Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 975
Filter
1.
Nat Commun ; 15(1): 8016, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271648

ABSTRACT

The process by which Palaeolithic Europe was transformed from a Neanderthal-dominated region to one occupied exclusively by Homo sapiens has proven challenging to diagnose. A blurred chronology has made it difficult to determine when Neanderthals disappeared and whether modern humans overlapped with them. Italy is a crucial region because here we can identify not only Late Mousterian industries, assumed to be associated with Neanderthals, but also early Upper Palaeolithic industries linked with the appearance of early H. sapiens, such as the Uluzzian and the Aurignacian. Here, we present a chronometric dataset of 105 new determinations (74 radiocarbon and 31 luminescence ages) from four key southern Italian sites: Cavallo, Castelcivita, Cala, and Oscurusciuto. We built Bayesian-based chronometric models incorporating these results alongside the relative stratigraphic sequences at each site. The results suggest; 1) that the disappearance of Neanderthals probably pre-dated the appearance of early modern humans in the region and; 2) that there was a partial overlap in the chronology of the Uluzzian and Protoaurignacian, suggesting that these industries may have been produced by different human groups in Europe.


Subject(s)
Bayes Theorem , Fossils , Neanderthals , Italy , Animals , Humans , Radiometric Dating/methods , Archaeology/methods , History, Ancient
2.
Sci Rep ; 14(1): 19388, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39169089

ABSTRACT

In the last few decades, the field of ancient DNA has taken a new direction towards using sedimentary ancient DNA (sedaDNA) for studying human and mammalian population dynamics as well as past ecosystems. However, the screening of numerous sediment samples from archaeological sites remains a time-consuming and costly endeavor, particularly when targeting hominin DNA. Here, we present a novel high-throughput method that facilitates the fast and efficient analysis of sediment samples by applying a pooled testing approach. This method combines multiple extracts, enabling early parallelization of laboratory procedures and effective aDNA screening. Pooled samples with detectable aDNA signals undergo detailed analysis, while empty pools are discarded. We have successfully applied our method to multiple sediment samples from Middle and Upper Paleolithic sites in Europe, Asia, and Africa. Notably, our results reveal that an aDNA signal remains discernible even when pooled with four negative samples. We also demonstrate that the DNA yield of double-stranded libraries increases significantly when reducing the extract input, potentially mitigating the effects of inhibition. By embracing this innovative approach, researchers can analyze large numbers of sediment samples for aDNA preservation, achieving significant cost reductions of up to 70% and reducing hands-on laboratory time to one-fifth.


Subject(s)
DNA, Ancient , Geologic Sediments , DNA, Ancient/analysis , Humans , Animals , Archaeology/methods , Fossils , High-Throughput Nucleotide Sequencing/methods , Hominidae/genetics , Europe , Africa
3.
Genome Biol ; 25(1): 216, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135108

ABSTRACT

The advent of genome-wide ancient DNA analysis has revolutionized our understanding of prehistoric societies. However, studying biological relatedness in these groups requires tailored approaches due to the challenges of analyzing ancient DNA. READv2, an optimized Python3 implementation of the most widely used tool for this purpose, addresses these challenges while surpassing its predecessor in speed and accuracy. For sufficient amounts of data, it can classify up to third-degree relatedness and differentiate between the two types of first-degree relatedness, full siblings and parent-offspring. READv2 enables user-friendly, efficient, and nuanced analysis of biological relatedness, facilitating a deeper understanding of past social structures.


Subject(s)
Archaeology , DNA, Ancient , Software , Humans , DNA, Ancient/analysis , Archaeology/methods , Genomics/methods , Pedigree
4.
PLoS One ; 19(8): e0305136, 2024.
Article in English | MEDLINE | ID: mdl-39150911

