Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21.351
1.
J Environ Sci (China) ; 145: 205-215, 2024 Nov.
Article En | MEDLINE | ID: mdl-38844320

Thermal treatment can effectively decontaminate soils but alter their properties. Previous research mainly focused on volatile organic compounds and metals, i.e. Hg, neglecting non-volatile metal(loid)s. This study aimed to investigate Cd and As transformation during aerobic and anaerobic calcination. The results showed that both aerobic and anaerobic calcination increased soil pH by reducing soil organic matter (SOM) content, which also influenced the cation exchange capacity (CEC) and the leaching behavior of Cd and As in the soil. The total concentrations of Cd and As in the calcined soils varied depending on the calcination temperature and atmosphere. When the aerobic calcination temperature exceeded 700 °C, Cd volatilized as CdCl2, while anaerobic calcination at relatively low temperatures (600 °C) involved reductive reactions, resulting in the formation of metallic Cd with a lower boiling point. Similarly, As volatilized at 800 °C aerobically and 600 °C anaerobically. The formation of As-based minerals, particularly Ca3(AsO4)2, hindered its gasification, whereas anaerobic calcination promoted volatilization efficiency through the generation of C-As(III) based gaseous components with lower boiling points. Contrasting trends were observed in the TCLP-extractable Cd and As contents of the calcined soils. Over 70% of TCLP-extractable Cd contents were suppressed after thermal treatment, attributed to the elevated pH and reduced CEC of the soil, as well as volatilization. However, TCLP-extractable As contents increased with elevated temperatures, likely due to the desorption of AsO43- and re-adsorption of gaseous As2O3 during cooling. These findings have implications for assessing the environmental impact of thermal treatment and provide insights for remediation strategies concerning Cd and As-contaminated soils.


Arsenic , Cadmium , Soil Pollutants , Soil , Cadmium/chemistry , Cadmium/analysis , Soil Pollutants/analysis , Soil Pollutants/chemistry , Arsenic/analysis , Arsenic/chemistry , Soil/chemistry , Environmental Restoration and Remediation/methods , Hot Temperature
2.
Environ Health ; 23(1): 51, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831396

BACKGROUND: Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. This study examines the relationships between mother's arsenic exposure, folic acid, and spina bifida risk in Bangladesh. METHODS: We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified by a neurosurgeon and imaging. Controls were drawn from children seen at NINS&H and nearby Dhaka Shishu Hospital. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). We used logistic regression to examine the associations between arsenic and spina bifida. We used stratified models to examine the associations between folic acid and spina bifida at different levels of arsenic exposure. RESULTS: We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median value of 0.46 µg/g, and no association was seen among mothers with toenail arsenic concentrations higher than 0.46 µg/g (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82). CONCLUSIONS: Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.


Arsenic , Folic Acid , Spinal Dysraphism , Humans , Folic Acid/therapeutic use , Bangladesh/epidemiology , Spinal Dysraphism/prevention & control , Spinal Dysraphism/epidemiology , Spinal Dysraphism/chemically induced , Case-Control Studies , Female , Arsenic/analysis , Infant , Male , Adult , Infant, Newborn , Pregnancy , Water Pollutants, Chemical/analysis , Maternal Exposure , Young Adult , Drinking Water/chemistry , Drinking Water/analysis
3.
Environ Microbiol ; 26(5): e16629, 2024 May.
Article En | MEDLINE | ID: mdl-38695111

Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic genomes. However, the mechanisms by which HGT-derived genes persist and integrate into other pathways remain unclear. This topic is of significant interest because, over time, the stressors that initially favoured the fixation of HGT may diminish or disappear. Despite this, the foreign genes may continue to exist if they become part of a broader stress response or other pathways. The conventional model suggests that the acquisition of HGT equates to adaptation. However, this model may evolve into more complex interactions between gene products, a concept we refer to as the 'Integrated HGT Model' (IHM). To explore this concept further, we studied specialized HGT-derived genes that encode heavy metal detoxification functions. The recruitment of these genes into other pathways could provide clear examples of IHM. In our study, we exposed two anciently diverged species of polyextremophilic red algae from the Galdieria genus to arsenic and mercury stress in laboratory cultures. We then analysed the transcriptome data using differential and coexpression analysis. Our findings revealed that mercury detoxification follows a 'one gene-one function' model, resulting in an indivisible response. In contrast, the arsH gene in the arsenite response pathway demonstrated a complex pattern of duplication, divergence and potential neofunctionalization, consistent with the IHM. Our research sheds light on the fate and integration of ancient HGTs, providing a novel perspective on the ecology of extremophiles.


