Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.380
1.
Environ Res ; 252(Pt 3): 119015, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38692423

Carbon material modification and defect engineering are indispensable for bolstering the photocatalytic effectiveness of bismuth halide oxide (BiOX). In this study, a novel porous and defect-rich Ar-CB-2 photocatalyst was synthesized for emerging pollutants degradation. Leveraging the interfacial coupling effect of multi-walled carbon nanotubes (MWCNTs), we expanded the absorption spectrum of BiOI nanosheets and significantly suppressed the recombination of charge carriers. Introducing defects via Argon (Ar) plasma-etching further bolstered the adsorption efficacy and electron transfer properties of photocatalyst. In comparison to the pristine BiOI and CB-2, the Ar-CB-2 photocatalyst demonstrated superior photodegradation efficiency, with the first-order reaction rates for the photodegradation of tetracycline (TC) and bisphenol A (BPA) increasing by 2.83 and 4.53 times, respectively. Further probe experiments revealed that the steady-state concentrations of ·O2- and 1O2 in the Ar-CB-2/light system were enhanced by a factor of 1.67 and 1.28 compared to CB-2/light system. This result confirmed that the porous and defect-rich structure of Ar-CB-2 inhibited electron-hole recombination and boosted photocatalyst-oxygen interaction, swiftly transforming O2 into active oxygen species, thus accelerating their production. Furthermore, the possible degradation pathways for TC and BPA in the Ar-CB-2/light system were predicted. Overall, these findings offered a groundbreaking approach to the development of highly effective photocatalysts, capable of swiftly breaking down emerging pollutants.


Argon , Benzhydryl Compounds , Bismuth , Nanotubes, Carbon , Phenols , Photolysis , Bismuth/chemistry , Nanotubes, Carbon/chemistry , Catalysis , Porosity , Phenols/chemistry , Benzhydryl Compounds/chemistry , Argon/chemistry , Tetracycline/chemistry , Water Pollutants, Chemical/chemistry , Environmental Pollutants/chemistry , Photochemical Processes , Plasma Gases/chemistry
2.
Chemosphere ; 358: 142211, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697573

This paper investigates the effects of argon (Ar) and that of Ar mixed with ambient air (Ar-Air) cold plasma jets (CPJs) on 4-nitrophenol (4-NP) degradation using low input power. The introduction of ambient air into the Ar-Air plasma jet enhances ionization-driven processes during high-voltage discharge by utilizing nitrogen and oxygen molecules from ambient air, resulting in increased reactive oxygen and nitrogen species (RONS) production, which synergistically interacts with argon. This substantial generation of RONS establishes Ar-Air plasma jet as an effective method for treating 4-NP contamination in deionized water (DW). Notably, the Ar-Air plasma jet treatment outperforms that of the Ar jet. It achieves a higher degradation rate of 97.2% and a maximum energy efficiency of 57.3 gkW-1h-1, following a 6-min (min) treatment with 100 mgL-1 4-NP in DW. In contrast, Ar jet treatment yielded a lower degradation rate and an energy efficiency of 75.6% and 47.8 gkW-1h-1, respectively, under identical conditions. Furthermore, the first-order rate coefficient for 4-NP degradation was measured at 0.23 min-1 for the Ar plasma jet and significantly higher at 0.56 min-1 for the Ar-Air plasma jet. Reactive oxygen species, such as hydroxyl radical and ozone, along with energy from excited species and plasma-generated electron transfers, are responsible for CPJ-assisted 4-NP breakdown. In summary, this study examines RONS production from Ar and Ar-Air plasma jets, evaluates their 4-NP removal efficacy, and investigates the biocompatibility of 4-NP that has been degraded after plasma treatment.