ABSTRACT

The phenomenon of lithic miniaturization during the Late Pleistocene at times coincided with increased artifact standardization and cutting edge efficiency-likely reflecting the use of small, sharp artifacts as interchangeable inserts for composite cutting tools and hunting weapons. During Marine Isotope Stage 2, Upper Paleolithic toolmakers in northern East Asia specifically used pressure techniques to make small, highly standardized lithic artifacts called microblades. However, little is currently known about how microblades affected the cutting edge efficiency of the toolkits they were a part of. We applied three methods of analyzing cutting edge efficiency to two Upper Paleolithic assemblages recently excavated from Tolbor-17, Mongolia, that document the periods before and after the introduction of microblade technology to the Tolbor Valley. A model incorporating allometric relationships between blank cutting edge length and mass suggests no difference in efficiency between the two periods, while two more conventional approaches both indicate a significant increase. The potential for improved cutting edge efficiency is only observed when the microblade sample is artificially inflated via simulation. Our results highlight challenges related to detecting and interpreting archaeological differences in cutting edge efficiency at the assemblage level.


Subject(s)
Archaeology , Technology , Mongolia , Archaeology/methods , Fossils , Humans , History, Ancient
5.
Sci Rep ; 14(1): 18195, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107380

ABSTRACT

Identification of the sex of modern, fossil and archaeological animal remains offers many insights into their demography, mortality profiles and domestication pathways. However, due to many-factors, sex determination of osteological remains is often problematic. To overcome this, we have developed an innovative protocol to determine an animal's sex from tooth enamel, by applying label-free quantification (LFQ) of two unique AmelY peptides 'LRYPYP' (AmelY;[M+2] 2 + 404.7212 m/z) and 'LRYPYPSY' (AmelY;[M+2] 2 + 529.7689 m/z) that are only present in the enamel of males. We applied this method to eight modern cattle (Bos taurus) of known sex, and correctly assigned them to sex. We then applied the same protocol to twelve archaeological Bos teeth from the Neolithic site of Beisamoun, Israel (8-th-7-th millennium BC) and determined the sex of the archaeological samples. Since teeth are usually better preserved than bones, this innovative protocol has potential to facilitate sex determination in ancient and modern bovine remains that currently cannot be sexed.


Subject(s)
Archaeology , Dental Enamel , Sex Determination Analysis , Cattle , Animals , Dental Enamel/chemistry , Male , Female , Sex Determination Analysis/methods , Archaeology/methods , Fossils , Tooth/anatomy & histology , Tooth/chemistry , Israel
6.
J Proteome Res ; 23(9): 4095-4101, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39146459

ABSTRACT

This research examines animal teeth from Early Dynastic (2900-2350 BCE) Mesopotamia (Southern Iraq) to assess animal management practices and identify consumption patterns in animal diets. The objective to answer larger questions about food management and environmental resilience in ancient early complex societies in the Near East was achieved by the use of mass spectrometry-based proteomics for dietary reconstruction. Dietary MS, a revolutionary new methodology applying proteomics techniques to archeological sample sets to reconstruct ancient animal diet. A developed protein extraction technique followed by liquid chromatography tandem mass spectrometry allowed for the identification of the specific plant species consumed in order to highlight variable herd management strategies, resource optimization, for each taxon over time. It also provided information about overall health and indications of disease. This is the first study to apply a full suite of analyses to the region and provides the foundations of a necessary long-term view of human interaction within an environment, through both time and space.


Subject(s)
Diet , Proteomics , Tandem Mass Spectrometry , Tooth , Animals , Proteomics/methods , Tooth/chemistry , Tandem Mass Spectrometry/methods , Iraq , Chromatography, Liquid , History, Ancient , Humans , Archaeology/methods , Fossils
7.
PLoS One ; 19(8): e0309611, 2024.
Article in English | MEDLINE | ID: mdl-39208079

ABSTRACT

Visual representation of material culture plays a crucial role in prehistoric archaeology, from academic research to public outreach and communication. Scientific illustration is a valuable tool for visualising lithic artefacts and refittings, where technical attributes must be drawn to enhance our understanding of their significance. However, the representation of lithic refittings, which involve dynamic and sequential transformations of a volume, requires an alternative approach to traditional two-dimensional models such as photography or illustration. Advances in imaging technologies have improved our ability to capture and communicate the multifaceted nature of archaeological artefacts. In this context, we present the ReViBE protocol (Refitting Visualisation using Blender Engine), which integrates photogrammetry, 3D modelling and the animation software Blender© for the virtual representation of lithic refittings. This protocol allows the sequential study of core reduction phases and their associated flakes, as well as other aspects related to knapping decision making (core rotations, surface modifications, and direction and position of impact points). Thus, this method allows the visualisation of techno-cognitive aspects involved in core reduction through a step-by-step animation process. In addition, the 3D models and virtual reconstructions generated by ReViBE can be accessed through open repositories, in line with the principles of open science and FAIR (Findable, Accessible, Interoperable, and Reusable) data. This accessibility ensures that data on lithic technology and human behaviour are widely available, promoting transparency and knowledge sharing, and enabling remote lithic analysis. This in turn breaks down geographical barriers and encourages scientific collaboration.