Arsenic , Extremophiles , Gene Transfer, Horizontal , Rhodophyta , Rhodophyta/genetics , Extremophiles/genetics , Arsenic/metabolism , Mercury/metabolism , Stress, Physiological/genetics , Inactivation, Metabolic/genetics , Evolution, Molecular
4.
Environ Geochem Health ; 46(6): 190, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695943

A magnetic nanocomposite of hydroxyapatite and biomass (HAp-CM) was synthesized through a combined ultrasonic and hydrothermal method, aiming for efficient adsorption of arsenic (As) and fluoride (F-) from drinking water in natural environments. The characterization of HAp-CM was carried out using TG, FTIR, XRD, SEM, SEM-EDS, and TEM techniques, along with the determination of pHpzc charge. FTIR analysis suggested that coordinating links are the main interactions that allow the formation of the nanocomposite. XRD data indicated that the crystalline structure of the constituent materials remained unaffected during the formation of HAp-CM. SEM-EDS analysis revelated a Ca/P molar ratio of 1.78. Adsorption assays conducted in batches demonstrated that As and F- followed a PSO kinetic model. Furthermore, As adsorption fitting well to the Langmuir model, while F- adsorption could be explained by both Langmuir and Freundlich models. The maximum adsorption capacity of HAp-CM was found to be 5.0 mg g-1 for As and 10.2 mg g-1 for F-. The influence of sorbent dosage, pH, and the presence of coexisting species on adsorption capacity was explored. The pH significantly affected the nanocomposite's efficiency in removing both pollutants. The presence of various coexisting species had different effects on F- removal efficiency, while As adsorption efficiency was generally enhanced, except in the case of PO43-. The competitive adsorption between F- and As on HAp-CM was also examined. The achieved results demonstrate that HAp-CM has great potential for use in a natural environment, particularly in groundwater remediation as a preliminary treatment for water consumption.


Arsenic , Durapatite , Fluorides , Nanocomposites , Water Pollutants, Chemical , Water Purification , Fluorides/chemistry , Adsorption , Nanocomposites/chemistry , Durapatite/chemistry , Water Pollutants, Chemical/chemistry , Arsenic/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Biomass , Kinetics , Drinking Water/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
5.
Sci Rep ; 14(1): 10193, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702361

Amphibians are often recognized as bioindicators of healthy ecosystems. The persistence of amphibian populations in heavily contaminated environments provides an excellent opportunity to investigate rapid vertebrate adaptations to harmful contaminants. Using a combination of culture-based challenge assays and a skin permeability assay, we tested whether the skin-associated microbiota may confer adaptive tolerance to tropical amphibians in regions heavily contaminated with arsenic, thus supporting the adaptive microbiome principle and immune interactions of the amphibian mucus. At lower arsenic concentrations (1 and 5 mM As3+), we found a significantly higher number of bacterial isolates tolerant to arsenic from amphibians sampled at an arsenic contaminated region (TES) than from amphibians sampled at an arsenic free region (JN). Strikingly, none of the bacterial isolates from our arsenic free region tolerated high concentrations of arsenic. In our skin permeability experiment, where we tested whether a subset of arsenic-tolerant bacterial isolates could reduce skin permeability to arsenic, we found that isolates known to tolerate high concentrations of arsenic significantly reduced amphibian skin permeability to this metalloid. This pattern did not hold true for bacterial isolates with low arsenic tolerance. Our results describe a pattern of environmental selection of arsenic-tolerant skin bacteria capable of protecting amphibians from intoxication, which helps explain the persistence of amphibian populations in water bodies heavily contaminated with arsenic.


Amphibians , Arsenic , Microbiota , Skin , Animals , Arsenic/metabolism , Arsenic/toxicity , Microbiota/drug effects , Skin/microbiology , Skin/drug effects , Skin/metabolism , Amphibians/microbiology , Bacteria/drug effects , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Permeability/drug effects
6.
PLoS One ; 19(5): e0303528, 2024.
Article En | MEDLINE | ID: mdl-38753618

Arsenic has been identified as an environmental toxicant acting through various mechanisms, including the disruption of endocrine pathways. The present study assessed the ability of a single intraperitoneal injection of arsenic, to modify the mRNA expression levels of estrogen- and thyroid hormone receptors (ERα,ß; TRα,ß) and peroxisome proliferator-activated receptor gamma (PPARγ) in hypothalamic tissue homogenates of prepubertal mice in vivo. Mitochondrial respiration (MRR) was also measured, and the corresponding mitochondrial ultrastructure was analyzed. Results show that ERα,ß, and TRα expression was significantly increased by arsenic, in all concentrations examined. In contrast, TRß and PPARγ remained unaffected after arsenic injection. Arsenic-induced dose-dependent changes in state 4 mitochondrial respiration (St4). Mitochondrial morphology was affected by arsenic in that the 5 mg dose increased the size but decreased the number of mitochondria in agouti-related protein- (AgRP), while increasing the size without affecting the number of mitochondria in pro-opiomelanocortin (POMC) neurons. Arsenic also increased the size of the mitochondrial matrix per host mitochondrion. Complex analysis of dose-dependent response patterns between receptor mRNA, mitochondrial morphology, and mitochondrial respiration in the neuroendocrine hypothalamus suggests that instant arsenic effects on receptor mRNAs may not be directly reflected in St3-4 values, however, mitochondrial dynamics is affected, which predicts more pronounced effects in hypothalamus-regulated homeostatic processes after long-term arsenic exposure.


