readouts supported these benefits. Interestingly, AZD3366 abolished ADP-induced light transmittance aggregometry without affecting bleeding time. CONCLUSIONS: Infusion of AZD3366 on top of ticagrelor leads to enhanced cardioprotection compared with ticagrelor alone.


Subject(s)
Adenosine Triphosphatases , Apyrase , Myocardial Infarction , Ticagrelor , Animals , Humans , Male , Adenosine/analogs & derivatives , Adenosine/pharmacology , Antigens, CD , Apyrase/metabolism , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Disease Models, Animal , Myocardial Infarction/drug therapy , Platelet Aggregation/drug effects , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Swine , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , Adenosine Triphosphatases/pharmacology , Adenosine Triphosphatases/therapeutic use
17.
Br J Cancer ; 130(9): 1542-1551, 2024 May.
Article in English | MEDLINE | ID: mdl-38461171

ABSTRACT

BACKGROUND: Tumor cells continue to evolve the metastatic potential in response to signals provided by the external microenvironment during metastasis. Platelets closely interact with tumor cells during hematogenous metastasis and facilitate tumor development. However, the molecular mechanisms underlying this process are not fully understood. METHODS: RNA-sequencing was performed to screen differentially expressed genes mediated by platelets. The effects of platelet and CD39 on tumor metastasis were determined by experimental metastasis models with WT, NCG and CD39-/- mice. RESULTS: RNA-sequencing results showed that platelets significantly up-regulated CD39 expression in tumor cells. CD39 is a novel immune checkpoint molecule and a key driver of immunosuppression. Our data provided evidence that the expression of CD39 was enhanced by platelets in a platelet-tumor cell contact dependent manner. Although the role of CD39 expressed by immune cells is well established, the effect of CD39 expressed by tumor cells on tumor cell behavior, anti-tumor immunity and tumor metastasis is unclear. We found that CD39 promoted tumor cell invasion, but had no effect on proliferation and migration. Notably, we showed that the ability of platelets to prime tumor cells for metastasis depends on CD39 in the experimental tumor metastasis model. CD39 silencing resulted in fewer experimental metastasis formation, and this anti-metastasis effect was significantly reduced in platelet-depleted mice. Furthermore, overexpression of CD39 in tumor cells promoted metastasis. In order to eliminate the effect of CD39 expressed in cells other than tumor cells, we detected tumor metastasis in CD39-/- mice and obtained similar results. Moreover, overexpression of CD39 in tumor cells inhibited antitumor immunity. Finally, the data from human samples also supported our findings. CONCLUSIONS: Our study shows that direct contact with platelets induces CD39 expression in tumor cells, leading to immune suppression and promotion of metastasis.


Subject(s)
Antigens, CD , Apyrase , Blood Platelets , Neoplasm Metastasis , Animals , Apyrase/genetics , Apyrase/metabolism , Blood Platelets/metabolism , Blood Platelets/pathology , Mice , Antigens, CD/genetics , Antigens, CD/metabolism , Humans , Cell Line, Tumor , Female , Mice, Knockout , Cell Movement , Tumor Microenvironment/immunology , Gene Expression Regulation, Neoplastic
18.
Hum Immunol ; 85(3): 110773, 2024 May.
Article in English | MEDLINE | ID: mdl-38494386

ABSTRACT

BACKGROUND: Intestinal transplant (ITx) rejection is associated with memory T helper type 17 cell (Th17) infiltration of grafted tissues. Modulation of Th17 effector cell response is facilitated by T regulatory (Treg) cells, but a phenotypic characterization of this process is lacking in the context of allograft rejection. METHODS: Flow cytometry was performed to examine the expression of surface receptors, cytokines, and transcription factors in Th17 and Treg cells in ITx control (n = 34) and rejection patients (n = 23). To elucidate key pathways guiding the rejection biology, we utilized RNA sequencing (RNAseq) and assessed epigenetic stability through pyrosequencing of the Treg-specific demethylated region (TSDR). RESULTS: We found that intestinal allograft rejection is characterized by Treg cellular infiltrates, which are polarized toward Th17-type chemokine receptor, ROR-γt transcription factor expression, and cytokine production. These Treg cell subsets have maintained epigenetic stability, as defined by FoxP3-TSDR methylation status, but displayed upregulation of functional Treg and purinergic signaling genes by RNAseq analysis such as CD39, in keeping with suppressor Th17 properties. CONCLUSION: We show that ITx rejection is associated with increased polarized cells that express a Th17-like phenotype concurrent with regulatory purinergic markers.


Subject(s)
Graft Rejection , Intestines , T-Lymphocytes, Regulatory , Th17 Cells , Humans , Graft Rejection/immunology , Th17 Cells/immunology , T-Lymphocytes, Regulatory/immunology , Intestines/immunology , Male , Female , Adult , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Epigenesis, Genetic , Apyrase/metabolism , Apyrase/genetics , Middle Aged , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Cytokines/metabolism , Young Adult , Adolescent , Allografts/immunology , Antigens, CD
19.
PLoS Genet ; 20(1): e1011087, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190412

ABSTRACT

Plant cell growth involves coordination of numerous processes and signaling cascades among the different cellular compartments to concomitantly enlarge the protoplast and the surrounding cell wall. The cell wall integrity-sensing process involves the extracellular LRX (LRR-Extensin) proteins that bind RALF (Rapid ALkalinization Factor) peptide hormones and, in vegetative tissues, interact with the transmembrane receptor kinase FERONIA (FER). This LRX/RALF/FER signaling module influences cell wall composition and regulates cell growth. The numerous proteins involved in or influenced by this module are beginning to be characterized. In a genetic screen, mutations in Apyrase 7 (APY7) were identified to suppress growth defects observed in lrx1 and fer mutants. APY7 encodes a Golgi-localized NTP-diphosphohydrolase, but opposed to other apyrases of Arabidopsis, APY7 revealed to be a negative regulator of cell growth. APY7 modulates the growth-inhibiting effect of RALF1, influences the cell wall architecture and -composition, and alters the pH of the extracellular matrix, all of which affect cell growth. Together, this study reveals a function of APY7 in cell wall formation and cell growth that is connected to growth processes influenced by the LRX/RALF/FER signaling module.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Peptide Hormones , Apyrase/genetics , Apyrase/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Peptide Hormones/metabolism , Phosphotransferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...