Subject(s)
Archaeology , Imaging, Three-Dimensional , Software , Archaeology/methods , Imaging, Three-Dimensional/methods , Humans , Photogrammetry/methods
8.
J Chromatogr A ; 1731: 465154, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39053251

ABSTRACT

The identification of archaeological biomarkers is one of the main objectives of analytical chemistry in the archaeological field. However, no information is currently available on biomarkers able to unambiguously indicate the presence of olive oil, a cornerstone of Mediterranean ancient societies lifestyle, in an organic residue. This study aims to bridge this gap by a thorough characterization of the degradation products of extra-virgin olive oils (EVOOs) resulting from in-lab thermal oxidative treatments, with the primary goal of revealing potential archaeological biomarkers for olive oil. Thirty-three EVOOs sourced from eleven different monocultivars across five Italian regions (Sicily, Apulia, Lazio, Tuscany, and Liguria) and Spain, were analyzed before and after thermal oxidation. In addition, an identical thermal treatment was employed on pure triglyceride standards (triolein, trilinolein, and tristearin), due to the high concentration of their fatty acids in EVOO discerning their degradation patterns. A combination of analytical strategies was employed, including HPLC-MS and HPLC-ELSD for the complete evaluation of the intact lipids (triglycerides, diglycerides, and their oxidative species) in olive oils before and after oxidation, and HS-SPME-GC-MS and GC-FID for the characterization of secondary oxidation products formed by the thermal treatment. In addition, to elucidate the fatty acid distribution in the oxidized EVOOs by GC-MS and GC-FID techniques a derivatization step was performed to convert lipid compounds into trimethylsilyl (TMS) derivatives. A chemometric approach was used to thoroughly interpret the data obtained from intact and oxidized samples. This comprehensive investigation sheds light on the chemical transformations of EVOOs under thermal oxidative conditions and indicates mono-carboxylic acids such as pentanoic, hexanoic, heptanoic, octanoic, nonanoic, and decanoic acids as potential archaeological biomarkers for the presence of lipid substances coming from olive oil in archaeological organic residues. Finally, lipid contents from twenty-four real archaeological samples, grouped in amphorae (10), unguentaria (5), and lamps (9), excavated from the Roman domus of Villa San Pancrazio in Taormina (Italy), were determined. The analytical results obtained from amphorae samples revealed the presence of the selected olive oil-specific archaeological biomarkers, an information extremely interesting considering that this type of amphorae have so far been solely associated with the storage of wine.


Subject(s)
Archaeology , Olive Oil , Oxidation-Reduction , Olive Oil/chemistry , Italy , Archaeology/methods , Chromatography, High Pressure Liquid/methods , Gas Chromatography-Mass Spectrometry/methods , Lipids/chemistry , Lipids/analysis , Fatty Acids/analysis , Fatty Acids/chemistry , Mass Spectrometry/methods
9.
J Proteome Res ; 23(8): 3404-3417, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39042361

ABSTRACT

Collagen from paleontological bones is an important organic material for isotopic measurement, radiocarbon analysis, and paleoproteomic analysis to provide information on diet, dating, taxonomy, and phylogeny. Current paleoproteomic methods are destructive and require from a few milligrams to several tens of milligrams of bone for analysis. In many cultures, bones are raw materials for artifacts that are conserved in museums, which hampers damage to these precious objects during sampling. Here, we describe a low-invasive sampling method that identifies collagen, taxonomy, and post-translational modifications from Holocene and Upper Pleistocene bones dated to 130,000 and 150 BC using dermatological skin tape discs for sampling. The sampled bone micropowders were digested following our highly optimized enhanced filter-aided sample preparation protocol and then analyzed by MALDI FTICR MS and LC-MS/MS for identifying the genus taxa of the bones. We show that this low-invasive sampling does not deteriorate the bones and achieves results similar to those obtained by more destructive sampling. Moreover, this sampling method can be carried out at archeological sites or in museums.