Arsenic , Hypothalamus , Mitochondria , PPAR gamma , RNA, Messenger , Animals , Hypothalamus/metabolism , Hypothalamus/drug effects , Mice , Mitochondria/metabolism , Mitochondria/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Arsenic/toxicity , Receptors, Thyroid Hormone/metabolism , Receptors, Thyroid Hormone/genetics , Male , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Cell Respiration/drug effects , Gene Expression Regulation/drug effects
7.
Environ Int ; 187: 108715, 2024 May.
Article En | MEDLINE | ID: mdl-38728816

BACKGROUND: Inorganic arsenic is metabolized to monomethyl- (MMAs) and dimethyl- (DMAs) species via one-carbon metabolism (OCM); this facilitates urinary arsenic elimination. OCM is influenced by folate and vitamin B12 and previous randomized control trials (RCTs) showed that folic acid (FA) supplementation increases arsenic methylation in adults. This RCT investigated the effects of FA + B12 supplementation on arsenic methylation in children, a key developmental stage where OCM supports growth. METHODS: A total of 240 participants (8-11 years, 53 % female) drinking from wells with arsenic concentrations > 50 µg/L, were encouraged to switch to low arsenic wells and were randomized to receive 400 µg FA + 5 µg B12 or placebo daily for 12-weeks. Urine and blood samples were collected at baseline, week 1 (only urine) and week 12. Generalized estimated equation (GEE) models were used to assess treatment effects on arsenic species in blood and urine. RESULTS: At baseline, the mean ± SD total blood and urinary arsenic were 5.3 ± 2.9 µg/L and 91.2 ± 89.5 µg/L. Overall, total blood and urine arsenic decreased by 11.7% and 17.6%, respectively, at the end of follow up. Compared to placebo, the supplementation group experienced a significant increase in the concentration of blood DMAs by 14.0% (95% CI 5.0, 25.0) and blood secondary methylation index (DMAs/MMAs) by 0.19 (95% CI: 0.09, 0.35) at 12 weeks. Similarly, there was a 1.62% (95% CI: 0.43, 20.83) significantly higher urinary %DMAs and -1.10% (95% CI: -1.73, -0.48) significantly lower urinary %MMAs in the supplementatio group compared to the placebo group after 1 week. The direction of the changes in the urinary %iAs, %MMAs, and %DMAs at week 12 were consistent with those at week 1, though estimates were not significant. Treatment effects were stronger among participants with higher baseline blood arsenic concentrations. Results were consistent across males and females, and participants with higher and lower folate and B12 status at baseline. CONCLUSION: This RCT confirms that FA + B12 supplementation increases arsenic methylation in children as reflected by decreased MMAs and increased DMAs in blood and urine. Nutritional interventions may improve arsenic methylation and elimination in children, potentially reducing arsenic toxicity while also improving nutritional status.


Arsenic , Dietary Supplements , Folic Acid , Vitamin B 12 , Humans , Female , Vitamin B 12/blood , Male , Child , Bangladesh , Double-Blind Method , Methylation
8.
Environ Monit Assess ; 196(5): 494, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691200

This study investigated the impact of soil type, pH, and geographical locations on the accumulation of arsenic (As), lead (Pb), and cadmium (Cd) in rice grains cultivated in Ghana. One hundred rice farms for the sampling of rice grains and soil were selected from two regions in Ghana-Volta and Oti. The concentrations of As, Pb, and Cd were analyzed using ICP-OES. Speciation modeling and multivariate statistics were employed to ascertain the relations among measured parameters. The results showed significant variations in soil-As, Pb, and Cd levels across different soil types and pH ranges, with the highest soil-As and Cd found in alkaline vertisols. For soil-As and Cd, the vertisols with a pH more than 7.0 exhibited the highest mean concentration of As (2.51 ± 0.932 mgkg-1) and Cd (1.00 ± 0.244 mgkg-1) whereas for soil-Pb, the luvisols of soil types with a pH less than 6.0 exhibited the highest mean concentration of Pb (4.91 ± 1.540 mgkg-1). Grain As, Pb, and Cd also varied across soil types and pH levels. In regards to grain-As, the vertisols soil type, with a pH less than 6.0, shows the highest mean concentration of grain As, at 0.238 ± 0.107 mgkg-1. Furthermore, vertisols soil types with a pH level less than 6.0 showed the highest mean concentration of grain Cd, averaging at 0.231 ± 0.068 mgkg-1 while luvisols, with a pH less than 6.0, exhibited the highest mean concentration of grain Pb at 0.713 ± 0.099 mgkg-1. Speciation modeling indicated increased bioavailability of grains Cd2+ and Pb2+ ions in acidic conditions. A significant interaction was found between soil-Cd and pH, affecting grain-As uptake. The average concentrations of soil As, Pb, and Cd aligned with international standards. Generally, the carcinogenic metals detected in grain samples collected from the Volta region are higher than that of the Oti region but the differences are insignificant, and this may be attributed to geographical differences and anthropogenic activities. About 51% of the study area showed a hazard risk associated with grain metal levels, although, no carcinogenic risks were recognized. This study highlights the complex soil-plant interactions governing metal bioaccumulation and emphasizes the need for tailored strategies to minimize metal transfer into grains.


