Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Pineal Res ; 76(5): e12987, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38975671

ABSTRACT

Sleep deprivation (SD) has been associated with a plethora of severe pathophysiological syndromes, including gut damage, which recently has been elucidated as an outcome of the accumulation of reactive oxygen species (ROS). However, the spatiotemporal analysis conducted in this study has intriguingly shown that specific events cause harmful damage to the gut, particularly to goblet cells, before the accumulation of lethal ROS. Transcriptomic and metabolomic analyses have identified significant enrichment of metabolites related to ferroptosis in mice suffering from SD. Further analysis revealed that melatonin could rescue the ferroptotic damage in mice by suppressing lipid peroxidation associated with ALOX15 signaling. ALOX15 knockout protected the mice from the serious damage caused by SD-associated ferroptosis. These findings suggest that melatonin and ferroptosis could be targets to prevent devastating gut damage in animals exposed to SD. To sum up, this study is the first report that proposes a noncanonical modulation in SD-induced gut damage via ferroptosis with a clearly elucidated mechanism and highlights the active role of melatonin as a potential target to maximally sustain the state during SD.


Subject(s)
Ferroptosis , Melatonin , Mice, Knockout , Sleep Deprivation , Animals , Mice , Melatonin/metabolism , Melatonin/pharmacology , Sleep Deprivation/metabolism , Male , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Lipid Peroxidation , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase
2.
Dis Model Mech ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38900131

ABSTRACT

Growing evidence shows that the lung is an organ prone to injury by diabetes mellitus. However, the molecular mechanisms of these pulmonary complications have not yet been characterized comprehensively. To systematically study the effects of insulin deficiency and hyperglycaemia on the lung, we combined proteomics and lipidomics with quantitative histomorphological analyses to compare lung tissue samples from a clinically relevant pig model for mutant INS gene-induced diabetes of youth (MIDY) with samples from wild-type littermate controls. Among others, the level of pulmonary surfactant-associated protein A (SFTPA1), a biomarker of lung injury, was moderately elevated. Furthermore, key proteins related to humoral immune response and extracellular matrix organization were significantly altered in abundance. Importantly, a lipoxygenase pathway was dysregulated as indicated by 2.5-fold reduction of polyunsaturated fatty acid lipoxygenase ALOX15 levels, associated with corresponding changes in the levels of lipids influenced by this enzyme. Our multi-omics study points to an involvement of reduced ALOX15 levels and an associated lack of eicosanoid switching as mechanisms contributing to a proinflammatory milieu in the lungs of subjects with diabetes mellitus.


Subject(s)
Arachidonate 15-Lipoxygenase , Lung , Animals , Lung/pathology , Lung/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Proteomics , Lipidomics , Swine , Diabetes Complications/pathology , Diabetes Complications/metabolism , Diabetes Mellitus/pathology , Diabetes Mellitus/metabolism , Diabetes Mellitus/genetics , Sus scrofa , Multiomics
3.
Biomed Pharmacother ; 175: 116734, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754264

ABSTRACT

Spinal cord injury (SCI) is a type of central nervous system (CNS) injury in which ferroptosis is becoming a promising target for treatment. Alpha-tocopherol (Vitamin E, Vit E) is a compound with anti-ferroptosis activity. The mechanism of alpha-tocopherol in regulating ferroptosis after SCI has not been deeply studied. In this study, rats with SCI were treated by Alpha-tocopherol based on bioinformatic analysis and molecular docking prediction. Behavioral tests and histological findings showed that Alpha-tocopherol promoted neural function recovery and tissue repairment in rats with SCI. Subsequently, regulatory effects of Alpha-tocopherol on Alox15 and ferroptosis were detected and then localized by immunofluorescence. In vitro, alpha-tocopherol improved the ROS accumulation, iron overload, lipid peroxidation and mitochondrial dysfunction. The effects of Alpha-tocopherol on the expression of Alox15, Ptgs2 and 4Hne were validated in vitro. Finally, the inhibitory effects of Alpha-tocopherol on Alox15 and ferroptosis were weakened by the mutation of 87th residue of Alox15. In summary, alpha-tocopherol could alleviate SCI-induced ferroptosis by downregulating Alox15 to promote neural function recovery in rats with SCI. Findings in this study could help further our understanding on SCI-induced ferroptosis and provide a novel insight for treating SCI.