Subject(s)
Bone and Bones , Collagen , Fossils , Paleontology , Proteomics , Bone and Bones/chemistry , Proteomics/methods , Paleontology/methods , Animals , Collagen/chemistry , Collagen/analysis , Archaeology/methods , Specimen Handling/methods , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Protein Processing, Post-Translational , Humans
10.
PLoS One ; 19(7): e0306448, 2024.
Article in English | MEDLINE | ID: mdl-38985699

ABSTRACT

Few studies have combined the analysis of use-wear traces, traceology, and the proteomic taxonomic identification method Zooarchaeology by Mass Spectrometry (ZooMS). Traceology provides information on the usage, in this case, of bone artefacts, while ZooMS allows for taxonomic identifications where diagnostic features are otherwise gone. The approaches therefore offer complementary information on bone artefacts, allowing for insights into species selection strategies in bone tool manufacture and their subsequent use. Here we present a case study of 20 bone artefacts, mainly bone points, from the Early Neolithic cave site of Coro Trasito located on the southern slope of the Central Pyrenees. Hitherto, studies on Early Neolithic bone artefacts from the Iberian Peninsula have suggested based on morphological assessments that Ovis aries/Capra hircus constituted the majority of the bone material selected for bone tool production. However, the taxonomic identification in this study suggests that, at this site, Cervidae was selected equally to that of O. aries/C. hircus. Furthermore, bone artefacts made from Cervidae specimens seem to be utilised in a wider range of artefact types compared to O. aries/C. hircus. Coro Trasito's bone artefact species composition is probably site-specific to some degree, however, morphological assessments of bone artefacts might not be representative and could be biased towards certain species. Therefore, research on bone artefacts' usage could possibly gain new insights by implementing ZooMS in combination with traceology.


Subject(s)
Archaeology , Bone and Bones , Caves , Animals , Bone and Bones/anatomy & histology , Bone and Bones/chemistry , Archaeology/methods , Spain , Goats , Fossils , Deer , Artifacts , Mass Spectrometry , History, Ancient
11.
PLoS One ; 19(6): e0302645, 2024.
Article in English | MEDLINE | ID: mdl-38924012

ABSTRACT

The Kyrenia Ship, found off the north coast of Cyprus, is a key vessel in the history of scientific underwater excavations and in the history of Greek shipbuilding. The first volume of the site's final publication appeared in 2023 and provides detailed archaeological information tightly constraining the dating of the ship. A very specific date range is proposed: ca. 294-290 BCE, but is based on a less than certain reading of one coin recovered from the ship. While there is clear benefit to finding high-precision dates for the Kyrenia Ship and its rich assemblage using independent scientific dating (combined with Bayesian chronological modeling), efforts to do so proved more challenging and complex than initially anticipated. Strikingly, extensive radiocarbon dating on both wooden materials from the ship and on short-lived contents from the final use of the ship fail to offer dates using the IntCal20 calibration curve-the current Northern Hemisphere radiocarbon calibration curve at the time of writing-that correspond with the archaeological constraints. The issue rests with a segment of IntCal20 ca. 350-250 BCE reliant on legacy pre-AMS radiocarbon data. We therefore measured new known-age tree-ring samples 350-250 BCE, and, integrating another series of new known-age tree-ring data, we obtained a redefined and more accurate calibration record for the period 433-250 BCE. These new data permit a satisfactory dating solution for the ship and may even indicate a date that is a (very) few years more recent than current estimations. These new data in addition confirm and only very slightly modify the dating recently published for the Mazotos ship, another Greek merchant ship from the southern coast of Cyprus. Our work further investigated whether ship wood samples impregnated with a common preservative, polyethylene glycol (PEG), can be cleaned successfully, including a known-age test.