Arsenic , Cadmium , Environmental Monitoring , Oryza , Soil Pollutants , Soil , Soil Pollutants/analysis , Ghana , Soil/chemistry , Oryza/chemistry , Cadmium/analysis , Hydrogen-Ion Concentration , Arsenic/analysis , Lead/analysis , Agriculture
9.
Environ Geochem Health ; 46(6): 208, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806960

Concentrations of potentially toxic elements (PTEs) like arsenic, uranium, iron, and nitrate in the groundwater of the Majha Belt (including Tarn Taran, Amritsar, Gurdaspur, and Pathankot districts) in Punjab, India were measured to evaluate the health risks associated with its consumption and daily use. The average concentrations of these elements in some locations exceeded the WHO-recommended values. Arsenic and iron toxicity levels were found to be higher in the Amritsar district, while uranium toxicity was more prevalent in Tarn Taran. The Trace Element Evaluation Index suggests that Amritsar is one of the districts most affected by toxic elements. According to the US Environmental Protection Agency's (USEPA) guidelines, the HQ values of U, Fe, and nitrate were less than one, indicating that there is no non-carcinogenic health risk for adults and children. However, the hazard quotient (HQ) value for arsenic was greater than one, indicating a higher possibility of health risk due to arsenic in the study area. The total hazard index values of 44.10% of samples were greater than four for arsenic, indicating that people in the Majha Belt are at a very high health risk due to the usage of water for drinking and domestic purposes. The cancer risk assessment values for arsenic in children (5.69E + 0) and adults (4.07E + 0) were higher than the accepted limit of USEPA (10-4 to 10-6) in the Majha Belt. The average radiological cancer risk values of U for children and adults were 8.68E-07 and 9.45E-06, respectively, which are well below the permissible limit of 1.67 × 10-4 suggested by the Atomic Energy Regulatory Board of DAE, India. The results of this study confirm that the residents of the Majha Belt who use contaminated groundwater are at a serious risk of exposure to arsenic in the Amritsar district and uranium in Tarn Taran district.


Arsenic , Groundwater , Water Pollutants, Chemical , India , Groundwater/chemistry , Risk Assessment , Arsenic/analysis , Water Pollutants, Chemical/analysis , Humans , Uranium/analysis , Nitrates/analysis , Environmental Monitoring , Iron/analysis , Child , Adult
10.
Front Public Health ; 12: 1371920, 2024.
Article En | MEDLINE | ID: mdl-38694994

Background: An increasing number of studies suggest that environmental pollution may increase the risk of vitamin D deficiency (VDD). However, less is known about arsenic (As) exposure and VDD, particularly in Chinese pregnant women. Objectives: This study examines the correlations of different urinary As species with serum 25 (OH) D and VDD prevalence. Methods: We measured urinary arsenite (As3+), arsenate (As5+), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) levels and serum 25(OH)D2, 25(OH)D3, 25(OH) D levels in 391 pregnant women in Tianjin, China. The diagnosis of VDD was based on 25(OH) D serum levels. Linear relationship, Logistic regression, and Bayesian kernel machine regression (BKMR) were used to examine the associations between urinary As species and VDD. Results: Of the 391 pregnant women, 60 received a diagnosis of VDD. Baseline information showed significant differences in As3+, DMA, and tAs distribution between pregnant women with and without VDD. Logistic regression showed that As3+ was significantly and positively correlated with VDD (OR: 4.65, 95% CI: 1.79, 13.32). Meanwhile, there was a marginally significant positive correlation between tAs and VDD (OR: 4.27, 95% CI: 1.01, 19.59). BKMR revealed positive correlations between As3+, MMA and VDD. However, negative correlations were found between As5+, DMA and VDD. Conclusion: According to our study, there were positive correlations between iAs, especially As3+, MMA and VDD, but negative correlations between other As species and VDD. Further studies are needed to determine the mechanisms that exist between different As species and VDD.