Subject(s)
Arachidonate 15-Lipoxygenase , Down-Regulation , Ferroptosis , Rats, Sprague-Dawley , Recovery of Function , Spinal Cord Injuries , alpha-Tocopherol , Animals , Ferroptosis/drug effects , alpha-Tocopherol/pharmacology , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Recovery of Function/drug effects , Down-Regulation/drug effects , Rats , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Lipid Peroxidation/drug effects , Male , Reactive Oxygen Species/metabolism , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 12-Lipoxygenase/genetics , Disease Models, Animal , Molecular Docking Simulation
4.
Ital J Pediatr ; 50(1): 90, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685084

ABSTRACT

BACKGROUND: Persistent airway inflammation is a central feature of bronchiectasis. Arachidonate 15-lipoxygenase (ALOX-15) controls production of endogenous lipid mediators, including lipoxins that regulate airway inflammation. Mutations at various positions in ALOX-15 gene can influence airway disease development. We investigated association between ALOX-15,c.-292 C > T gene polymorphism and bronchiectasis unrelated to cystic fibrosis in Egyptian children. Also, lipoxin A4 (LXA4) level in bronchoalveolar lavage (BAL) was studied in relation to polymorphism genotypes and disease phenotypes determined by clinical, pulmonary functions, and radiological severity parameters. METHODS: This was an exploratory study that included 60 participants. Thirty children with non-cystic fibrosis bronchiectasis (NCFB) were compared with 30 age and sex-matched controls. ALOX-15,c.-292 C > T polymorphism was genotyped using TaqMan-based Real-time PCR. LXA4 was measured in BAL using ELISA method. RESULTS: There was no significant difference between patients and controls regarding ALOX-15,c.-292 C > T polymorphism genotypes and alleles (OR = 1.75; 95% CI (0.53-5.7), P = 0.35) (OR = 1; 95% CI (0.48-2), p = 1). BAL LXA4 level was significantly lower in patients, median (IQR) of 576.9 (147.6-1510) ng/ml compared to controls, median (IQR) of 1675 (536.8-2542) (p = 0.002). Patients with severe bronchiectasis had a significantly lower LXA4 level (p < 0.001). There were significant correlations with exacerbations frequency (r=-0.54, p = 0.002) and FEV1% predicted (r = 0.64, p = 0.001). Heterozygous CT genotype carriers showed higher LXA4 levels compared to other genotypes(p = 0.005). CONCLUSIONS: Low airway LXA4 in children with NCFB is associated with severe disease phenotype and lung function deterioration. CT genotype of ALOX-15,c.-292 C > T polymorphism might be a protective genetic factor against bronchiectasis development and/or progression due to enhanced LXA4 production.


Subject(s)
Arachidonate 15-Lipoxygenase , Bronchiectasis , Lipoxins , Phenotype , Adolescent , Child , Child, Preschool , Female , Humans , Male , Arachidonate 15-Lipoxygenase/genetics , Bronchiectasis/genetics , Bronchoalveolar Lavage Fluid/chemistry , Case-Control Studies , Egypt , Genetic Predisposition to Disease , Genotype , Pilot Projects , Polymorphism, Genetic
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167176, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641013

ABSTRACT

Ferroptosis is a programmed form of cell death regulated by iron and has been linked to the development of asthma. However, the precise mechanisms driving ferroptosis in asthma remain elusive. To gain deeper insights, we conducted an analysis of nasal epithelial and sputum samples from the GEO database using three machine learning methods. Our investigation identified a pivotal gene, Arachidonate 15-lipoxygenase (ALOX15), associated with ferroptosis in asthma. Through both in vitro and in vivo experiments, we further confirmed the significant role of ALOX15 in ferroptosis in asthma. Our results demonstrate that ferroptosis manifests in an HDM/LPS-induced allergic airway inflammation (AAI) mouse model, mimicking human asthma, and in HDM/LPS-stimulated 16HBE cells. Moreover, we observed an up-regulation of ALOX15 expression in HDM/LPS-induced mice and cells. Notably, silencing ALOX15 markedly decreased HDM/LPS-induced ferroptosis in 16HBE cells. These findings indicate that ferroptosis may be implicated in the onset and progression of asthma, with ALOX15-induced lipid peroxidation raising the susceptibility to ferroptosis in asthmatic epithelial cells.


