Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.178
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124394, 2024 Sep 05.
Article En | MEDLINE | ID: mdl-38723467

A fast, simple and reagent-free detection method for aflatoxin B1 (AFB1) is of great significance to food safety and human health. Visible and near-infrared (Vis-NIR) spectroscopy was applied to the discriminant analysis of AFB1 excessive standard of peanut meal as feedstuff materials. Two types of excessive standard discriminant models based on spectral quantitative analysis with partial least squares (PLS) and direct pattern recognition with partial least squares-discrimination analysis (PLS-DA) were established, respectively. Multi-parameter optimization of Norris derivative filtering (NDF) was used for spectral preprocessing; the two-stage wavelength screening method based on equidistant combination-wavelength step-by-step phase-out (EC-WSP) was used for wavelength optimization. A rigorous sample experimental design of calibration-prediction-validation was utilized. The calibration and prediction samples were used for modeling and parameter optimization, and the selected model was validated using the independent validation samples. For quantitative analysis-based, the positive, negative and total recognition-accuracy rates in validation (RARV+, RARV-, and RARV) were 84.8 %, 74.6 % and 79.8 %, respectively; but, the relative root mean square error of prediction was as high as 51.0 %. For pattern recognition-based, the RARV+, RARV-, and RARV were 93.3 %, 90.5 % and 91.9 %, respectively. Moreover, the number of wavelengths N was drastically reduced to 17, and the discrete wavelength combination was in NIR overtone frequency region. The results indicated that, the EC-WSP-PLS-DA model achieved significantly better discrimination effect. Thus demonstrated that Vis-NIR spectroscopy has feasibility for the excessive standard discrimination of aflatoxin B1 in feedstuff materials.


Aflatoxin B1 , Arachis , Spectroscopy, Near-Infrared , Aflatoxin B1/analysis , Arachis/chemistry , Spectroscopy, Near-Infrared/methods , Discriminant Analysis , Least-Squares Analysis , Food Contamination/analysis , Calibration , Reproducibility of Results
2.
J Agric Food Chem ; 72(20): 11381-11391, 2024 May 22.
Article En | MEDLINE | ID: mdl-38728113

RNA interference (RNAi)-based biopesticides offer an attractive avenue for pest control. Previous studies revealed high RNAi sensitivity in Holotrichia parallela larvae, showcasing its potential for grub control. In this study, we aimed to develop an environmentally friendly RNAi method for H. parallela larvae. The double-stranded RNA (dsRNA) of the V-ATPase-a gene (HpVAA) was loaded onto layered double hydroxide (LDH). The dsRNA/LDH nanocomplex exhibited increased environmental stability, and we investigated the absorption rate and permeability of dsRNA-nanoparticle complexes and explored the RNAi controlling effect. Silencing the HpVAA gene was found to darken the epidermis of H. parallela larvae, with growth cessation or death or mortality, disrupting the epidermis and midgut structure. Quantitative reverse transcription-polymerase chain reaction and confocal microscopy confirmed the effective absorption of the dsRNA/LDH nanocomplex by peanut plants, with distribution in roots, stems, and leaves. Nanomaterial-mediated RNAi silenced the target genes, leading to the death of pests. Therefore, these findings indicate the successful application of the nanomaterial-mediated RNAi system for underground pests, thus establishing a theoretical foundation for developing a green, safe, and efficient pest control strategy.


Larva , RNA Interference , RNA, Double-Stranded , Animals , Larva/growth & development , Larva/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Hydroxides/chemistry , Hydroxides/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Arachis/genetics , Arachis/chemistry , Arachis/growth & development , Arachis/metabolism , Pest Control, Biological , Coleoptera/genetics , Coleoptera/growth & development , Green Chemistry Technology , Biological Control Agents/chemistry , Biological Control Agents/metabolism , Nanoparticles/chemistry
3.
An Acad Bras Cienc ; 96(2): e20231145, 2024.
Article En | MEDLINE | ID: mdl-38747798