Subject(s)
Archaeology , Radiometric Dating , Ships , Radiometric Dating/methods , Calibration , Archaeology/methods , Cyprus , Carbon Radioisotopes/analysis , Bayes Theorem
12.
Nature ; 630(8017): 666-670, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839951

ABSTRACT

Resolving the timescale of human activity in the Palaeolithic Age is one of the most challenging problems in prehistoric archaeology. The duration and frequency of hunter-gatherer camps reflect key aspects of social life and human-environment interactions. However, the time dimension of Palaeolithic contexts is generally inaccurately reconstructed because of the limitations of dating techniques1, the impact of disturbing agents on sedimentary deposits2 and the palimpsest effect3,4. Here we report high-resolution time differences between six Middle Palaeolithic hearths from El Salt Unit X (Spain) obtained through archaeomagnetic and archaeostratigraphic analyses. The set of hearths covers at least around 200-240 years with 99% probability, having decade- and century-long intervals between the different hearths. Our results provide a quantitative estimate of the time framework for the human occupation events included in the studied sequence. This is a step forward in Palaeolithic archaeology, a discipline in which human behaviour is usually approached from a temporal scale typical of geological processes, whereas significant change may happen at the smaller scales of human generations. Here we reach a timescale close to a human lifespan.


Subject(s)
Archaeology , Geologic Sediments , Human Activities , Archaeology/methods , Geologic Sediments/analysis , Geologic Sediments/chemistry , History, Ancient , Hunting/history , Spain , Time Factors , Human Activities/history , Fires/history , Cooking/history
14.
Sci Rep ; 14(1): 13431, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862633

ABSTRACT

Until recently, the identification of the species of origin for skin and fur materials used in the production of archaeological clothing has been based on the analysis of macro- and microscopic morphological features and on the traditional knowledge of Indigenous groups. This approach, however, is not always applicable due to the deterioration of the archaeological objects. Paleoproteomics was used as an alternative approach to identify the species of origin of fifteen samples of various tissues from approximately 600-year-old garments found in Nuulliit, northern Greenland. Proteomics revealed that a limited group of marine and terrestrial mammals were used for clothing production. The results obtained from the analysis of multiple types of clothing and elements, such as sinew thread and gut skin, suggest that their applications were based on their properties. When conclusive assignment of a sample to a species via proteomics was not possible, the observation by transmitted light microscopy of feather and hair micromorphology, if not affected by diagenesis, was used to improve the identification. The proteomic characterization of animal materials used for clothing production in the Nuulliit archaeological context provides an insight into the practical knowledge and the strategies adopted by the local Indigenous community to exploit natural resources.


Subject(s)
Archaeology , Clothing , Proteomics , Skin , Greenland , Archaeology/methods , Proteomics/methods , Animals , Skin/chemistry , Clothing/history , Humans
15.
Sci Rep ; 14(1): 11625, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839758

ABSTRACT

Cauldrons, vessels that are simultaneously common and enigmatic, offer insights into past cultural and social traditions. While assumed to possess a special function, what these cauldrons contained is still largely mysterious. These vessels, such as those made from bronze or copper alloys, function as reservoirs for ancient organics through the antibacterial qualities provided by the metal surfaces. Here we show, through protein analysis, that cauldrons from the Final Bronze Age (ca. 2700 BP) were primarily used to collect blood from ruminants, primarily caprines, likely for the production of sausages in a manner similar to contemporary practices in Mongolia's rural countryside. Our findings present a different function from the recent findings of cooked meat in copper-alloy vessels from the northern Caucasus 2000 years earlier, exposing the diversity in food preparation techniques. Our secondary findings of bovine milk within the cauldron, including peptides specific to Bos mutus, pushes back their regional domestication into the Bronze Age.