Argon , Nitrophenols , Plasma Gases , Nitrophenols/chemistry , Argon/chemistry , Plasma Gases/chemistry , Air , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/toxicity
3.
EBioMedicine ; 103: 105143, 2024 May.
Article En | MEDLINE | ID: mdl-38691938

BACKGROUND: Argon (Ar) has been proposed as a potential therapeutic agent in multiple clinical conditions, specifically in organ protection. However, conflicting data on pre-clinical models, together with a great variability in Ar administration protocols and outcome assessments, have been reported. The aim of this study was to review evidence on treatment with Ar, with an extensive investigation on its neuroprotective effect, and to summarise all tested administration protocols. METHODS: Using the PubMed database, all existing pre-clinical and clinical studies on the treatment with Ar were systematically reviewed (registration: https://doi.org/10.17605/OSF.IO/7983D). Study titles and abstracts were screened, extracting data from relevant studies post full-text review. Exclusion criteria included absence of full text and non-English language. Furthermore, meta-analysis was also performed to assess Ar potential as neuroprotectant agent in different clinical conditions: cardiac arrest, traumatic brain injury, ischemic stroke, perinatal hypoxic-ischemic encephalopathy, subarachnoid haemorrhage. Standardised mean differences for neurological, cognitive and locomotor, histological, and physiological measures were evaluated, through appropriate tests, clinical, and laboratory variables. In vivo studies were evaluated for risk of bias using the Systematic Review Center for Laboratory Animal Experimentation tool, while in vitro studies underwent assessment with a tool developed by the Office of Health Assessment and Translation. FINDINGS: The systematic review detected 60 experimental studies (16 in vitro, 7 ex vivo, 31 in vivo, 6 with both in vitro and in vivo) investigating the role of Ar. Only one clinical study was found. Data from six in vitro and nineteen in vivo studies were included in the meta-analyses. In pre-clinical models, Ar administration resulted in improved neurological, cognitive and locomotor, and histological outcomes without any change in physiological parameters (i.e., absence of adverse events). INTERPRETATION: This systematic review and meta-analysis based on experimental studies supports the neuroprotective effect of Ar, thus providing a rationale for potential translation of Ar treatment in humans. Despite adherence to established guidelines and methodologies, limitations in data availability prevented further analyses to investigate potential sources of heterogeneity due to study design. FUNDING: This study was funded in part by Italian Ministry of Health-Current researchIRCCS and by Ministero della Salute Italiano, Ricerca Finalizzata, project no. RF 2019-12371416.


Argon , Neuroprotective Agents , Argon/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Humans , Animals , Administration, Inhalation , Disease Models, Animal , Drug Evaluation, Preclinical
5.
Brain Res Bull ; 212: 110964, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38670471

Ischemic stroke (IS), primarily caused by cerebrovascular obstruction, results in severe neurological deficits and has emerged as a leading cause of death and disability worldwide. Recently, there has been increasing exploration of the neuroprotective properties of the inert gas argon. Argon has exhibited impressive neuroprotection in many in vivo and ex vivo experiments without signs of adverse effects, coupled with the advantages of being inexpensive and easily available. However, the efficient administration strategy and underlying mechanisms of neuroprotection by argon in IS are still unclear. This review summarizes current research on the neuroprotective effects of argon in IS with the goal to provide effective guidance for argon application and to elucidate the potential mechanisms of argon neuroprotection. Early and appropriate argon administration at as high a concentration as possible offers favorable neuroprotection in IS. Argon inhalation has been shown to provide some long-term protection benefits. Argon provides the anti-oxidative stress, anti-inflammatory and anti-apoptotic cytoprotective effects mainly around Toll-like receptor 2/4 (TLR2/4), mediated by extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), nuclear factor kappa-B (NF-ĸB) and B-cell leukemia/lymphoma 2 (Bcl-2). Therefore, argon holds significant promise as a novel clinical neuroprotective gas agent for ischemic stroke after further researches to identify the optimal application strategy and elucidate the underlying mechanism.


Argon , Ischemic Stroke , Neuroprotective Agents , Argon/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Animals , Humans , Ischemic Stroke/drug therapy , Oxidative Stress/drug effects , Neuroprotection/drug effects , Neuroprotection/physiology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism
6.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38474129