Elephantgrass stands out for its high potential for forage production in different tropical and subtropical regions. In most properties, it is cultivated intensively with high doses of mineral fertilizers, mainly nitrogen, which makes production expensive and less sustainable. In this context, the mixtures of elephantgrass with forage legumes can make the system more efficient and with less environmental impact. Thus, the objective is to evaluate elephantgrass-based grazing systems,with or without a legume in terms of sward characteristics, herbage accumulation and nutritional value of pastures during one, agricultural year. Two grazing systems (treatments) were analyzed: (i) elephantgrass-based (EG) with mixed spontaneous-growing species (SGE) in the warm-season and ryegrass (R) in the cool-season; and (ii) EG + SGE + R + pinto peanut. The standardization criterion between the systems was the level of nitrogen fertilization (120 kg N/ha/year). The presence of pinto peanut positively affected the botanical composition of the pasture, with a reduction in SGE and dead material, and in the morphology of elephantgrass, with a greater proportion of leaf blades, and less stem + sheath and senescent material. In themixture with pinto peanut, there was an increase in herbage accumulation and greater nutritional value of forage.


Arachis , Nutritive Value , Seasons , Arachis/chemistry , Fertilizers/analysis , Nitrogen/analysis , Nitrogen/metabolism , Agriculture/methods , Lolium
4.
Molecules ; 29(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731439

The production of peanut oil in the industrial sector necessitates the utilization of diverse raw materials to generate consistent batches with stable flavor profiles, thereby leading to an increased focus on understanding the correlation between raw materials and flavor characteristics. In this study, sensory evaluations, headspace solid-phase micro-extraction gas chromatography mass spectrometry (HS-SPME-GC-MS), odor activity value (OAV) calculations, and correlation analysis were employed to investigate the flavors and main contributing amino acids of hot-pressed oils derived from different peanut varieties. The results confirmed that the levels of alcohols, aldehydes, and heterocyclic compounds in peanut oil varied among nine different peanut varieties under identical processing conditions. The OAVs of 25 key aroma compounds, such as methylthiol, 3-ethyl-2,5-dimethylpyrazine, and 2,3-glutarone, exceeded a value of 1. The sensory evaluations and flavor content analysis demonstrated that pyrazines significantly influenced the flavor profile of the peanut oil. The concentrations of 11 amino acids showed a strong correlation with the levels of pyrazines. Notably, phenylalanine, lysine, glutamic acid, arginine, and isoleucine demonstrated significant associations with both pyrazine and nut flavors. These findings will provide valuable insights for enhancing the sensory attributes of peanut oil and selecting optimal raw peanuts for its production.


Amino Acids , Arachis , Gas Chromatography-Mass Spectrometry , Odorants , Peanut Oil , Amino Acids/analysis , Amino Acids/chemistry , Arachis/chemistry , Odorants/analysis , Peanut Oil/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Flavoring Agents/chemistry , Flavoring Agents/analysis , Pyrazines/chemistry , Pyrazines/analysis , Solid Phase Microextraction , Taste , Hot Temperature
5.
J Agric Food Chem ; 72(19): 11259-11267, 2024 May 15.
Article En | MEDLINE | ID: mdl-38691423

Peanut allergen monitoring is currently an effective strategy to avoid allergic diseases, while food matrix interference is a critical challenge during detection. Here, we developed an antifouling surface plasmon resonance sensor (SPR) with stratified zwitterionic peptides, which provides both excellent antifouling and sensing properties. The antifouling performance was measured by the SPR, which showed that stratified peptide coatings showed much better protein resistance, reaching ultralow adsorption levels (<5 ng/cm2). Atomic force microscopy was used to further analyze the antifouling mechanism from a mechanical perspective, which demonstrated lower adsorption forces on hybrid peptide coatings, confirming the better antifouling performance of stratified surfaces. Moreover, the recognition of peanut allergens in biscuits was performed using an SPR with high efficiency and appropriate recovery results (98.2-112%), which verified the feasibility of this assay. Therefore, the fabrication of antifouling sensors with stratified zwitterionic peptides provides an efficient strategy for food safety inspection.