Subject(s)
Arachidonate 15-Lipoxygenase , Asthma , Epithelial Cells , Ferroptosis , Lipid Peroxidation , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Animals , Asthma/pathology , Asthma/metabolism , Asthma/genetics , Humans , Mice , Epithelial Cells/metabolism , Epithelial Cells/pathology , Disease Models, Animal , Cell Line , Female , Arachidonate 12-Lipoxygenase
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653359

ABSTRACT

OBJECTIVE: This work aimed to investigate the role of rhythm gene PER1 in mediating granulosa cell ferroptosis and lipid metabolism of polycystic ovary syndrome (PCOS). METHODS: We injected dehydroepiandrosterone and Ferrostatin-1 (Fer-1) into mice to explore the mechanism of ferroptosis in PCOS. The effect of PER1 on ferroptosis-like changes in granulosa cells was explored by overexpression of PER1 plasmid transfection and Fer-1 treatment. RESULTS: We found that Fer-1 ameliorated the characteristic polycystic ovary morphology, suppressed ferroptosis in the PCOS mice. PER1 and ALOX15 were highly expressed in PCOS, whereas SREBF2 was lowly expressed. Overexpression of PER1 decreased granulosa cell viability and inhibited proliferation. Meanwhile, overexpression of PER1 increased lipid reactive oxygen species, 4-Hydroxynonenal (4-HNE), Malondialdehyde (MDA), total Fe, and Fe2+ levels in granulosa cells and decreased Glutathione (GSH) content. Fer-1, SREBF2 overexpression, or ALOX15 silencing treatment reversed the effects of PER1 overexpression on granulosa cells. PER1 binds to the SREBF2 promoter and represses SREBF2 transcription. SREBF2 binds to the ALOX15 promoter and represses ALOX15 transcription. Correlation analysis of clinical trials showed that PER1 was positively correlated with total cholesterol, low-density lipoprotein cholesterol, luteinizing hormone, testosterone, 4-HNE, MDA, total Fe, Fe2+, and ALOX15. In contrast, PER1 was negatively correlated with SREBF2, high-density lipoprotein cholesterol, follicle-stimulating hormone, progesterone, and GSH. CONCLUSION: This study demonstrates that the rhythm gene PER1 promotes ferroptosis and dysfunctional lipid metabolism in granulosa cells in PCOS by inhibiting SREBF2/ALOX15 signaling.


Subject(s)
Ferroptosis , Granulosa Cells , Lipid Metabolism , Polycystic Ovary Syndrome , Animals , Female , Humans , Mice , Arachidonate 12-Lipoxygenase , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Cyclohexylamines/pharmacology , Dehydroepiandrosterone/metabolism , Ferroptosis/genetics , Granulosa Cells/metabolism , Granulosa Cells/pathology , Lipid Metabolism/genetics , Phenylenediamines/pharmacology , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Reactive Oxygen Species/metabolism
7.
Redox Biol ; 72: 103149, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581859