Li3V2(PO4)3 cathodes for Li-ion batteries (LIBs) were synthesized using a hydrothermal method with the subsequent annealing in an argon atmosphere to achieve optimal properties. The X-ray diffraction analysis confirmed the material's single-phase nature, while the scanning electron microscopy revealed a granular structure, indicating a uniform particle size distribution, beneficial for electrochemical performance. Magnetometry and electron spin resonance studies were conducted to investigate the magnetic properties, confirming the presence of the relatively low concentration and highly uniform distribution of tetravalent vanadium ions (V4+), which indicated low lithium deficiency values in the original structure and a high degree of magnetic homogeneity in the sample, an essential factor for consistent electrochemical behavior. For this pure phase Li3V2(PO4)3 sample, devoid of any impurities such as carbon or salts, extensive electrochemical property testing was performed. These tests resulted in the experimental discovery of a remarkably high lithium diffusion coefficient D = 1.07 × 10-10 cm2/s, indicating excellent ionic conductivity, and demonstrated impressive stability of the material with sustained performance over 1000 charge-discharge cycles. Additionally, relithiated Li3V2(PO4)3 (after multiple electrochemical cycling) samples were investigated using scanning electron microscopy, magnetometry and electron spin resonance methods to determine the extent of degradation. The combination of high lithium diffusion coefficients, a low degradation rate and remarkable cycling stability positions this Li3V2(PO4)3 material as a promising candidate for advanced energy storage applications.


Lithium , Argon , Electric Conductivity , Electrodes , Ions
7.
Food Chem ; 445: 138699, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38359566

This study investigated the effectiveness of cold-plasma treatment using air and argon as input gas on deactivation of lipolytic enzymes in lightly-milled-rice (LMR). The results showed no significant inactivation in lipase and lipoxygenase using air-plasma. However, using argon as input gas, the residual activities of lipase and lipoxygenase were reduced to 64.51 % and 29.15 % of initial levels, respectively. Argon plasma treatment resulted in more substantial augmentation in peak and breakdown viscosities of LMR starch, suggesting an enhancement in palatability of cooked LMR with increased stickiness and decreased hardness. In contrast to the decrease in volatile compounds in LMR following argon plasma treatment, the concentrations of several prevalent aroma compounds, including 1-hexanol, 1-hexanal, and 2-pentylfuran, exhibited significant increments, reaching 1489.70 ng/g, 3312.10 ng/g, and 58.80 ng/g, respectively. These findings suggest the potential for enhancing various facets of the commercial qualities of LMR by utilizing different input gases during plasma treatment.


Oryza , Plasma Gases , Oryza/chemistry , Argon , Lipase/metabolism , Lipoxygenases/metabolism
8.
Sci Rep ; 14(1): 3578, 2024 02 13.
Article En | MEDLINE | ID: mdl-38347045

Recent research has highlighted the promising potential of cold atmospheric plasma (CAP) in cancer therapy. However, variations in study outcomes are attributed to differences in CAP devices and plasma parameters, which lead to diverse compositions of plasma products, including electrons, charged particles, reactive species, UV light, and heat. This study aimed to evaluate and compare the optimal exposure time, duration, and direction-dependent cellular effects of two CAPs, based on argon and helium gases, on glioblastoma U-87 MG cancer cells and an animal model of GBM. Two plasma jets were used as low-temperature plasma sources in which helium or argon gas was ionized by high voltage (4.5 kV) and frequency (20 kHz). In vitro assessments on human GBM and normal astrocyte cell lines, using MTT assays, flow cytometry analysis, wound healing assays, and immunocytochemistry for Caspase3 and P53 proteins, demonstrated that all studied plasma jets, especially indirect argon CAP, selectively induced apoptosis, hindered tumor cell growth, and inhibited migration. These effects occurred concurrently with increased intracellular levels of reactive oxygen species and decreased total antioxidant capacity in the cells. In vivo results further supported these findings, indicating that single indirect argon and direct helium CAP therapy, equal to high dose Temozolomide treatment, induced tumor cell death in a rat model of GBM. This was concurrent with a reduction in tumor size observed through PET-CT scan imaging and a significant increase in the survival rate. Additionally, there was a decrease in GFAP protein levels, a significant GBM tumor marker, and an increase in P53 protein expression based on immunohistochemical analyses. Furthermore, Ledge beam test analysis revealed general motor function improvement after indirect argon CAP therapy, similar to Temozolomide treatment. Taken together, these results suggest that CAP therapy, using indirect argon and direct helium jets, holds great promise for clinical applications in GBM treatment.