Allergens , Arachis , Peptides , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Arachis/chemistry , Arachis/immunology , Peptides/chemistry , Peptides/immunology , Allergens/analysis , Allergens/immunology , Allergens/chemistry , Biofouling/prevention & control , Food Contamination/analysis , Plant Proteins/immunology , Plant Proteins/chemistry , Plant Proteins/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Adsorption
6.
J Vis Exp ; (206)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38709040

Aflatoxins are highly carcinogenic secondary metabolites of some fungal species, particularly Aspergillus flavus. Aflatoxins often contaminate economically important agricultural commodities, including peanuts, posing a high risk to human and animal health. Due to the narrow genetic base, peanut cultivars demonstrate limited resistance to fungal pathogens. Therefore, numerous wild peanut species with tolerance to Aspergillus have received substantial consideration by scientists as sources of disease resistance. Exploring plant germplasm for resistance to aflatoxins is difficult since aflatoxin accumulation does not follow a normal distribution, which dictates the need for the analyses of thousands of single peanut seeds. Sufficiently hydrated peanut (Arachis spp.) seeds, when infected by Aspergillus species, are capable of producing biologically active stilbenes (stilbenoids) that are considered defensive phytoalexins. Peanut stilbenes inhibit fungal development and aflatoxin production. Therefore, it is crucial to analyze the same seeds for peanut stilbenoids to explain the nature of seed resistance/susceptibility to the Aspergillus invasion. None of the published methods offer single-seed analyses for aflatoxins and/or stilbene phytoalexins. We attempted to fulfill the demand for such a method that is environment-friendly, uses inexpensive consumables, and is sensitive and selective. In addition, the method is non-destructive since it uses only half of the seed and leaves the other half containing the embryonic axis intact. Such a technique allows germination and growth of the peanut plant to full maturity from the same seed used for the aflatoxin and stilbenoid analysis. The integrated part of this method, the manual challenging of the seeds with Aspergillus, is a limiting step that requires more time and labor compared to other steps in the method. The method has been used for the exploration of wild Arachis germplasm to identify species resistant to Aspergillus and to determine and characterize novel sources of genetic resistance to this fungal pathogen.


Aflatoxins , Arachis , Phytoalexins , Seeds , Sesquiterpenes , Stilbenes , Arachis/microbiology , Arachis/chemistry , Seeds/chemistry , Aflatoxins/analysis , Aflatoxins/metabolism , Stilbenes/metabolism , Stilbenes/analysis , Stilbenes/chemistry , Sesquiterpenes/analysis , Sesquiterpenes/metabolism , Sesquiterpenes/chemistry , Chromatography, High Pressure Liquid/methods
7.
Food Chem ; 452: 139535, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38728890

This study systematically investigates the residue changes, processing factors (PFs), and relation between the physicochemical properties of pesticides during peanut processing. Results revealed that peeling, washing, and boiling treatments removed partial or substantial pesticide residues from peanuts with PFs of 0.29-1.10 (most <1). By contrast, pesticides appeared to be partially concentrated during roasting, stir-frying, and deep-frying peanuts with PFs of 0.16-1.25. During oil pressing, 13 of the 28 pesticides were concentrated in the peanut oil (PF range: 1.06-2.01) and 25 of the pesticides were concentrated in the peanut meal (1.07-1.46). Physicochemical parameters such as octanol-water partition coefficient, degradation point, molecular weight, and melting point showed significant correlations with PFs during processing. Notably, log Kow exhibited strong positive correlations with the PFs of boiling, roasting, and oil pressing. Overall, this study describes the fate of pesticides during multiproduct processing, providing guidance to promote the healthy consumption of peanuts for human health.


Arachis , Food Contamination , Food Handling , Pesticide Residues , Arachis/chemistry , Pesticide Residues/chemistry , Pesticide Residues/analysis , Food Contamination/analysis , Cooking , Hot Temperature
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124322, 2024 Aug 05.
Article En | MEDLINE | ID: mdl-38663134