Subject(s)
Milk , Animals , Cattle , History, Ancient , Archaeology/methods , Cooking/history , Humans , Mongolia
16.
Rapid Commun Mass Spectrom ; 38(15): e9771, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38778666

ABSTRACT

RATIONALE: Alkylresorcinols (AR) are cereal-specific biomarkers and have recently been found in archaeological pots. However, their low concentrations and high susceptibility to degradation make them difficult to detect using conventional gas chromatography mass spectrometry (GC/MS). Here we describe the development of a more sensitive liquid chromatography mass spectrometry (LC/MS) method to detect these compounds. METHOD: A method based on the use of ultra-high-performance liquid chromatography (UHPLC) coupled to an Orbitrap mass analyser was established and validated for the detection of low-concentration ARs in pottery. During the preliminary experiments, UHPLC-Q/Orbitrap MS (ultra-high-performance liquid chromatography-quadrupole/Orbitrap mass spectrometry) was demonstrated to be more sensitive, and a wide range of AR homologues in cereal extracts were detected, unlike UHPLC-QTOFMS (ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry) and GC/MS. The developed method was utilised to profile AR homologue distribution in modern cereal samples and reanalyse AR-containing pots from the archaeological site of Must Farm. RESULTS: A highly sensitive LC/MS method with a limit of detection (LOD) of 0.02 µg/g and a limit of quantification (LOQ) of 0.06 µg/g was used to profile ARs in five modern cereal grains. The obtained LOD is 250 times lower than that obtained using the conventional GC/MS approach. AR 21:0 was the most abundant homologue in all four Triticum spp.-einkorn, emmer, Khorasan wheat and common wheat. Meanwhile, AR 25:0 was the predominant homologue in barley, potentially enabling differentiation between wheat and barley. The developed LC/MS-based method was successfully used to analyse ARs extracted from Must Farm potsherds and identified the cereal species most likely processed in the pots-emmer wheat. CONCLUSION: The described method offers an alternative and more sensitive approach for detecting and identifying ARs in ancient pottery. It has been successfully utilised to detect AR homologues in archaeological samples and discriminate which cereal species-wheat and barley-were processed in the pots.


Subject(s)
Archaeology , Edible Grain , Mass Spectrometry , Resorcinols , Chromatography, High Pressure Liquid/methods , Archaeology/methods , Resorcinols/analysis , Resorcinols/chemistry , Edible Grain/chemistry , Mass Spectrometry/methods , Reproducibility of Results , Limit of Detection
17.
Proc Natl Acad Sci U S A ; 121(21): e2318293121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38753504

ABSTRACT

The antiquity of human dispersal into Mediterranean islands and ensuing coastal adaptation have remained largely unexplored due to the prevailing assumption that the sea was a barrier to movement and that islands were hostile environments to early hunter-gatherers [J. F. Cherry, T. P. Leppard, J. Isl. Coast. Archaeol. 13, 191-205 (2018), 10.1080/15564894.2016.1276489]. Using the latest archaeological data, hindcasted climate projections, and age-structured demographic models, we demonstrate evidence for early arrival (14,257 to 13,182 calendar years ago) to Cyprus and predicted that large groups of people (~1,000 to 1,375) arrived in 2 to 3 main events occurring within <100 y to ensure low extinction risk. These results indicate that the postglacial settlement of Cyprus involved only a few large-scale, organized events requiring advanced watercraft technology. Our spatially debiased and Signor-Lipps-corrected estimates indicate rapid settlement of the island within <200 y, and expansion to a median of 4,000 to 5,000 people (0.36 to 0.46 km-2) in <11 human generations (<300 y). Our results do not support the hypothesis of inaccessible and inhospitable islands in the Mediterranean for pre-agropastoralists, agreeing with analogous conclusions for other parts of the world [M. I. Bird et al., Sci. Rep. 9, 8220 (2019), 10.1038/s41598-019-42946-9]. Our results also highlight the need to revisit these questions in the Mediterranean and test their validity with new technologies, field methods, and data. By applying stochastic models to the Mediterranean region, we can place Cyprus and large islands in general as attractive and favorable destinations for paleolithic peoples.