Glioblastoma , Plasma Gases , Humans , Rats , Animals , Helium/pharmacology , Helium/therapeutic use , Argon/pharmacology , Tumor Suppressor Protein p53 , Plasma Gases/pharmacology , Plasma Gases/therapeutic use , Temozolomide , Positron Emission Tomography Computed Tomography
10.
Health Phys ; 126(4): 182-187, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38252031

ABSTRACT: In the absolute measurement method of nuclide radioactivity by the internal gas proportional counter, the reasonable correction of the small pulse counting loss is the key to obtaining the measurement results accurately. Considering the decay type and energy of radioactive gas nuclides, the influence of the low-energy beta particles and the wall effect counting loss on the activity measurement results is different also. To this end, two typical radioactive gas nuclides ( 37 Ar and 3 H) are used to study the cause of counting loss based on the Monte Carlo simulation. The results show that the counting loss of small pulse in the activity measurement of 37 Ar comes mainly from the wall effect generated by x rays. Within the given gas pressure of 60-300 kPa, the simulated wall effect correction factors are 1.063-1.021. The decay energy of ß particles generated by 3 H is very low, and there is no obvious wall effect. The small pulse counting loss mainly comes from the low-energy beta particles' contribution with the energy below the counting threshold, which can be corrected by extrapolating the beta energy spectrum at a lower counting threshold (below 1 keV).


Argon , Radioisotopes , Monte Carlo Method , Computer Simulation , X-Rays
11.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 80-92, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38265873

This article describes the High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX) at the ESRF, and highlights new and complementary research opportunities that can be explored using this facility. The laboratory is dedicated to investigating interactions between macromolecules and gases in crystallo, and finds applications in many fields of research, including fundamental biology, biochemistry, and environmental and medical science. At present, the HPMX laboratory offers the use of different high-pressure cells adapted for helium, argon, krypton, xenon, nitrogen, oxygen, carbon dioxide and methane. Important scientific applications of high pressure to macromolecules at the HPMX include noble-gas derivatization of crystals to detect and map the internal architecture of proteins (pockets, tunnels and channels) that allows the storage and diffusion of ligands or substrates/products, the investigation of the catalytic mechanisms of gas-employing enzymes (using oxygen, carbon dioxide or methane as substrates) to possibly decipher intermediates, and studies of the conformational fluctuations or structure modifications that are necessary for proteins to function. Additionally, cryo-cooling protein crystals under high pressure (helium or argon at 2000 bar) enables the addition of cryo-protectant to be avoided and noble gases can be employed to produce derivatives for structure resolution. The high-pressure systems are designed to process crystals along a well defined pathway in the phase diagram (pressure-temperature) of the gas to cryo-cool the samples according to the three-step `soak-and-freeze method'. Firstly, crystals are soaked in a pressurized pure gas atmosphere (at 294 K) to introduce the gas and facilitate its interactions within the macromolecules. Samples are then flash-cooled (at 100 K) while still under pressure to cryo-trap macromolecule-gas complexation states or pressure-induced protein modifications. Finally, the samples are recovered after depressurization at cryo-temperatures. The final section of this publication presents a selection of different typical high-pressure experiments carried out at the HPMX, showing that this technique has already answered a wide range of scientific questions. It is shown that the use of different gases and pressure conditions can be used to probe various effects, such as mapping the functional internal architectures of enzymes (tunnels in the haloalkane dehalogenase DhaA) and allosteric sites on membrane-protein surfaces, the interaction of non-inert gases with proteins (oxygen in the hydrogenase ReMBH) and pressure-induced structural changes of proteins (tetramer dissociation in urate oxidase). The technique is versatile and the provision of pressure cells and their application at the HPMX is gradually being extended to address new scientific questions.


Carbon Dioxide , Helium , Freezing , Crystallography, X-Ray , Argon , Proteins/chemistry , Oxygen , Methane
12.
Sci Rep ; 14(1): 1831, 2024 01 21.
Article En | MEDLINE | ID: mdl-38246935

Ascosphaera apis is a worldwide pathogenic fungi of honeybees that can cause a decline in bee populations. In this study, we investigated the antifungal activity of non-thermal plasma on fungal growth. Spore inactivation after exposure to gas plasma by liquid phase and plasma activated water (PAW) and pathogenicity of A. apis in vivo were also examined. The results demonstrated that the mycelial growth of fungi was completely inhibited after argon plasma treatment. Both gas plasma and PAW exposures resulted in a significant decrease of A. apis spore numbers, maximum reduction of 1.71 and 3.18-fold, respectively. Germinated fungal spores on potato dextrose agar were also reduced after plasma treatment. SEM analysis revealed a disruption in the morphological structure of the fungal spores. The pathogenicity of A. apis on honeybee larvae was decreased after spores treated by gas plasma and PAW with a disease inhibition of 63.61 ± 7.28% and 58.27 ± 5.87%, respectively after 7 days of cultivation. Chalkbrood in honey bees have limited control options and our findings are encouraging. Here, we demonstrate a possible alternative control method using non-thermal plasma for chalkbrood disease in honeybees.