Aflatoxin B1 (AFB1), among the identified aflatoxins, exhibits the highest content, possesses the most potent toxicity, and poses the gravest threat. It is commonly found in peanuts and their derivatives. This study employs Raman spectroscopy to monitor the AFB1 levels in moldy peanuts, providing a reliable theoretical basis for peanut storage management. Firstly, different degrees of moldy peanuts are spectrally characterized using a portable Raman spectrometer. Subsequently, a two-step hybrid strategy for feature selection is proposed, combining backward interval partial least squares (BiPLS) and variable combination population analysis (VCPA), aiming to simplify model complexity and enhance predictive accuracy. Finally, partial least squares (PLS) regression models are constructed based on different feature intervals and wavelength points. The research results reveal that the PLS regression model using the optimized feature intervals and wavelength points exhibits improved predictive capability and generalization performance. Notably, the BiPLS-VCPA-PLS model, established through the two-step optimization, selects nine wavelength variables, achieving a root mean square error of prediction (RMSEP) of 33.3147 µg∙kg-1, a correlation coefficient of the prediction set (RP) of 0.9558, and a relative percent deviation (RPD) of 3.4896. These findings demonstrate that the two-step feature optimization method, combining feature interval selection and feature wavelength selection, can more accurately identify optimal variables, thus enhancing detection efficiency and predictive precision.


Aflatoxin B1 , Arachis , Spectrum Analysis, Raman , Arachis/chemistry , Spectrum Analysis, Raman/methods , Aflatoxin B1/analysis , Least-Squares Analysis , Multivariate Analysis , Food Contamination/analysis
9.
Int J Biol Macromol ; 267(Pt 1): 131196, 2024 May.
Article En | MEDLINE | ID: mdl-38574915

In this study, high internal phase Pickering emulsions (HIPPEs) were stabilized by the complexes of peanut protein isolate (PPI) and cellulose nanocrystals (CNCs) for encapsulation ß-carotene to retard its degradation during processing and storage. CNCs were prepared by H2SO4 hydrolysis (HCNCs), APS oxidation (ACNCs) and TEMPO oxidation (TCNCs), exhibiting needle-like or rod-like structures with nanoscale size and uniformly distributed around the spherical PPI particle, which enhanced the emulsifying capability of PPI. Results of optical micrographs and droplet size measurement showed that Pickering emulsions stabilized by PPI/ACNCs complexes exhibited the most excellent stability after 30 days of storage, which indicated that ACNCs had the most obvious effect to improve emulsifying capability of PPI. HIPPEs encapsulated ß-carotene (ßc-HIPPEs) were stabilized by PPI/ACNCs complexes and showed excellent inverted storage stability. Moreover, ßc-HIPPEs exhibited typical shear thinning behavior investigated by rheological properties analysis. During thermal treatment, ultraviolet radiation and oxidation, the retentions of ß-carotene encapsulated in HIPPEs were improved significantly. This research holds promise in expanding Pickering emulsions stabilized by proteins-polysaccharide particles to delivery systems for hydrophobic bioactive compounds.


Arachis , Cellulose , Emulsions , Nanoparticles , Plant Proteins , beta Carotene , beta Carotene/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Cellulose/chemistry , Arachis/chemistry , Plant Proteins/chemistry , Rheology , Particle Size , Oxidation-Reduction
10.
J Environ Manage ; 358: 120863, 2024 May.
Article En | MEDLINE | ID: mdl-38615396

This study aims to remove Congo red dye from industrial effluent using economical agriculturally-based nano-biosorbents like magnetic orange peel, peanut shells, and tea waste. The nano-biosorbents were characterized by various analytical techniques like SEM, FT-IR, BET and XRD. The highest adsorption capacity was obtained under the following ideal conditions: pH = 6 (orange peel and peanut shells), pH = 3 (tea waste), and dosages of nano-biosorbents with varying timeframes of 50 min for tea waste and peanut shells and 30 min for orange peel. The study found that tea waste had the highest removal rate of 94% due to its high porosity and responsible functional groups, followed by peanut shells at 83% and orange peel at 68%. The Langmuir isotherm model was found to be the most suitable, with R2 values of 0.99 for tea waste, 0.92 for orange peel, and 0.71 for peanut shells. On the other hand, a pseudo-second-order kinetic model was very feasible, showing an R2 value of 0.99 for tea waste, 0.98 for peanut shells and 0.97 for orange peel. The significance of the current study lies in its practical application, enabling efficient waste management and water purification, thereby preserving a clean and safe environment.