Arsenic , Vitamin D Deficiency , Humans , Female , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/urine , Pregnancy , Cross-Sectional Studies , China/epidemiology , Adult , Arsenic/urine , Arsenic/blood , Prevalence , Arsenicals/urine , Vitamin D/blood , Vitamin D/urine , Pregnancy Complications/urine , Pregnancy Complications/epidemiology , Logistic Models , East Asian People
11.
Sci Total Environ ; 930: 172765, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38692323

The presence of contaminated sites/soils in or near cities can pose significant risks to public health. The city of Viviez (France) was taken in reference site bears significant industrial responsibility, particularly in zinc metallurgy, with the presence of a now rehabilitated smelter. This has led to soil contamination by zinc (Zn), lead (Pb), arsenic (As), and cadmium (Cd), with concentrations reaching up to 4856 mg kg-1, 1739 mg kg-1, 195 mg kg-1, and 110 mg kg-1, respectively. The aim of this study is to comprehend the contamination patterns of the site post-rehabilitation, the geochemical behavior of each element, and their speciation (analyzed through BCR, XRD, and XANES) in relation to associated health risks due to metals accessibility for oral ingestion and inhalation by the local population. The findings revealed that elements inducing health risks were not necessarily those with the highest metal contents. All results are discussed in terms of the relationship between element speciation, stability of bearing phases, and their behavior in different media. XANES is an important tool to determine and estimate the Pb-bearing phases in garden soils, as well as the As speciation, which consist of Pb-goethite, anglesite, and Pb-humate, with variations in proportions (the main phases being 66 %, 12 % and 22 % for Pb-goethite, anglesite, and Pb-humate, respectively) whereas As-bearing phase are As(V)-rich ferrihydrite-like. A new aspect lies in the detailed characterization of solid phases before and after bioaccessibility tests, to qualify and quantify the bearing phases involved in the mobility of metallic elements to understand the bioaccessibility behavior. Ultimately, the health risk associated with exposure to inhabitants, in terms of particle ingestion and inhalation, was assessed. Only ingestion-related risk was deemed unacceptable due to the levels of As and Pb.


Environmental Monitoring , Soil Pollutants , Soil Pollutants/analysis , France , Humans , Arsenic/analysis , Synchrotrons , Lung , Lead/analysis , Zinc/analysis , Metals, Heavy/analysis , Biological Availability , Risk Assessment , Cadmium/analysis , Soil/chemistry
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124325, 2024 Aug 05.
Article En | MEDLINE | ID: mdl-38701574

A Schiff-base Ethyl (E)-2-(3-((2-carbamothioylhydrazono)methyl)-4-hydroxyphenyl)-4-methylthiazole-5-carboxylate (TZTS) dual functional colorimetric and photoluminescent chemosensor which includes thiazole and thiosemicarbazide has been synthesized to detect arsenic (As3+) ions selectively in DMSO: H2O (7:3, v/v) solvent system. The molecular structure of the probe was characterized via FT-IR, 1H, and 13C NMR & HRMS analysis. Interestingly, the probe exhibits a remarkable and specific colorimetric and photoluminescence response to As3+ ions when exposed to various metal cations. The absorption spectral changes of TZTS were observed upon the addition of As3+ ions, with a naked eye detectable color change from colorless to yellow color. Additionally, the chemosensor (TZTS) exhibited a new absorption band at 412 nm and emission enhancements in photoluminescence at 528 nm after adding As3+ ions. The limit of detection (LOD) for As3+ ions was calculated to be 16.5 and 7.19 × 10-9 M by the UV-visible and photoluminescent titration methods, respectively. The underlying mechanism and experimental observations have been comprehensively elucidated through techniques such as Job's plot, Benesi-Hildebrand studies, and density functional theory (DFT) calculations. For practical application, the efficient determination of As3+ ions were accomplished using a spike and recovery approach applied to real water samples. In addition, the developed probe was successfully employed in test strip applications, allowing for the naked-eye detection of arsenic ions. Moreover, fluorescence imaging experiments of As3+ ions in the breast cancer cell line (MCF-7) demonstrated their practical applications in biological systems. Consequently, these findings highlight the significant potential of the TZTS sensor for detecting As3+ ions in environmental analysis systems.