Onygenales , Bees , Animals , Larva , Antifungal Agents , Argon , Spores, Fungal , Water
13.
BMC Plant Biol ; 24(1): 59, 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38247007

Applying cold discharge plasma can potentially alter plants' germination characteristics by triggering their physiological activities. As a main crop in many countries, soybean was examined in the present study using cultivars such as Arian, Katoul, Saba, Sari, and Williams in a cold argon plasma. This study has been motivated by the importance of plant production worldwide, considering climate change and the increasing needs of human populations for food. This study was performed to inspect the effect of cold plasma treatment on seed germination and the impact of argon plasma on microbial decontamination was investigated on soybeans. Also, the employed cultivars have not been studied until now the radicals generated from argon were detected by optical emission spectrometry (OES), and a collisional radiative model was used to describe electron density. The germination properties, including final germination percentage (FGP), mean germination time (MGT), root length, and electrical conductivity of biomolecules released from the seeds, were investigated after the plasma treatments for 30, 60, 180, 300, and 420 s. The decontamination effect of the plasma on Aspergillus flavus (A.flavus) and Fusarium solani (F.solani) was also examined. The plasma for 60 s induced a maximum FGP change of 23.12 ± 0.34% and a lowest MGT value of 1.40 ± 0.007 days. Moreover, the ultimate root length was 56.12 ± 2.89%, in the seeds treated for 60 s. The plasma exposure, however, failed to yield a significant enhancement in electrical conductivity, even when the discharge duration was extended to 180 s or longer. Therefore, the plasma duration of 180 s was selected for the blotter technique. Both fungi showed successful sterilization; their infectivity inhibition was 67 ± 4 and 65 ± 3.1%, respectively. In general, the cold plasma used for soybeans in the present study preserved their healthy qualities and reduced the degree of fungal contamination.


Glycine max , Plasma Gases , Humans , Argon , Decontamination , Germination , Plasma Gases/pharmacology
14.
Z Med Phys ; 34(1): 140-152, 2024 Feb.
Article En | MEDLINE | ID: mdl-36803393

The quantification of the effects of space radiation for manned spaceflight can be approximated by nanodosimetric measurements. For the development of nanodosimetric detectors, a Monte Carlo model for ion mobility and diffusion for characteristic electric fields is presented. This model can be used to describe the interactions of ions in their parent gas based solely on commonly known input parameters, such as the ionization potential, kinetic diameter, molar mass, and polarizability of the gas. A model for approximating the resonant charge exchange cross section has been proposed, requiring only the ionization energy and mass of the parent gas as input parameters. The method proposed in this work was tested against experimental drift velocity data for a wide range of gases (helium, neon, nitrogen, argon, krypton, carbon monoxide, carbon dioxide, oxygen, propane). The transverse diffusion coefficients were compared to experimental values for helium, nitrogen, neon, argon, and propane gas. With the Monte Carlo code and resonant charge exchange cross section approximation model presented in this work, it is now possible to calculate an estimate of the drift velocities, transverse diffusion, and thus the ion mobility of ions in their parent gas. This is essential for further nanodosimetric detector development, as those parameters are often not well known for the gas mixtures used in nanodosimetry.


Helium , Propane , Neon , Argon , Ions , Nitrogen , Monte Carlo Method
15.
Clin Implant Dent Relat Res ; 26(1): 226-236, 2024 Feb.
Article En | MEDLINE | ID: mdl-37853303