ABSTRACT

Macrophage cholesterol homeostasis is crucial for health and disease and has been linked to the lipid-peroxidizing enzyme arachidonate 15-lipoxygenase type B (ALOX15B), albeit molecular mechanisms remain obscure. We performed global transcriptome and immunofluorescence analysis in ALOX15B-silenced primary human macrophages and observed a reduction of nuclear sterol regulatory element-binding protein (SREBP) 2, the master transcription factor of cellular cholesterol biosynthesis. Consequently, SREBP2-target gene expression was reduced as were the sterol biosynthetic intermediates desmosterol and lathosterol as well as 25- and 27-hydroxycholesterol. Mechanistically, suppression of ALOX15B reduced lipid peroxidation in primary human macrophages and thereby attenuated activation of mitogen-activated protein kinase ERK1/2, which lowered SREBP2 abundance and activity. Low nuclear SREBP2 rendered both, ALOX15B-silenced and ERK1/2-inhibited macrophages refractory to SREBP2 activation upon blocking the NPC intracellular cholesterol transporter 1. These studies suggest a regulatory mechanism controlling macrophage cholesterol homeostasis based on ALOX15B-mediated lipid peroxidation and concomitant ERK1/2 activation.


Subject(s)
Arachidonate 15-Lipoxygenase , Cholesterol , Homeostasis , Lipid Peroxidation , Macrophages , Sterol Regulatory Element Binding Protein 2 , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Humans , Cholesterol/metabolism , Macrophages/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Gene Expression Regulation
8.
Braz J Otorhinolaryngol ; 90(3): 101410, 2024.
Article in English | MEDLINE | ID: mdl-38490010

ABSTRACT

OBJECTIVE: Our aim in this study is to identify the core genes of chronic rhinosinusitis with nasal polyps and analyze the correlations between it and inflammation-related genes. METHODS: GSE72713 dataset containing gene expression data of ECRSwNP, nonECRSwNP and healthy samples was obtained from Gene Expression Omnibus (GEO) and filtered by limma to identify DEGs among three groups, then the functions and correlated pathways of DEGs were analyzed using GO and KEGG. The core DEGs were selected by the intersection of DEGs and the PPI network was constructed via STRING. The correlations between the expression levels of CRSwNP core gene and inflammation-related genes were analyzed via the Mann-Whitney U test. RESULTS: The DEGs among ECRSwNP, nonECRSwNP, and CTRL were filtered respectively, and enrichment analysis showed they were associated with olfaction and/or immune responses. The PPI network was constructed by 7 core DEGs obtained via the intersection among three groups, and ALOX15 was confirmed as the core gene in the network. Subsequently, the correlations between the expression levels of ALOX15 and inflammation-related genes were illustrated. CONCLUSION: In this study, the core gene ALOX15 was selected from the DEGs among ECRSwNP, nonECRSwNP, and CTRL. IL5, IL1RL1, and IL1RAP were found to exhibit a significant positive correlation with ALOX15. LEVEL OF EVIDENCE: Level 3.


Subject(s)
Inflammation , Nasal Polyps , Rhinitis , Sinusitis , Nasal Polyps/genetics , Humans , Sinusitis/genetics , Rhinitis/genetics , Chronic Disease , Inflammation/genetics , Arachidonate 15-Lipoxygenase/genetics , Gene Expression Profiling , Protein Interaction Maps/genetics , Case-Control Studies , Rhinosinusitis
9.
Clin Transl Gastroenterol ; 15(4): e00664, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38318864

ABSTRACT

INTRODUCTION: Eosinophilic esophagitis (EoE) variants have been recently characterized as conditions with symptoms of esophageal dysfunction resembling EoE, but absence of significant esophageal eosinophilia. Their disease course and severity have yet to be determined. METHODS: Patients from 6 EoE centers with symptoms of esophageal dysfunction, but peak eosinophil counts of <15/hpf in esophageal biopsies and absence of gastroesophageal reflux disease with at least one follow-up visit were included. Clinical, (immuno)histological, and molecular features were determined and compared with EoE and healthy controls. RESULTS: We included 54 patients with EoE variants (EoE-like esophagitis 53.7%; lymphocytic esophagitis 13.0%; and nonspecific esophagitis 33.3%). In 8 EoE-like esophagitis patients, EoE developed after a median of 14 months (interquartile range 3.6-37.6). Such progression increased over time (17.6% year 1, 32.0% year 3, and 62.2% year 6). Sequential RNA sequencing analyses revealed only 7 genes associated with this progression (with TSG6 and ALOX15 among the top 3 upregulated genes) with upregulation of a previously attenuated Th2 pathway. Immunostaining confirmed the involvement of eosinophil-associated proteins (TSG6 and ALOX15) and revealed a significantly increased number of GATA3-positive cells during progression, indicating a Th1/Th2 switch. Transition from one EoE variant (baseline) to another variant (during follow-up) was seen in 35.2% (median observation time of 17.3 months). DISCUSSION: Transition of EoE variants to EoE suggests the presence of a disease spectrum. Few genes seem to be associated with the progression to EoE with upregulation of a previously attenuated Th2 signal. These genes, including GATA3 as a Th1/Th2 switch regulator, may represent potential therapeutic targets in early disease pathogenesis.