Arsenic , Colorimetry , Density Functional Theory , Thiazoles , Colorimetry/methods , Humans , Thiazoles/chemistry , Thiazoles/analysis , Arsenic/analysis , Limit of Detection , MCF-7 Cells , Ions/analysis , Optical Imaging
13.
Int J Mol Sci ; 25(9)2024 May 04.
Article En | MEDLINE | ID: mdl-38732236

The use of probiotic lactobacilli has been proposed as a strategy to mitigate damage associated with exposure to toxic metals. Their protective effect against cationic metal ions, such as those of mercury or lead, is believed to stem from their chelating and accumulating potential. However, their retention of anionic toxic metalloids, such as inorganic arsenic, is generally low. Through the construction of mutants in phosphate transporter genes (pst) in Lactiplantibacillus plantarum and Lacticaseibacillus paracasei strains, coupled with arsenate [As(V)] uptake and toxicity assays, we determined that the incorporation of As(V), which structurally resembles phosphate, is likely facilitated by phosphate transporters. Surprisingly, inactivation in Lc. paracasei of PhoP, the transcriptional regulator of the two-component system PhoPR, a signal transducer involved in phosphate sensing, led to an increased resistance to arsenite [As(III)]. In comparison to the wild type, the phoP strain exhibited no differences in the ability to retain As(III), and there were no observed changes in the oxidation of As(III) to the less toxic As(V). These results reinforce the idea that specific transport, and not unspecific cell retention, plays a role in As(V) biosorption by lactobacilli, while they reveal an unexpected phenotype for the lack of the pleiotropic regulator PhoP.


Arsenic , Phosphates , Phosphates/metabolism , Arsenic/toxicity , Arsenic/metabolism , Lactobacillus/metabolism , Lactobacillus/drug effects , Lactobacillus/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Phosphate Transport Proteins/metabolism , Phosphate Transport Proteins/genetics , Arsenates/metabolism , Arsenates/toxicity
14.
Chemosphere ; 358: 142199, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692366

Industrial hemp (Cannabis sativa L.) has great application potential in heavy metal-polluted soils owing to its safe non-food utilization. However, the fate of heavy metals in different varieties of hemp planted in strongly contaminated natural soils remains unknown. Here, we investigated the growth, heavy metal uptake, distribution, and transfer of nine hemp varieties in soils strongly contaminated with Cu, As, Cd, and Pb. Hemp variety and metal type were the main factors affecting the growth and heavy metal uptake in hemp. The nine hemp varieties grew well in the contaminated soils; however, differences existed among the varieties. The biomass of Z3 reached 5669.1 kg hm-1, whereas that of Yunma No. 1 was only 51.8 % of Z3. The plant height, stalk diameter, and stalk bark thickness of Z3 were greater than those of the other varieties, reaching 168 cm, 9.2 mm, and 0.56 mm, respectively. Permanova's analysis revealed that the total effects of Cu, As, Cd, and Pb on the growth of the nine hemp varieties reached 60 %, with leaf As having the greatest effect, reaching 16 %. , Even in strongly contaminated soils, the nine varieties showed poor Cu, As, Cd, and Pb uptake. Most of the Cu, As, Cd, and Pb were retained in the root, reaching 57.7-72.4, 47.6-64.7, 76.0-92.9, and 70.0-87.8 %, respectively. Overall, the Cu, As, Cd, and Pb uptake of Wanma No.1 was the highest among the nine varieties, whereas that of Guangxi Bama was the lowest. These results indicate that hemp is a viable alternative for phytoattenuation in soils contaminated with heavy metals because of its ability to tolerate and accumulate Cu, As, Cd, and Pb in its roots, and Guangxi Bama is superior to the other varieties considering the safe utilization of hemp products.


Arsenic , Biodegradation, Environmental , Cadmium , Cannabis , Copper , Lead , Metals, Heavy , Soil Pollutants , Soil , Cannabis/growth & development , Cannabis/metabolism , Soil Pollutants/metabolism , Soil Pollutants/analysis , Metals, Heavy/analysis , Metals, Heavy/metabolism , Lead/metabolism , Lead/analysis , Cadmium/metabolism , Cadmium/analysis , Arsenic/metabolism , Arsenic/analysis , Copper/analysis , Soil/chemistry , Biomass , Plant Roots/metabolism , Plant Roots/growth & development
15.
Chemosphere ; 358: 142192, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701862

Current human health risk assessments of soil arsenic (As) contamination rarely consider bioaccessibility (IVBA), which may overestimate the health risks of soil As. The IVBA of As (As-IVBA) may differ among various soil types. This investigation of As-IVBA focused As from geological origin in a typical subtropical soil, lateritic red soil, and its risk control values. The study used the SBRC gastric phase in vitro digestion method and As speciation sequential extraction based upon phosphorus speciation extraction method. Two construction land sites (CH and HD sites) in the Pearl River Delta region were surveyed. The results revealed a high content of residual As (including scorodite, mansfieldite, orpiment, realgar, and aluminum arsenite) in the lateritic red soils at both sites (CH: 84.9%, HD: 91.7%). The content of adsorbed aluminum arsenate (CH: 3.24%, HD: 0.228%), adsorbed ferrum arsenate (CH: 8.55%, HD: 5.01%), and calcium arsenate (CH: 7.33%, HD: 3.01%) were found to be low. The bioaccessible As content was significantly positively correlated with the As content in adsorbed aluminum arsenate, adsorbed ferrum arsenate, and calcium arsenate. A small portion of these sequential extractable As speciation could be absorbed by the human body (CH: 14.9%, HD: 3.16%), posing a certain health risk. Adsorbed aluminum arsenate had the highest IVBA, followed by calcium arsenate, and adsorbed ferrum arsenate had the lowest IVBA. The aforementioned speciation characteristics of As from geological origin in lateritic red soil contributed to its lower IVBA compared to other soils. The oxidation state of As did not significantly affect As-IVBA. Based on As-IVBA, the carcinogenic and non-carcinogenic risks of soil As in the CH and HD sites decreased greatly in human health risk assessment. The results suggest that As-IVBA in lateritic red soil should be considered when assessing human health risks on construction land.