Congo Red , Congo Red/chemistry , Kinetics , Adsorption , Agriculture , Water Pollutants, Chemical/chemistry , Industrial Waste , Spectroscopy, Fourier Transform Infrared , Tea/chemistry , Arachis/chemistry , Hydrogen-Ion Concentration
11.
Food Chem ; 449: 139171, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38604026

Aflatoxins, harmful substances found in peanuts, corn, and their derivatives, pose significant health risks. Addressing this, the presented research introduces an innovative MSGhostDNN model, merging contrastive learning with multi-scale convolutional networks for precise aflatoxin detection. The method significantly enhances feature discrimination, achieving an impressive 97.87% detection accuracy with a pre-trained model. By applying Grad-CAM, it further refines the model to identify key wavelengths, particularly 416 nm, and focuses on 40 key wavelengths for optimal performance with 97.46% accuracy. The study also incorporates a task dimensionality reduction approach for continuous learning, allowing effective ongoing aflatoxin spectrum monitoring in peanuts and corn. This approach not only boosts aflatoxin detection efficiency but also sets a precedent for rapid online detection of similar toxins, offering a promising solution to mitigate the health risks associated with aflatoxin exposure.


Aflatoxin B1 , Arachis , Food Contamination , Zea mays , Aflatoxin B1/analysis , Food Contamination/analysis , Arachis/chemistry , Zea mays/chemistry , Neural Networks, Computer , Spectrum Analysis/methods , Machine Learning
12.
Int J Biol Macromol ; 268(Pt 2): 131901, 2024 May.
Article En | MEDLINE | ID: mdl-38677685

Food-derived peptides with low molecular weight, high bioavailability, and good absorptivity have been exploited as angiotensin-converting enzyme (ACE) inhibitors. In the present study, in-vitro inhibition kinetics of peanut peptides, in silico screening, validation of ACE inhibitory activity, molecular dynamics (MD) simulations, and HUVEC cells were performed to systematically identify the inhibitory mechanism of ACE interacting with peanut peptides. The results indicate that FPHPP, FPHY, and FPHFD peptides have good thermal, pH, and digestive stability. MD trajectories elucidate the dynamic correlation between peptides and ACE and verify the specific binding interaction. Noteworthily, FPHPP is the best inhibitor with a strongest binding affinity and significantly increases NO, SOD production, and AT2R expression, and decreases ROS, MDA, ET-1 levels, ACE, and AT1R accumulation in Ang II-injury HUVEC cells.


Angiotensin-Converting Enzyme Inhibitors , Arachis , Human Umbilical Vein Endothelial Cells , Peptides , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/metabolism , Humans , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/chemistry , Arachis/chemistry , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Molecular Dynamics Simulation , Computer Simulation , Kinetics , Protein Binding
13.
Anal Methods ; 16(18): 2897-2904, 2024 May 09.
Article En | MEDLINE | ID: mdl-38647424

Ochratoxin A (OTA) is a mycotoxin that can contaminate a variety of agricultural commodities, including fruit juices and wines. The capability of a magnetic solid-phase extraction (MSPE) method with a magnetic metal-organic framework (MOF) material having a three-layer core-shell structure to improve the detection of OTA in food matrices using high performance liquid chromatography is described. Analysis of the material through X-ray diffraction (XRD) indicated the successful synthesis of the magnetic nanomaterial Fe3O4@SiO2@UiO66-NH2. Scanning electron microscopy (SEM) and Zetasizer lab indicated its nano-sized morphological features. The conditions affecting the magnetic solid-phase extraction procedure, such as material dosage, pH, composition and amount of eluent, desorption solution and desorption time were investigated to obtain the optimal extraction conditions. Under optimized conditions, the recoveries of spiked analytes at three different concentrations ranged from 95.83 to 101.5%, and the relative standard deviations were below 5%. Coupling with HPLC allowed the limit of detection to be 0.3 µg kg-1. This method is simple and specific, and can effectively avoid the influence of coexisting elements and improve the sensitivity of determination through fast MSPE of OTA. It has broad development prospects in OTA detection pre-treatment.