Subject(s)
Disease Progression , Eosinophilic Esophagitis , Esophagus , Humans , Eosinophilic Esophagitis/genetics , Eosinophilic Esophagitis/pathology , Eosinophilic Esophagitis/diagnosis , Female , Male , Adult , Esophagus/pathology , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Adolescent , Eosinophils/pathology , Eosinophils/immunology , Young Adult , GATA3 Transcription Factor/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Child , Biopsy , Th2 Cells/immunology , Middle Aged , Case-Control Studies , Leukocyte Count
10.
Int J Mol Sci ; 25(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38396985

ABSTRACT

Retinitis pigmentosa (RP) is a retinal degenerative disease associated with a diversity of genetic mutations. In a natural progression study (NPS) evaluating the molecular changes in Royal College of Surgeons (RCS) rats using lipidomic profiling, RNA sequencing, and gene expression analyses, changes associated with retinal degeneration from p21 to p60 were evaluated, where reductions in retinal ALOX15 expression corresponded with disease progression. This important enzyme catalyzes the formation of specialized pro-resolving mediators (SPMs) such as lipoxins (LXs), resolvins (RvDs), and docosapentaenoic acid resolvins (DPA RvDs), where reduced ALOX15 corresponded with reduced SPMs. Retinal DPA RvD2 levels were found to correlate with retinal structural and functional decline. Retinal RNA sequencing comparing p21 with p60 showed an upregulation of microglial inflammatory pathways accompanied by impaired damage-associated molecular pattern (DAMP) clearance pathways. This analysis suggests that ALXR/FPR2 activation can ameliorate disease progression, which was supported by treatment with an LXA4 analog, NAP1051, which was able to promote the upregulation of ALOX12 and ALOX15. This study showed that retinal inflammation from activated microglia and dysregulation of lipid metabolism were central to the pathogenesis of retinal degeneration in RP, where ALXR/FPR2 activation was able to preserve retinal structure and function.


Subject(s)
Arachidonate 15-Lipoxygenase , Retinal Degeneration , Retinitis Pigmentosa , Animals , Humans , Rats , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Disease Models, Animal , Disease Progression , Retina/metabolism , Retinal Degeneration/pathology , Retinitis Pigmentosa/metabolism
11.
Nat Commun ; 15(1): 221, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177096

ABSTRACT

Lymphedema (LD) is characterized by the accumulation of interstitial fluid, lipids and inflammatory cell infiltrate in the limb. Here, we find that LD tissues from women who developed LD after breast cancer exhibit an inflamed gene expression profile. Lipidomic analysis reveals decrease in specialized pro-resolving mediators (SPM) generated by the 15-lipoxygenase (15-LO) in LD. In mice, the loss of SPM is associated with an increase in apoptotic regulatory T (Treg) cell number. In addition, the selective depletion of 15-LO in the lymphatic endothelium induces an aggravation of LD that can be rescued by Treg cell adoptive transfer or ALOX15-expressing lentivector injections. Mechanistically, exogenous injections of the pro-resolving cytokine IFN-ß restores both 15-LO expression and Treg cell number in a mouse model of LD. These results provide evidence that lymphatic 15-LO may represent a therapeutic target for LD by serving as a mediator of Treg cell populations to resolve inflammation.