OBJECTIVE: To assess the peri-implant soft tissue profiles between argon plasma treatment (PT) and non-treated (NPT) healing abutments by comparing clinical and histological parameters 2 months following abutment placement. MATERIALS AND METHODS: Thirty participants were randomly assigned to argon-plasma treatment abutments group (PT) or non-treated abutments (NPT) group. Two months after healing abutment placement, soft peri-implant tissues and abutment were harvested, and histological and clinical parameters including plaque index, bleeding on probing, and keratinized mucosa diameter (KM) were assessed. Specialized stainings (hematoxylin-eosin and picrocirious red) coupled with immunohistochemistry (vimentin, collagen, and CK10) were performed to assess soft tissue inflammation and healing, and the collagen content keratinization. In addition to standard statistical methods, machine learning algorithms were applied for advanced soft tissue profiling between the test and control groups. RESULTS: PT group showed lower plaque accumulation and inflammation grade (6.71% vs. 13.25%, respectively; p-value 0.02), and more advanced connective tissue healing and integration compared to NPT (31.77% vs. 23.3%, respectively; p = 0.009). In the control group, more expressed keratinization was found compared to the PT group, showing significantly higher CK10 (>47.5%). No differences in KM were found between the groups. SIGNIFICANCE: PT seems to be a promising protocol for guided peri-implant soft tissue morphogenesis reducing plaque accumulation and inflammation, and stimulating collagen and soft tissue but without effects on epithelial tissues and keratinization.


Dental Implants , Dental Plaque , Plasma Gases , Tooth , Humans , Argon , Collagen , Inflammation , Dental Abutments , Titanium
16.
Chemosphere ; 349: 140820, 2024 Feb.
Article En | MEDLINE | ID: mdl-38040253

Microwave-induced plasmas generated at atmospheric pressure are very attractive for a great variety of applications since they have a relatively high electron density and can generate large amounts of reactive species. Argon plasmas can be sustained inside dielectric tubes but are radially contracted and exhibit filamentation effects when the diameter of the tube is not narrow enough (over 1.5 mm). In this work, we describe a new approach for creating microwave (2.45 GHz) plasmas under atmospheric pressure conditions by using a surfatron device and power from 10 W. This modified design of the reactor enables the sustenance of non-filamented argon plasmas. These new plasmas have a higher gas temperature and electron density than the plasma generated in the original surfatron configuration. The new design also allows for the maintenance of plasmas with relatively high proportions of water, resulting in the generation of larger quantities of excited hydroxyl radicals (·OH*). Thus, this novel configuration extends the applicability of microwave-induced plasmas by enabling operation under new conditions. Finally, the degradation of methylene blue (MB) in aqueous solutions has been assessed under different initial dye concentrations and argon flow conditions. The new plasma produces a substantial increase in hydrogen peroxide and nitrate concentrations in water and leads to a noteworthy enhancement in MB degradation efficiency. The introduction of water into the plasma produces a minor additional improvement.


Methylene Blue , Microwaves , Water , Argon , Hydrogen Peroxide
17.
Bull Exp Biol Med ; 176(1): 50-53, 2023 Nov.
Article En | MEDLINE | ID: mdl-38091138

We studied the nature of the action of course treatment with argon and helium (1 min, 3 procedures) on the oxidative metabolism in rat blood plasma. The study was performed on 30 Wistar rats divided into 3 groups (n=10 in each group): intact and 2 experimental (treatment of the skin of the back with a stream of argon and helium, respectively). After completion of the treatment course, the intensity of free radical processes, the total antioxidant activity, and malondialdehyde concentration were evaluated in the blood plasma. It was found that argon and helium gas flows provide stimulation of antioxidant systems, but the mechanisms of their effect were different. Treatment with helium did not affect the intensity of free radical processes, but significantly increased the overall antioxidant activity of blood plasma and reduced malondialdehyde concentration in comparison with the effect of argon flow.


Antioxidants , Helium , Rats , Animals , Helium/pharmacology , Argon/pharmacology , Rats, Wistar , Antioxidants/pharmacology , Malondialdehyde , Free Radicals , Oxidative Stress
18.
Medicina (Kaunas) ; 59(12)2023 Nov 24.
Article En | MEDLINE | ID: mdl-38138178