Arachis , Food Contamination , Metal-Organic Frameworks , Ochratoxins , Solid Phase Extraction , Ochratoxins/analysis , Ochratoxins/isolation & purification , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods , Arachis/chemistry , Food Contamination/analysis , Metal-Organic Frameworks/chemistry , Limit of Detection , Silicon Dioxide/chemistry , Magnetite Nanoparticles/chemistry
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124268, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38603962

Aflatoxin B1 (AFB1) is a virulent metabolite secreted by Aspergillus fungi, impacting crop quality and posing health risks to human. Herein, a dual-mode Raman/fluorescence aptasensor was constructed to detect AFB1. The aptasensor was assembled by gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs), while the surface-enhanced Raman scattering (SERS) and fluorescence resonance energy transfer (FRET) effects were both realized. AuNPs were modified with the Raman signal molecule 4-MBA and the complementary chain of AFB1 aptamer (cDNA). MNPs were modified with the fluorescence signal molecule Cy5 and the AFB1 aptamer (AFB1 apt). Through base pairing, AuNPs aggregated on the surface of MNPs, forming a satellite-like nanocomposite, boosting SERS signal via increased "hot spots" but reducing fluorescence signal due to the proximity of AuNPs to Cy5. Upon exposure to AFB1, AFB1 apt specifically bound to AFB1, causing AuNPs detachment from MNPs, weakening the SERS signal while restoring the fluorescence signal. AFB1 concentration displayed a good linear relationship with SERS/fluorescence signal in the range of 0.01 ng/mL-100 ng/mL, with a detection limit as low as 5.81 pg/mL. The use of aptamer assured the high selectivity toward AFB1. Furthermore, the spiked recovery in peanut samples ranged from 91.4 % to 95.6 %, indicating the applicability of real sample detection. Compared to single-signal sensor, this dual-signal sensor exhibited enhanced accuracy, robust anti-interference capability, and increased flexibility, promising for toxin detection in food safety applications.


Aflatoxin B1 , Aptamers, Nucleotide , Gold , Limit of Detection , Metal Nanoparticles , Spectrum Analysis, Raman , Aflatoxin B1/analysis , Aptamers, Nucleotide/chemistry , Arachis/chemistry , Arachis/microbiology , Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Food Contamination/analysis , Gold/chemistry , Magnetite Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods , Aspergillus
15.
Int J Biol Macromol ; 264(Pt 2): 130613, 2024 Apr.
Article En | MEDLINE | ID: mdl-38447836

The 2S albumins Ara h 2 and Ara h 6 have been shown to be the most important source of allergenicity in peanut. Several isoforms of these allergens have been described. Using extraction and liquid chromatography we isolated proteins with homology to Ara h 2 and characterized hitherto unknown Ara h 2 proteoforms with additional post-translational cleavage. High-resolution mass spectrometry located the cleavage site on the non-structured loop of Ara h 2 while far UV CD spectroscopy showed a comparable structure to Ara h 2. The cleaved forms of Ara h 2 were present in genotypes of peanut commonly consumed. Importantly, we revealed that newly identified Ara h 2 cleaved proteoforms showed comparable IgE-binding using sera from 28 peanut-sensitized individuals, possessed almost the same IgE binding potency and are likely similarly allergenic as intact Ara h 2. This makes these newly identified forms relevant proteoforms of peanut allergen Ara h 2.


Peanut Hypersensitivity , Plant Proteins , Humans , Plant Proteins/chemistry , Antigens, Plant/chemistry , Immunoglobulin E/metabolism , 2S Albumins, Plant/chemistry , Glycoproteins/chemistry , Allergens/chemistry , Arachis/chemistry
16.
Arch Anim Nutr ; 78(1): 60-77, 2024 Feb.
Article En | MEDLINE | ID: mdl-38488818