Subject(s)
Archaeology , Humans , Cyprus , Archaeology/methods , History, Ancient , Human Migration/history , Demography/methods
18.
PLoS One ; 19(5): e0293517, 2024.
Article in English | MEDLINE | ID: mdl-38743798

ABSTRACT

As a UNESCO World Cultural Heritage, the aesthetic value of bronze artifacts from the Shang and Chow Dynasties has had a profound influence on Chinese traditional culture and art. To facilitate the digital preservation and protection of these Shang and Chow bronze artifacts (SCB), it becomes imperative to categorize their decorative patterns. Therefore, a SCB pattern classification method of differential evolution called Shang and Chow Bronze Convolutional Neural Network (SCB-CNN) is proposed. Firstly, the original bronze decorative patterns of Shang and Chow dynasties are collected, and the samples are expanded through image augmentation technology to form a training dataset. Secondly, based on the classical convolutional neural network structure, the recognition and classification of bronze patterns are implemented by adjusting the network parameters. Then, the initial parameters of the convolutional neural network are optimized by differential evolution algorithm, and the optimized SCB-CNN is simulated. Finally, comparative experiments were conducted between the optimized SCB-CNN, the unoptimized model, VGG-Net, and GoogleNet. The experimental results indicate that the optimized SCB-CNN significantly reduces training time while maintaining fast prediction speed, convergence speed, and high accuracy. This study provides new insights for the inheritance and innovation research of SCB patterns.


Subject(s)
Algorithms , Neural Networks, Computer , Humans , China , Archaeology/methods , History, Ancient
19.
Proteomics ; 24(16): e2400048, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38807532

ABSTRACT

The palace of King Ghezo in Abomey, capital of the ancient kingdom of Dahomey (present-day Benin), houses two sacred huts which are specific funerary structures. It is claimed that the binder in their walls is made of human blood. In the study presented here, we conceived an original strategy to analyze the proteins present on minute amounts of the cladding sampled from the inner facade of the cenotaph wall and establish their origin. The extracted proteins were proteolyzed and the resulting peptides were characterized by high-resolution tandem mass spectrometry. Over 6397 distinct molecular entities were identified using cascading searches. Starting from without a priori searches of an extended generic database, the peptide repertoire was narrowed down to the most representative organisms-identified by means of taxon-specific peptides. A wide diversity of bacteria, fungi, plants, and animals were detected through the available protein material. This inventory was used to archaeologically reconstruct the voodoo rituals of consecration and maintenance of vitality. Several indicators attested to the presence of traces of human and poultry blood in the material taken. This study shows the essential advantages of paleoproteomics and metaproteomics for the study of ancient residues from archaeological excavations or historical monuments.


Subject(s)
Proteomics , Humans , Proteomics/methods , Proteomics/history , Benin , Animals , Archaeology/methods , History, 19th Century , Tandem Mass Spectrometry/methods , Proteome/analysis
20.
PLoS One ; 19(4): e0299292, 2024.
Article in English | MEDLINE | ID: mdl-38630666

ABSTRACT

Recent advances in interdisciplinary archaeological research in Arabia have focused on the evolution and historical development of regional human populations as well as the diverse patterns of cultural change, migration, and adaptations to environmental fluctuations. Obtaining a comprehensive understanding of cultural developments such as the emergence and lifeways of Neolithic groups has been hindered by the limited preservation of stratified archaeological assemblages and organic remains, a common challenge in arid environments. Underground settings like caves and lava tubes, which are prevalent in Arabia but which have seen limited scientific exploration, offer promising opportunities for addressing these issues. Here, we report on an archaeological excavation and a related survey at and around Umm Jirsan lava tube in the Harrat Khaybar, north-western Saudi Arabia. Our results reveal repeated phases of human occupation of the site ranging from at least the Neolithic through to the Chalcolithic/Bronze Age. Pastoralist use of the lava tube and surrounding landscape is attested in rock art and faunal records, suggesting that Umm Jirsan was situated along a pastoral route linking key oases. Isotopic data indicates that herbivores primarily grazed on wild grasses and shrubs rather than being provided with fodder, while humans had a diet consistently high in protein but with increasing consumption of C3 plants through-time, perhaps related to the emergence of oasis agriculture. While underground and naturally sheltered localities are globally prominent in archaeology and Quaternary science, our work represents the first such combined records for Saudi Arabia and highlight the potential for interdisciplinary studies in caves and lava tubes.


Subject(s)
Caves , Hominidae , Humans , Animals , Arabia , Saudi Arabia , Archaeology/methods , Occupations
SELECTION OF CITATIONS
SEARCH DETAIL