Background and Objectives: The aim of the present study was to compare the short-term outcomes of selective laser trabeculoplasty (SLT) with argon laser trabeculoplasty (ALT) in patients with glaucoma in a real-world setting. Materials and Methods: The present study was conducted as a retrospective case-control study. The main outcome was the change in intraocular pressure (IOP) three months after laser surgery. In addition, the number of substances used for lowering of IOP and adverse events (AEs) were assessed. Results: Charts from 25 patients were included in the present study, of which 12 had received ALT and 13 SLT. In both groups, IOP significantly decreased from baseline values 6 weeks and 3 months after laser treatment (p < 0.01 vs. baseline at each timepoint for both groups). While after 6 weeks, no difference between groups was found, after 3 months, the decrease in IOP was significantly more pronounced in the SLT group (-26 ± 21% in the ALT group vs. -41 ± 14% in the SLT group, p = 0.018 between groups, ANOVA). Three months after laser treatment, the number of IOP-lowering substances used by each patient had decreased with no difference between groups (ALT: from 2.7 ± 0.8 to 2.3 ± 0.9 substances; SLT: from 1.8 ± 1.2 to 1.3 ± 1.1 substances, p = 0.386). Only a few AEs were observed. Two patients in the ALT and one patient in the SLT group required trabeculectomy within 1 year after laser treatment due to IOP decompensation. Conclusions: In the present study, SLT was at least as effective as ALT with fewer AEs and a similar reduction in concomitant IOP-lowering medication.


Glaucoma, Open-Angle , Glaucoma , Laser Therapy , Ocular Hypertension , Trabeculectomy , Humans , Glaucoma, Open-Angle/surgery , Argon , Retrospective Studies , Case-Control Studies , Austria , Treatment Outcome , Glaucoma/surgery , Ocular Hypertension/surgery , Intraocular Pressure , Lasers
19.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article En | MEDLINE | ID: mdl-38139120

Nanometals constitute a rapidly growing area of research within nanotechnology. Nanosilver and nanogold exhibit significant antimicrobial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anticancer properties. The size and shape of nanoparticles are critical for determining their antimicrobial activity. In this study, silver and gold nanoparticles were synthesized within a hyaluronic acid matrix utilizing distilled water and distilled water treated with low-pressure, low-temperature glow plasma in an environment of air and argon. Electron microscopy, UV-Vis and FTIR spectra, water, and mechanical measurements were conducted to investigate the properties of nanometallic composites. This study also examined their microbiological properties. This study demonstrated that the properties of the composites differed depending on the preparation conditions, encompassing physicochemical and microbiological properties. The application of plasma-treated water under both air and argon had a significant effect on the size and distribution of nanometals. Silver nanoparticles were obtained between the range of 5 to 25 nm, while gold nanoparticles varied between 10 to 35 nm. The results indicate that the conditions under which silver and gold nanoparticles are produced have a significant effect on their mechanical and antibacterial properties.


Metal Nanoparticles , Silver , Silver/chemistry , Gold/chemistry , Hyaluronic Acid/chemistry , Metal Nanoparticles/chemistry , Argon , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Water
20.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article En | MEDLINE | ID: mdl-38139311

This work systematically examines the interactions between a single argon atom and the edges and faces of cyclic H2O clusters containing three-five water molecules (Ar(H2O)n=3-5). Full geometry optimizations and subsequent harmonic vibrational frequency computations were performed using MP2 with a triple-ζ correlation consistent basis set augmented with diffuse functions on the heavy atoms (cc-pVTZ for H and aug-cc-pVTZ for O and Ar; denoted as haTZ). Optimized structures and harmonic vibrational frequencies were also obtained with the two-body-many-body (2b:Mb) and three-body-many-body (3b:Mb) techniques; here, high-level CCSD(T) computations capture up through the two-body or three-body contributions from the many-body expansion, respectively, while less demanding MP2 computations recover all higher-order contributions. Five unique stationary points have been identified in which Ar binds to the cyclic water trimer, along with four for (H2O)4 and three for (H2O)5. To the best of our knowledge, eleven of these twelve structures have been characterized here for the first time. Ar consistently binds more strongly to the faces than the edges of the cyclic (H2O)n clusters, by as much as a factor of two. The 3b:Mb electronic energies computed with the haTZ basis set indicate that Ar binds to the faces of the water clusters by at least 3 kJ mol-1 and by nearly 6 kJ mol-1 for one Ar(H2O)5 complex. An analysis of the interaction energies for the different binding motifs based on symmetry-adapted perturbation theory (SAPT) indicates that dispersion interactions are primarily responsible for the observed trends. The binding of a single Ar atom to a face of these cyclic water clusters can induce perturbations to the harmonic vibrational frequencies on the order of 5 cm-1 for some hydrogen-bonded OH stretching frequencies.


Quantum Theory , Water , Argon/chemistry , Water/chemistry , Thermodynamics , Hydrogen Bonding
...