This study was performed to investigate the nitrogen (N) and carbohydrate digestive traits of grazing heifers. The experiment was carried out at the Federal University of Lavras. The treatments were a Marandu palisadegrass (Urochloa brizantha [Syn, Brachiaria brizantha] Stapf. A. Rich. cv. Marandu) monoculture fertilised with 150 kg N/[ha ∙ year] (FP) or Marandu palisadegrass mixed pasture with forage peanut (MP). The pastures were grazed by six rumen-cannulated zebu heifers. A double cross-over design was used in four periods. Nutritive value, intake and apparent digestibility of forage, ruminal traits and kinetics and N balance were evaluated. Apparent total-tract digestibility of dry matter (DM) and neutral detergent fibre (NDF) were greater for FP than for MP. There was no effect in apparent total-tract digestibility of N. The estimated intestinal digestibility of nutrients was greater on MP than FP. Even though N intake and faecal N output were greater on MP than FP, there was no effect in urine N output. The N balance tended to be greater on MP than FP. The forage peanut, which contains condensed tannins, decreased ruminal fibre degradation, apparent digestibility and ruminal protein degradation, increased N flow from the rumen. Inclusion of forage peanut in the mixed pasture decreased the ruminal fibre degradability but increased N retention by the animals.


Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Digestion , Rumen , Animals , Cattle/physiology , Digestion/physiology , Animal Feed/analysis , Female , Diet/veterinary , Rumen/physiology , Rumen/metabolism , Nitrogen/metabolism , Dietary Proteins/metabolism , Cross-Over Studies , Fertilizers/analysis , Nutritive Value , Arachis/chemistry , Dietary Carbohydrates/analysis , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/metabolism , Brachiaria/chemistry , Brachiaria/physiology , Poaceae/chemistry
17.
Environ Sci Pollut Res Int ; 31(19): 27935-27948, 2024 Apr.
Article En | MEDLINE | ID: mdl-38523212

Herein, microwave-assisted activated carbon (MW-AC) was fabricated from peanut shells using a ZnCl2 activator and utilized for the first time to eliminate benzene vapor as a volatile organic compound (VOC). During the MW-AC production process, which involved two steps-microwave treatment and muffle furnace heating-we investigated the effects of various factors and achieved the highest iodine number of 1250 mg/g. This was achieved under optimal operating conditions, which included a 100% impregnation ratio, CO2 as the gas in the microwave environment, a microwave power set at 500 W, a microwave duration of 10 min, an activation temperature of 500 °C and an activation time of 45 min. The structural and morphological properties of the optimized MW-AC were assessed through SEM, FTIR, and BET analysis. The dynamic adsorption process of benzene on the optimized MW-AC adsorbent, which has a significant BET surface area of 1204.90 m2/g, was designed using the Box-Behnken approach within the response surface methodology. Under optimal experimental conditions, including a contact duration of 80 min, an inlet concentration of 18 ppm, and a temperature of 26 °C, the maximum adsorption capacity reached was 568.34 mg/g. The experimental data are better described by the pseudo-second-order kinetic model, while it is concluded that the equilibrium data are better described by the Langmuir isotherm model. MW-AC exhibited a reuse efficiency of 86.54% for benzene vapor after five consecutive recycling processes. The motivation of the study highlights the high adsorption capacity and superior reuse efficiency of MW-AC adsorbent with high BET surface area against benzene pollutant. According to our results, the developed MW-AC presents itself as a promising adsorbent candidate for the treatment of VOCs in various industrial applications.


Arachis , Benzene , Charcoal , Microwaves , Zinc Compounds , Adsorption , Benzene/chemistry , Charcoal/chemistry , Zinc Compounds/chemistry , Arachis/chemistry , Volatile Organic Compounds/chemistry , Chlorides/chemistry , Kinetics , Air Pollutants/chemistry
18.
Int J Biol Macromol ; 266(Pt 1): 131081, 2024 May.
Article En | MEDLINE | ID: mdl-38552691

This study prepared and characterized sodium alginate and carrageenan (SAC) composite films incorporated with peanut shell flavonoids (PSFs). PSFs compound identification research was implemented. The physicochemical features of PSFs-SAC composite films and their ability to preserve chilled pork in a 4 °C refrigerator were determined. PSFs consist of luteolin, eriodictyol, 5,7-dihydroxychromone, and 8 other components. They significantly improved the mechanical properties, barrier properties, thermal stability, and antioxidant properties of SAC composite films (P < 0.05). PSFs were also responsible for increasing the density of the film structure between the sodium alginate and carrageenan molecules. During storage, compared with the control group, the prepared PSFs-SAC composite films did not allow the total viable count (TVC), pH and total volatile base nitrogen (TVB-N) of the chilled pork to increase rapidly. Further, they were able to inhibit lipid oxidation more effectively (P < 0.05). For these reasons, the use of the PSFs-SAC composite films prolonged shelf life of chilled pork from 6 days to the 12 days. Therefore, PSFs-SAC composite films are expected to be used as bioactive substances in food preservation.