Arsenic , Soil Pollutants , Soil , Arsenic/analysis , Arsenic/chemistry , Humans , Soil Pollutants/analysis , Soil Pollutants/chemistry , Risk Assessment , Soil/chemistry , Environmental Monitoring , Biological Availability , China
16.
J Environ Manage ; 359: 121008, 2024 May.
Article En | MEDLINE | ID: mdl-38703654

Despite the high potential of seagrass restoration to reverse the trend of marine ecosystem degradation, there are still many limitations, especially when ecosystems are severely degraded. In particular, it is not known whether restoring polluted ecosystems can lead to potentially harmful effects associated with contaminant remobilisation. Here, we aimed to investigate the role of P. oceanica transplanted from a pristine meadow to a polluted site (Augusta Bay, Italy, Mediterranean Sea) in two seasons of the year, as a sink or source of trace elements to the environment. The main results showed i) higher accumulation of chromium (Cr), copper (Cu) and total mercury (THg) in plants transplanted in summer than in winter, as well as an increase in Cr and THg in plants from sites with higher trace element loads; ii) an increase in leaf phenolics and a decrease in rhizome soluble carbohydrates associated with As and THg accumulation, suggesting the occurrence of defence strategies to cope with pollution stress; iii) a different partitioning of trace elements between below- and above-ground tissues, with arsenic (As) and Cr accumulating in roots, whereas Cu and THg in both roots and leaves. These results suggest that P. oceanica transplanted to polluted sites can act as both a sink and a source, sequestering trace elements in the below-ground tissues thus reducing their bioavailability, but also potentially remobilising them. However, the amount of trace elements potentially exported from P. oceanica to the environment through transfer into food webs via leaves and detritus appeared to be low under the specific conditions of the study site. Although further research into seagrass restoration of polluted sites would improve current knowledge to support effective ecosystem-based coastal management, the benefits of restoring polluted sites through seagrass transplantation appear to outweigh the potential costs of inaction over time.


Alismatales , Ecosystem , Trace Elements , Trace Elements/analysis , Mediterranean Sea , Water Pollutants, Chemical , Italy , Arsenic/analysis
17.
Planta ; 259(6): 141, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695915

MAIN CONCLUSION: This review highlights the roles of phloem in the long-distance transport and accumulation of As in rice plants, facilitating the formulation of new strategies to reduce the grain As content. Rice is a staple diet for a significant proportion of the global population. As toxicity is a major issue affecting the rice productivity and quality worldwide. Phloem tissues of rice plants play vital roles in As speciation, long-distance transport, and unloading, thereby controlling the As accumulation in rice grains. Phloem transport accounts for a significant proportion of As transport to grains, ranging from 54 to 100% depending on the species [inorganic arsenate (As(V)), arsenite (As(III)), or organic dimethylarsinic acid (DMA(V)]. However, the specific mechanism of As transport through phloem leading to its accumulation in grains remains unknown. Therefore, understanding the molecular mechanism of phloem-mediated As transport is necessary to determine the roles of phloem in long-distance As transport and subsequently reduce the grain As content via biotechnological interventions. This review discusses the roles of phloem tissues in the long-distance transport and accumulation of As in rice grains. This review also highlights the biotechnological approaches using critical genetic factors involved in nodal accumulation, vacuolar sequestration, and cellular efflux of As in phloem- or phloem-associated tissues. Furthermore, the limitations of existing transgenic techniques are outlined to facilitate the formulation of novel strategies for the development of rice with reduced grain As content.