Subject(s)
Arachidonate 15-Lipoxygenase , Lymphedema , Humans , Mice , Female , Animals , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Inflammation/metabolism , Cytokines/metabolism , T-Lymphocytes, Regulatory/metabolism
12.
Braz. dent. j ; 28(2): 140-147, mar.-Apr. 2017. tab, graf
Article in English | LILACS | ID: biblio-839136

ABSTRACT

Lipoxins play an important role in periodontal resolution, hence, investigation of genetic polymorphism of lipoxin gene may provide important information on the role of lipoxins in periodontal disease pathogenesis. The aim of this study was to investigate a polymorphism of C-to-T substitution at position c.-292 in ALOX15 (reticulocyte-type 15 lipoxygenase 1) gene in patients with chronic periodontitis and to associate the polymorphism with gingival crevicular fluid (GCF) lipoxin A4 (LXA4) levels. Forty-five chronic periodontitis and 45 periodontally healthy patients were included in this case-control study. Plaque index, calculus index, sulcus bleeding index, full mouth probing depth (PD) and clinical attachment loss (CAL) were recorded. GCF and blood samples were collected. GCF was analyzed for LXA4 levels by enzyme linked immunosorbant assay. Genotyping of ALOX15 polymorphism was studied using PCR. Mean LXA4 was lower in periodontitis group compared to the periodontally healthy group. There was a negative correlation between CAL and LXA4. The CC genotype was higher in the study group than in the control group. In the study group, mean CAL was significantly lower among individuals with the CT genotype. Mean LXA4 was significantly lower in CC genotype (45.0±7.11 ng/mL) compared to CT genotype (50.81±5.81 ng/mL) among the patients with periodontitis. The results suggest that LXA4 and c.-292T allele are associated with periodontal health. Polymorphisms in the ALOX15 gene may influence periodontal disease pathogenesis. Hence, investigation of such polymorphisms could benefit the evaluation of lipoxins role in periodontal disease.


Resumo Lipoxinas desempenham um papel importante na recuperação periodonta, portanto, a investigação do polimorfismo genético do gene da lipoxina pode fornecer informações importantes sobre o papel das lipoxinas na patogênese da doença periodontal. O objetivo deste estudo foi investigar um polimorfismo de substituição C-to-T na posição c-292 no gene ALOX15 (reticulócito-tipo 15 lipoxigenase 1) em pacientes com periodontite crônica e associar o polimorfismo com a lipoxina A4 (LXA4) do fluido gengival crevicular (FGC). Quarenta e cinco pacientes com periodontite crônica e 45 pacientes periodonalmente saudáveis foram incluídos neste estudo caso-controle. Índice de placa, índice de cálculo, índice de sangramento do sulco, profundidade de sondagem (PS) da boca toda e perda de inserção clínica (PIC) foram registrados. Amostras do FGC e de sangue foram coletadas. O FGC foi analisado quanto aos níveis de LXA4 por ensaio imunoadsorvente ligado à enzima (ELISA). A genotipagem do polimorfismo ALOX15 foi estudada por PCR. A média de LXA4 foi menor no grupo de periodontite em comparação com o grupo periodontalmente saudável. Houve uma correlação negativa entre PIC e LXA4. O genótipo CC foi maior no grupo de estudo do que no grupo controle. No grupo de estudo, a média de PIC foi significativamente menor entre os indivíduos com o genótipo CT. A média de LXA4 foi significativamente menor no genótipo CC (45,0 ± 7,11 ng / mL) em comparação com o genótipo CT (50,81 ± 5,81 ng / mL) entre os pacientes com periodontite. Os resultados sugerem que o alelo LXA4 e o alelo c-292T estão associados à saúde periodontal. Polimorfismos no gene ALOX15 podem influenciar a patogênese da doença periodontal. Assim, a investigação de tais polimorfismos pode beneficiar a avaliação do papel das lipoxinas na doença periodontal.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Arachidonate 15-Lipoxygenase/genetics , Chronic Periodontitis/metabolism , Gingival Crevicular Fluid/metabolism , Lipoxins/metabolism , Polymorphism, Genetic , Chronic Periodontitis/genetics , India
SELECTION OF CITATIONS
SEARCH DETAIL