Alginates , Antioxidants , Arachis , Carrageenan , Flavonoids , Food Preservation , Antioxidants/chemistry , Antioxidants/pharmacology , Alginates/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Carrageenan/chemistry , Food Preservation/methods , Animals , Arachis/chemistry , Swine , Food Packaging/methods , Pork Meat/analysis , Cold Temperature
19.
Int J Biol Macromol ; 266(Pt 1): 131038, 2024 May.
Article En | MEDLINE | ID: mdl-38518931

Aqueous solutions of alginate (4 %) with or without hydrogen peroxide (0-2 % H2O2) were irradiated under a gamma Co-60 source. The effect of dose rate on the radiation scission yield (Gs) of resulting irradiated alginate was determined. At the dose of 20 kGy, the G(s) value of irradiated alginate decreased with the increase dose rate, suggesting that the irradiation at a suitable dose rate could further improve the radiation chemical yield of degradation. For the alginate irradiated at the same dose rate, G(s) value increased with the increase of H2O2 concentration. Average molecular weight (Mw) and polydispersity index (PI) of irradiated alginate rapidly decreased with the increase in dose and further decreased by addition of H2O2. The oligoalginate with Mw ~ 9800 g/mol was obtained by radiation degradation of 4 % alginate solution containing 2 % H2O2 at dose of 20 kGy. Radiation scission of glycoside bonds and formation of carbonyl groups (C=O) were indicated in UV and FTIR spectra of irradiated alginate. Peanut seedlings were fertilized with alginate and oligoalginate solutions, and the results showed that all growth parameters of the treated plants were better than those of the control. Furthermore, the oligoalginate prepared by gamma irradiation can be applied as a plant growth promoter for agriculture production.


Alginates , Arachis , Gamma Rays , Hydrogen Peroxide , Molecular Weight , Alginates/chemistry , Arachis/chemistry , Arachis/radiation effects , Hydrogen Peroxide/chemistry , Dose-Response Relationship, Radiation
20.
Chem Biodivers ; 21(4): e202301419, 2024 Apr.
Article En | MEDLINE | ID: mdl-38380875

Peanut is rich in oil and protein and has a large content of bioactive constituents consisting of tocopherols, phytosterols, and so on. Generally, Virginia, Spanish, Valencia and Runner market types are grown of peanut. In this study, it is aimed to determine the antioxidant activity, total phenolic content and total flavonoid content of peanuts from four different market types, for the first time, and group them with principal component analysis (PCA) and hierarchical cluster analysis (HCA). For PCA, PC1 and PC2 explained 87.655 % of the total variation and, according to the HCA of peanut samples, two main groups were determined. The total phenolic content changed 1.556 to 2.899 mg GAE/g. The lowest value have seen at Spanish merket type to determine the antioxidant activities of peanut samples were maked FRAP and DPPH assay, the lowest FRAP value (8.136 µmol FeSO47H2O/g sample) was seen at Valencia market type, the highest (14.004 µmol FeSO47H2O/g sample) was seen at Virginia market type. It was determined that the total flavonoid, total phenolic content, and antioxidant activities of the Virginia, Valencia, Spanish, and Runner market types included in the study were different from each other, and the Virginia market type showed superior characteristics compared to the others. The results obtained suggest that Virginia market type may be preferred more especially in peanut cultivation for food uses. It is thought that this study can be a source for future studies by eliminating a deficiency in the literature.


Antioxidants , Arachis , Antioxidants/pharmacology , Antioxidants/metabolism , Arachis/chemistry , Arachis/metabolism , Chemometrics , Phenols/metabolism , Flavonoids/metabolism
...