Arsenic , Oryza , Phloem , Oryza/metabolism , Oryza/growth & development , Oryza/genetics , Phloem/metabolism , Arsenic/metabolism , Biological Transport , Edible Grain/metabolism , Edible Grain/growth & development
18.
World J Microbiol Biotechnol ; 40(6): 192, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709285

The global concern over arsenic contamination in water due to its natural occurrence and human activities has led to the development of innovative solutions for its detection and remediation. Microbial metabolism and mobilization play crucial roles in the global cycle of arsenic. Many microbial arsenic-resistance systems, especially the ars operons, prevalent in bacterial plasmids and genomes, play vital roles in arsenic resistance and are utilized as templates for designing synthetic bacteria. This review novelty focuses on the use of these tailored bacteria, engineered with ars operons, for arsenic biosensing and bioremediation. We discuss the advantages and disadvantages of using synthetic bacteria in arsenic pollution treatment. We highlight the importance of genetic circuit design, reporter development, and chassis cell optimization to improve biosensors' performance. Bacterial arsenic resistances involving several processes, such as uptake, transformation, and methylation, engineered in customized bacteria have been summarized for arsenic bioaccumulation, detoxification, and biosorption. In this review, we present recent insights on the use of synthetic bacteria designed with ars operons for developing tailored bacteria for controlling arsenic pollution, offering a promising avenue for future research and application in environmental protection.


Arsenic , Bacteria , Biodegradation, Environmental , Biosensing Techniques , Operon , Biosensing Techniques/methods , Arsenic/metabolism , Bacteria/genetics , Bacteria/metabolism , Synthetic Biology/methods , Genetic Engineering
19.
Sci Total Environ ; 934: 173340, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38763201

Arsenic release and reduction in anoxic environments can be mitigated or facilitated by biochar amendment. However, the key fractions in biochars and how they control arsenic transformation remain poorly understood. In this study, a biochar produced from pomelo peel was rich in colloids and was used to evaluate the roles of the colloidal and residual fractions of biochar in arsenic transformation in anoxic paddy soil. Bulk biochar showed a markedly higher maximum adsorption capacity for As(III) at 1732 mg/kg than for As(V) at 75.7 mg/kg, mainly because of the colloidal fraction on the surface. When compared with the control and treatments with the colloidal/residual fraction, the addition of bulk biochar facilitated As(V) reduction and release in the soil during days 0-12, but decreased the dissolved As(III) concentration during days 12-20. The colloidal fraction revealed significantly higher electron donating capacity (8.26 µmole-/g) than that of bulk biochar (0.88 µmole-/g) and residual fraction (0.65 µmole-/g), acting as electron shuttle to promote As(V) reduction. Because the colloidal fraction was rich in aliphatic carbon, fulvic acid-like compounds, potassium, and calcium, it favored As(III) adsorption when more As(III) was released, probably via organic-cation-As(III) complexation. These findings provide deeper insight into the role of the colloidal fraction of biochar in controlling anaerobic arsenic transformation, which will be helpful for the practical application of biochar in arsenic-contaminated environments.


Arsenic , Charcoal , Soil Pollutants , Soil , Charcoal/chemistry , Arsenic/analysis , Adsorption , Soil/chemistry , Colloids/chemistry , Citrus/chemistry , Environmental Restoration and Remediation/methods
20.
J Hazard Mater ; 472: 134623, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38754231

This study aimed to investigate the impact of arsenic stress on the gut microbiota of a freshwater invertebrate, specifically the apple snail (Pomacea canaliculata), and elucidate its potential role in arsenic bioaccumulation and biotransformation. Waterborne arsenic exposure experiments were conducted to characterize the snail's gut microbiomes. The results indicate that low concentration of arsenic increased the abundance of gut bacteria, while high concentration decreased it. The dominant bacterial phyla in the snail were Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota. In vitro analyses confirmed the critical involvement of the gut microbiota in arsenic bioaccumulation and biotransformation. To further validate the functionality of the gut microbiota in vivo, antibiotic treatment was administered to eliminate the gut microbiota in the snails, followed by exposure to waterborne arsenic. The results demonstrated that antibiotic treatment reduced the total arsenic content and the proportion of arsenobetaine in the snail's body. Moreover, the utilization of physiologically based pharmacokinetic modeling provided a deeper understanding of the processes of bioaccumulation, metabolism, and distribution. In conclusion, our research highlights the adaptive response of gut microbiota to arsenic stress and provides valuable insights into their potential role in the bioaccumulation and biotransformation of arsenic in host organisms. ENVIRONMENTAL IMPLICATION: Arsenic, a widely distributed and carcinogenic metalloid, with significant implications for its toxicity to both humans and aquatic organisms. The present study aimed to investigate the effects of As on gut microbiota and its bioaccumulation and biotransformation in freshwater invertebrates. These results help us to understand the mechanism of gut microbiota in aquatic invertebrates responding to As stress and the role of gut microbiota in As bioaccumulation and biotransformation.


Arsenic , Biotransformation , Gastrointestinal Microbiome , Snails , Water Pollutants, Chemical , Animals , Gastrointestinal Microbiome/drug effects , Arsenic/metabolism , Arsenic/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Snails/metabolism , Snails/drug effects , Fresh Water , Bioaccumulation , Bacteria/metabolism , Bacteria/drug effects , Anti-Bacterial Agents/pharmacology
...